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Background: Early prediction of oxygen therapy in patients with coronavirus disease

2019 (COVID-19) is vital for triage. Several machine-learning prognostic models for

COVID-19 are currently available. However, external validation of these models has rarely

been performed. Therefore, most reported predictive performance is optimistic and has

a high risk of bias. This study aimed to develop and validate a model that predicts oxygen

therapy needs in the early stages of COVID-19 using a sizable multicenter dataset.

Methods: This multicenter retrospective study included consecutive COVID-19

hospitalized patients confirmed by a reverse transcription chain reaction in 11 medical

institutions in Fukui, Japan. We developed and validated seven machine-learning

models (e.g., penalized logistic regression model) using routinely collected data (e.g.,

demographics, simple blood test). The primary outcome was the need for oxygen

therapy (≥1 L/min or SpO2 ≤ 94%) during hospitalization. C-statistics, calibration slope,

and association measures (e.g., sensitivity) evaluated the performance of the model

using the test set (randomly selected 20% of data for internal validation). Among these

seven models, the machine-learning model that showed the best performance was

re-evaluated using an external dataset. We compared the model performances using

the A-DROP criteria (modified version of CURB-65) as a conventional method.

Results: Of the 396 patients with COVID-19 for the model development,

102 patients (26%) required oxygen therapy during hospitalization. For

internal validation, machine-learning models, except for the k-point nearest

neighbor, had a higher discrimination ability than the A-DORP criteria (P

< 0.01). The XGboost had the highest c-statistic in the internal validation

(0.92 vs. 0.69 in A-DROP criteria; P < 0.001). For the external validation

with 728 temporal independent datasets (106 patients [15%] required oxygen
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therapy), the XG boost model had a higher c-statistic (0.88 vs. 0.69 in A-DROP criteria;

P < 0.001).

Conclusions: Machine-learning models demonstrated a more significant performance

in predicting the need for oxygen therapy in the early stages of COVID-19.

Keywords: COVID-19, machine learning, prognostic model, medical triage, multicenter, PROBAST, TRIPOD

INTRODUCTION

The novel coronavirus disease 2019 (COVID-19), first reported
in the Hubei province of the People’s Republic of China in
December 2019, has led to an urgent threat to global health.Many
countries faced an emergency crisis despite the significant public
and private efforts to delay disease spread (1). The exponential
increase in COVID-19 incidence has led to a significant demand
for medical services, resulting in a shortage of medical resources
(2, 3). Since, it is challenging to hospitalize all patients with
COVID-19 in most countries, careful observation outside the
hospital is standard for asymptomatic patients and patients with
mild symptoms (4). However, some asymptomatic or patients
with mild symptoms of COVID-19 at the first medical visit
develop severe pneumonia during observation (5, 6). Although,
there is no definitive antiviral medication against COVID-
19, medications, such as oxygen therapy, antiviral medication,
steroids, and supportive care, have become the standard of care
and have been effective (7, 8). As a result, preventable deaths
occur because of the lack of adequate prediction of patient
prognosis at the first medical visit and close follow-up (9).
Some of them could have been saved if the need for oxygen
therapy had been correctly predicted on the first visit (10).
Therefore, accurate medical triage for asymptomatic patients and
patients with mild symptoms in the early stage of COVID-19 is
essential to decrease the incidence of death and allocate limited
medical resources appropriately during the observation period
(11). In previous studies, artificial intelligence, such as machine
learning, has shown better predictive capabilities than traditional
statistical methods (12). However, most published models have
not been externally validated with calibration plots, resulting
in a high risk of bias (13–15). In addition, few studies have
includedmost patients who were hospitalized, even if the patients
were asymptomatic, and have observed their progress in detail.
Therefore, the performance of the reported models might be
optimistic and highly biased (12, 16).

Moreover, many studies did not include a follow-up period
after the end of the study. However, the need for oxygen
demand and outcomemay have been underestimated because the
outcome of these patients may have occurred after the end of the
study. With the effort for the quality required by the PROBAST
(prediction model risk of bias assessment tool) guidelines and
TRIPOD (transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis) reporting guidelines
(13, 17), this study aimed to develop and validate a prognostic

machine-learning model that accurately predicts the need for

oxygen therapy in the early stages of COVID-19 using external

datasets from multiple institutions and to compare its predictive

performance with traditional approaches, such as the A-DROP
criteria (consisting of age of ≥70 years in men or ≥75 years
in women, blood urea nitrogen of ≥21 mg/dL or dehydration,
oxyhemoglobin saturation measured by pulse oximetry of ≤90%
or partial oxygen pressure in the arterial blood of ≤ 60 mmHg,
confusion, and systolic blood pressure of ≤ 90 mmHg) (18).

MATERIALS AND METHODS

Study Design, Source of Data, Participants
Selection, and Follow Up
This multicenter retrospective cohort study analyzed patients
with COVID-19 in 11 academic and community hospitals in
different geographic regions across Fukui, Japan. The 11 medical
institutions included two level-I and eight level-II equivalent
trauma centers and a temporal medical institution. The mean
annual hospitalizations are 160,000 and 90,000 in two level-
I and seven level-II-equivalent trauma centers, respectively.
Supplementary Table 1 and Supplementary Figure 1 show the
size, location, and number of full-time physicians, hospital beds,
annual outpatients, annual patients transported by ambulances,
and annual hospitalized patients. The ethics review board of
the University of Fukui Hospital and each participating medical
institution approved the present study (approval number in
the University of Fukui Hospital: 20200120). In addition, the
waiver of informed consent before data collection was approved
by the institutional review board of each participating medical
institution. All procedures were performed according to the
principles of the Declaration of Helsinki.

We retrospectively studied all consecutive patients with
COVID-19 confirmed by reverse transcription-polymerase chain
reaction (RT-PCR) using a pharyngeal swab test for model
development and internal validation admitted to participating
medical facilities. Since, the number of patients with COVID-
19 in Fukui during the study period was relatively small, most
patients diagnosed with COVID-19 were hospitalized and few
were kept at home (<5% of all patients with COVID-19 in
Fukui). We lent pulse oximeters to home care patients, instructed
them on how to take measurements, and followed up with daily
phone calls to check their condition. In this study, there were only
a small number of patients who were initially to have mild disease
and were followed up at home; hence, we could collect data closer
to the actual situation.

We obtained electronic medical dataon the early stage of
COVID-19 in patients admitted to 10 medical institutions
(except the Ota Hospital) from July 1, 2020 to March 31, 2021
to develop prediction models and perform internal validation.
This study defines medical data regarding the early stage
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of COVID-19 as data within 48 h of PCR confirmation or
initial diagnosis. After admission to the hospital, antivirals,
corticosteroids, and herbal medicines were administered by the
attending physician according to the standardized methods of
each medical institution.

In addition, for temporal and external validation, we
retrospectively examined all consecutive patients with COVID-
19 admitted to the University of Fukui Hospital, Fukui
Prefectural Hospital, Japanese Red Cross Fukui Hospital, Fukui-
ken Saiseikai Hospital, and Ota Hospital from April 1, 2021 to
September 30, 2021.

Exclusion criteria were patients aged <17 years and pregnant
patients. The present study aimed to develop and validate a
machine-learning model to identify COVID-19 patients who
are mildly ill at the time of initial diagnosis and who require
oxygen therapy during the course of their illness. We also
excluded patients with transcutaneous oxygen saturation (SpO2)
<95%, patients receiving oxygen therapy (>1 L O2/min) before
admission, and patients with no recorded SpO2 at the time of
initial diagnosis.

We performed a post-discharge telephone follow-up survey
on all patients 2–4 weeks after discharge to determine if any
patient’s condition worsened after discharge.

Outcomes
The outcome of interest was oxygen therapy, which indicates
disease progression. Oxygen therapy was administered between
the time of diagnosis by PCR-positive confirmation of COVID-
19 and the time of discharge from the hospital after negative
confirmation by PCR. Oxygen therapy was defined as follows:
(1) SpO2 was ≤94% at least once during hospitalization;
(2) at least one oxygen administration of 1 L/min or
more during hospitalization; (3) admission to the ICU; (4)
intubation; and (5) discharge due to death. Therefore, patients
who met these conditions were considered to have needed
oxygen therapy.

Data Collection and Predictors of
Machine-Learning Models
From the electronic medical records of 11 medical institutions,
we extracted the following routine data in the early stages
of COVID-19: patient demographics [age, sex, smoking
history, alcohol, height, body weight, body mass index,
and comorbidities (myocardinal infarction, cognitive heart
failure, peripheral vascular disease, cerebrovascular disease,
chronic obstructive pulmonary disease, bronchial asthma,
chronic kidney disease, hypertension, diabetes mellites,
and malignancy)], symptoms (fever, fatigue, sore throat,
headache, rhinorrhea, arthralgia, diarrhea, loss of smell, dyspnea,
muscle ache, loss of taste, disturbance of consciousness, and
conjunctival hyperemia), vital signs (systolic and diastolic blood
pressure and oxygen saturation), Glasgow coma scale, complete
blood count (white blood cells, lymphocytes, and platelets),
coagulation profile (prothrombin time, activated partial
thromboplastin time, fibrinogen, and d-dimer), biochemistry
(sodium, potassium, albumin, blood urea nitrogen, creatinine,
lactate dehydrogenase, aspartate aminotransferase, and alanine

aminotransferase), c-reactive protein, and X-ray examination
(chest X-ray or chest computed tomography). Radiology
specialists or internal medicine specialists reviewed all X-ray
examinations and classified them into three categories: bilateral
pneumonia, unilateral pneumonia, and no pneumonia. We also
recorded the medications and treatment plans after admission
and outcomes.

Statistical Analysis
We performed summary statistics to describe the characteristics
of the patients and the patient’s clinical course. After multiple
imputations using random forests (19) (Supplementary Table 2

shows the missing rate for predictors), we preprocessed
predictors, including one-shot encoding (i.e., creation of dummy
variables), normalization, and standardization. In the training
set (80% random sample) with all available predictors, six
machine-learning models were developed: (1) penalized logistic
regression (20), (2) random forest (21), (3) support vector
machine (22), (4) k-point nearest neighbor (23), (5) XG boost
(24), and (6) multilayer perceptron (25) for each outcome. In
addition, we selected one machine-learning model that achieved
the highest prediction performance among the six models. With
the best performance model, we calculated the importance of
the variables that improved the c-statistics and selected the
top eight variables that improved the model performance for
future practical usability. Another reason we developed the
model with eight variables was to meet the PROBAST standard,
which requires a large data set with at least 10 events per
candidate variable for model development and at least 100
events for external validation (16).We performed stratified three-
fold cross-validation to determine the optimal hyperparameters
with the highest c-statistic [i.e., the area under the receiver
operating characteristic (ROC) curve]. We used the A-DROP
criteria, which is a modified version of CURB-65 as the reference
model (26).

We measured the performance of the reference model (the
A-DROP criteria) and each machine-learning model on the test
set (the remaining 20% random sample) for internal validation.
We estimated the c-statistics for each model and examined the
relevant metrics as follows: sensitivity, specificity, positive and
negative predictive values, and positive and negative likelihood
ratios. Based on the ROC curve from the Youden method,
we determined the threshold for perspective prediction results
(cutoff) to determine the best performance model (27). We also
examined the calibration plots of the best-performing model for
the outcome.

For temporal external validation, we collected electronic
medical record information from five hospitals. Of all the
available variables, we extracted the top eight variables with
missing values of 20% or less and contributed the most to
improving the c-statistics using the filter method (28). We
also demonstrated the c-statistics for the best machine-learning
model with the eight variables and examined the relevant
metrics (i.e., sensitivity), calibration plots, slope, intercepts,
and coefficient of determination using temporal independent
variable datasets.
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A two-sided P-value of <0.05 was considered statistically
significant. Data were analyzed using Python (version 3.7.3) and
R (version 3.6.2).

RESULTS

Patient Characteristics
A total of 489 patients with COVID-19 admitted to one
of the 11 participating medical institutions were recorded
for model development and internal validation during the
9-month study period. Of these, we excluded 28 patients
aged <18 years, 14 patients with no SpO2 data at the first
visit, and 51 patients who required oxygen administration
of >1 L or SpO2 of <95% at the time of admission. The
remaining 396 patients were included in the analytic cohort for
model development.

For external validation, 855 patients were admitted to one of
the five participating medical institutions during the 4 months.
Of these, we excluded 90 patients under the age of 18 and 37
patients who required oxygen at the time of admission. The
remaining 728 patients were included in the analytic cohort for
external validation.

Patient characteristics on the admission of patients with
COVID-19 are shown inTable 1.Table 2 shows the patients’ vital
signs, laboratory findings, X-rays on admission, and outcomes.

The median age was 54 years [interquartile range (IQR),
34–70], and 48% of the participants were female. Overall, 102
(26%) and 106 (15%) patients needed oxygen therapy for model
dataset development and external validation, respectively. A
post-discharge telephone follow-up survey was performed on all
patients 2–4 weeks after discharge (≥95% capture rate), and no
patients were readmitted.

Prediction Performance With all Available
Variables and Important Variables
Table 3 summarizes the prediction performance of the A-
DROP criteria (reference) and eight machine-learning models.
Compared with the A-DROP criteria, the discrimination
performance of the machine-learning models was significantly
greater (P< 0.05), except for the k-point nearest-neighbormodel.
Among the six machine-learning models using all available
variables, the XG boost had the highest c-statistic (0.89; 95%
confidence interval [CI], 0.79–0.96), with a sensitivity of 0.83
(95% CI, 075–0.91), specificity of 0.90 (95% CI, 0.84–0.96),
the positive predictive value of 0.71 (95% CI, 0.61–0.81), and
the negative predictive value of 0.95 (95% CI, 0.90–0.99).
With the filter method for variable selection, we selected the
eight important variables as follows: hypertension, age, any
comorbidity, aspartate aminotransferase, lactate dehydrogenase,
SpO2 at the first visit, pneumonia, and C-reactive protein.

Prediction Performance and Feature
Importance With Eight Variables
The prediction performance of the XG boost model using the
eight variables is presented in Table 3. Compared with the A-
DROP criteria, the discrimination performance of the XG boost

TABLE 1 | Characteristics of the patient on the admission of the patients with

COVID-19.

Variables Model

developing

External

validation

Age, median (IQR), year 54 (34–70) 42 (27–53)

Female 192 (48) 326 (45)

Smoking history* 116 (32) –

Drinking alcohol** 123 (52) –

Height, median (IQR), cm 164 (157–171) 165 (158–173)

Body weight, median (IQR), kg 61 (52–72) 62 (53–73)

Body mass index, median (IQR), kg/m2 23 (20–25) 23 (20–25)

Comorbidities

Any comorbidity 193 (49) 170 (24)

Cardiovascular all 32 (9) –

Myocardial infarction 16 (4) –

Congestive heart failure 5 (1) –

Peripheral vascular disease 3 (1) –

Cerebrovascular disease 16 (4) –

Chronic Obstructive Pulmonary Disease

(COPD)

5 (1) –

Bronchial asthma 16 (4) –

Chronic lung disease (excluding COPD) 4 (1) –

Chronic kidney disease (CKD) 9 (3) –

Hypertension 117 (30) 90 (12)

Hyperlipidemia 48 (13) –

Diabetes mellites 52 (14) –

Malignancy 15 (4) –

Symptoms

Any symptoms 298 (75) –

Fever (37.0 to 38.0◦C) 190 (53) –

Fever (38.0◦C or more) 47 (13) –

Malaise or fatigue 110 (31) –

Sore throat 92 (26) –

Headache 60 (17) –

Rhinorrhea 71 (20) –

Arthralgia 37 (10) –

Diarrhea 9 (3) –

Loss of smell 45 (13) –

Dyspnea 15 (4) –

Muscle ache 37 (31) –

Loss of taste 39 (11) –

Disturbance of consciousness 2 (1) –

Conjunctival hyperemia 1 (0) –

Period from onset of symptom to PCR

positive (IQR) (days)

3 (1–6) 3 (1–6)

Data are shown as no (%) otherwise is specified.

Cardiovascular diseases include congestive heart failure, unstable angina pectoris,

atrial fibrillation, and hypertension. Respiratory diseases include bronchial asthma,

chronic obstructive pulmonary disease (COPD), tuberculosis, pleuritis, and pneumonia.

Malignancy includes colonic cancer, spinal tumor, brain tumor, prostate cancer, oral

cancer, and malignant lymphoma.

CKD, chronic kidney disease; GERD, gastroesophageal reflux disease; PCR, polymerase

chain reaction.

*Smoking history includes patients who are currently smoking or smoking in the past.

**Drinking alcohol includes patients who drink daily or occasionally.

models using the top eight essential variables was significantly
greater (P < 0.001).
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TABLE 2 | Blood pressure, percutaneous oxygen saturation, laboratory findings,

X-ray on admission, and outcome of the patients with COVID-19.

Variables Model developing External validation

Blood pressure

Systolic blood

pressure (mmHg)

126 (115–139) –

Diastolic blood

pressure (mmHg)

83 (75–91) –

Saturation of

percutaneous

oxygen (%)

97 (96–98) 98 (97–98)

Complete blood count

White blood cells

(×103/µL)

46 (37–56) –

Lymphocytes (%) 25 (20–34) –

Platelets

(×104/µL)

10 (16–25) –

Coagulation profile

Prothrombin time

(seconds)

11 (10–12) –

Activated partial

thromboplastin

time (seconds)

32 (30–35) –

Fibrinogen (mg/dl) 329 (247–428) 343 (290–404)

D-dimer (µg/ml) 0.8 (0.5–1.1) 0.7 (0.51–0.9)

Biochemistry

Na (mEq/l) 140 (138–141) 141 (140–151)

K (mEq/l) 4 (3.8–4.2) –

Albumin (g/dl) 4.2 (3.9–4.5) –

Blood urea

nitrogen (mg/dl)

12.6 (10.0–15.3) –

Creatinine (mg/dl) 0.78 (0.66–0.95) –

Lactate

dehydrogenase

(U/l)

194 (168–235)

Aspartate

aminotransferase

(U/l)

24 (20–33) 23 (19–32)

Alanine

aminotransferase

(U/I)

21 (14–35) –

Serum

C-reactive protein

(mg/dl)

0.45 (0.12–1.59) 0.44 (0.14–1.39)

X-ray (pneumonia)

Non

170 (43) 382 (52)

Unilateral 42 (11) 78 (11)

Bilateral 106 (33) 244 (35)

Outcome

A-DROP (≥1) 99 (25) –

Oxygen needs 102 (26) 106 (15)

A-DROP, Age-dehydration-respiration-orientation-blood-pressure criteria.

For internal validation, compared to the six machine-learning
models using all available variables, the XG boost model using the
eight variables had the highest c-statistic (0.92; 95% CI, 0.86–0.98

vs. 0.69 in A-DROP criteria; P < 0.001), with a sensitivity of 0.94
(95% CI, 0.89–0.99), specificity of 0.69 (95% CI, 0.59–0.79), the
positive predictive value of 0.47 (95%CI, 0.36–0.59), and negative
predictive value of 0.98 (95% CI, 0.94–1.00).

For external validation using an independent data set of 728
patients, compared to the A-DROP criteria, the XG boost using
the eight variables had a higher c-statistic (0.88; 95% CI, 0.81–
0.95 vs. 0.69 in A-DROP criteria; P < 0.001; Figure 1), with a
sensitivity of 0.64 (95%CI, 0.55–0.71), specificity of 0.93 (95%CI,
0.88–0.97), positive predictive value of 0.61 (95% CI, 0.53–0.68),
positive predictive value of 0.93 (95% CI, 0.89–0.97]. SpO2 at the
first visit was the most important feature, followed by age, lactate
dehydrogenase, and aspartate aminotransferase levels (Table 4).

Calibration Plot
Figure 2 shows the calibration plots of the XG boost models
using the eight variables for predicting outcomes for external
validation. A positive relationship was observed between the
predicted and actual risks in the calibration plots. The slope,
intercept, and coefficient of determination of the calibration were
1.132, −0.202, and 0.949 for external validation, respectively.
The model-predicted probability for external validation almost
matched the observed probabilities.

DISCUSSION

In this study, we analyzed multicenter, retrospective data
from 1,124 patients (396 for model development and internal
validation, 728 for external validation) with COVID-19 and
applied machine-learning models to predict oxygen therapy
during the course of the infection. Specifically, most machine-
learning models showed better discriminative performance than
the traditional approach (i.e., the A-DROP criteria). In addition,
thesemachine-learningmodels achieve a high negative predictive
value in predicting outcomes, which may help us perform safer
triage. To the best of our knowledge, this is the first study
to investigate the performance of modern machine-learning
models in predicting the need for oxygen therapy in early stage
COVID-19 using a large multicenter dataset in Japan with the
PROBAST standard.

It is challenging to admit all patients with COVID-19 in
the current pandemic due to a lack of medical resources.
The WHO guidelines recommend home treatment for patients
with mild COVID-19 symptoms (29). Hence, the importance
of accurate prediction for oxygen needs in the early state of
COVID-19 has been emphasized, and many machine learning-
based prognostic models have been developed (5, 6). However,
most of their reported prediction ability may be optimistic
because of the poorly reported study that did not follow
PROBAST and the lack of external validation (12, 16). In
addition, since these studies have looked only at hospitalized
patients and not at patients considered mildly ill in the early
stages of COVID-19 who were kept home without careful
observation, these studies do not comprise consecutive patient
data, resulting in significant selection bias (12, 16, 30). The
present study examined consecutive patients admitted to 11
participating medical institutions, and few patients were kept
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TABLE 3 | The ability of eight machine-learning models and A-DROP as the risk stratification tool.

Models C-statistic P-value Sensitivity Specificity PPV (95% CI) NPV (95% CI) PLR (95% CI) NLR (95% CI)

(95% CI) (95% CI) (95% CI)

A-DROP criteria ≥1 (Reference) 0.69 (0.62–0.75) – 0.54 (0.48–0.59) 0.83 (0.79–0.87) 0.54 (0.48–0.59) 0.83 (0.79–0.87) 3.08 (2.24–4.25) 0.56 (0.41–0.77)

Penalized logistic regression 0.85 (0.75–0.95) 0.01 0.79 (0.70–0.88) 0.73 (0.64–0.82) 0.56 (0.45–0.66) 0.89 (0.82–0.95) 2.96 (1.83–4.77) 0.28 (0.18–0.46)

Random forest 0.88 (0.78–0.97) <0.01 0.79 (0.70–0.73) 0.96 (0.93–1.00) 0.90 (0.84–0.96) 0.92 (0.85–0.97) 22.17 (5.60–7.38) 0.22 (0.05–0.86)

SVM 0.83 (0.73–0.94) 0.03 0.75 (0.65–0.84) 0.80 (0.71–0.89) 0.62 (0.51–0.75) 0.88 (0.81–0.95) 3.82 (2.14–6.81) 0.31 (0.17–0.55)

KNN 0.78 (0.66–0.91) 0.23 0.25 (0.16–0.35) 0.98 (0.95–1.00) 0.86 (0.78–0.93) 0.75 (0.66–0.85) 14.01 (1.78–110) 0.76 (0.10–6.01)

XG boost 0.89 (0.79–0.96) <0.01 0.83 (0.75–0.91) 0.90 (0.84–0.96) 0.71 (0.61–0.81) 0.95 (0.90–0.99) 8.61 (3.92–18.9) 0.18 (0.08–0.41)

MLP 0.86 (0.76–0.96) <0.01 0.54 (0.44–0.65) 0.95 (0.89–0.99) 0.81 (0.72–0.90) 0.83 (0.74–0.91) 10.11 (3.17–32.8) 0.48 (0.15–1.55)

XG boost with eight features

(Internal validation)

0.92 (0.86–0.98) <0.001 0.94 (0.89–0.99) 0.69 (0.59–0.79) 0.47 (0.36–0.59) 0.98 (0.94–1.00) 3.08 (2.08–4.56) 0.08 (0.05–0.12)

XG boost with eight features

(External validation)

0.88 (0.81–0.95) <0.001 0.64 (0.55–0.71) 0.93 (0.88–0.97) 0.61 (0.53–0.68) 0.93 (0.89–0.97) 8.77 (4.34–17.7) 0.39 (0.19–0.79)

A-DROP criteria, age-dehydration-respiration-orientation-blood-pressure criteria.

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio; KNN, K-point nearest neighbor;

MLPerceptron, multilayer perceptron; XG boost, extreme gradient boosting.

FIGURE 1 | C-statistic of XG Boost model with eight variables in external

validation.

home. We followed the PROBAST standard, which recommends
an extensive data set with at least 10 events per candidate variable
for model development and at least 100 events for external
validation to reduce bias (31).

The XG boost model with the eight variables validated
by an external dataset in the present study shows a negative
predictive value of 0.93 (95% CI, 0.89–0.97). The model could
contribute to a safer selection of low-risk patients at the initial
diagnosis of COVID-19 and their safe management in home care
under careful observation. In addition, accurate early prediction
of oxygen requirements has several important implications in
medical practice. For example, early identification of the potential
risk of severe disease allows healthcare providers to develop
individualized and optimal management strategies, prepare for
hospitalization, and plan more careful follow-up.

Although the machine-learning models achieved significant
predictive power, their performance remained imperfect. This

FIGURE 2 | XG boost model calibration plot in external validation.

can be explained, at least in part, by the limited number of
predictors (e.g., the experience of healthcare professionals) and
measurement errors in the data.

Furthermore, the A-DROP criterion is presumed to be simpler
and easier to use. Although it is known that there is a trade-
off between concise models, such as the A-DROP or CURB-65
criteria, the use of modern machine-learning models has the
advantages in the era of health information technology, such as
web-based applications, automated data entry through speech
recognition, natural language processing, continuous model
refinement through sequential extraction of electronic medical
records, and reinforcement learning (32, 33). Our findings and
the recent advent of machine-learning approaches collectively
support cautious optimism that machine learning may enhance
the clinician’s ability as an assistive technology in predicting
patient outcomes in the early stage of COVID-19. We have
already implemented this model as a web-based application and
plan to triage future COVID-19 patients in Fukui Prefecture.

This study has several limitations. First, the current model
is designed to predict disease progression to the stage in which
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TABLE 4 | Feature importance of XGboost with eight variables.

Variables Feature importance

SpO2 at the first visit 0.26135576

Age 0.26132179

Lactate dehydrogenase 0.16435097

Aminotransferase 0.15464792

Any comorbidity 0.124125525

C-reactive protein 0.06478236

Hypertension 0.062515706

Pneumonia <0.01

SpO2, transcutaneous oxygen saturation.

oxygen therapy is required. Hence, the present study did not
attempt to predict progression to a more severe stage requiring
intubation or extracorporeal membrane oxygenation. However,
external validation of this study showed that four people were
intubated and three of them died, but the model determined
that all of them were severely ill without any omissions. Second,
although the current study was conducted with a geographically
diverse patient population in Fukui Prefecture, our model may
not generalize to other practice settings. Therefore, this model
needs to be revalidated in other parts of Japan and outside Japan.
The model should be validated in other countries outside Japan.
Third, the AI model should be validated repeatedly with the
new COVID19 variant. Generally, every AI model should be
evaluated frequently with a new dataset to maintain its prediction
performance. However, we developed the AI model mainly from
the alpha variant of COVID19, and the AI model performed well
in external validation that primarily consisted of the delta variant.
In other words, the AI model can correctly predict the severity
of COVID19 even when the model predicts patients with new
COVID19 variants. The AI model predicts the severity using the
human body’s reaction, such as CRP, not using the virus itself.
Therefore, we assume if the patient’s response to a new variant
of COVID19 is correctly reflected in blood data and radiographs,
the AImodel may accurately predict the patient’s severity. Finally,
machine-learning models have a common limitation in terms
of interpretability.

In conclusion, based on multicenter retrospective data from
1,124 patients, we developed machine-learning models to predict
the need for oxygen therapy during the course of COVID-19
at its early stages. We found that, compared to conventional

approaches such as the A-DROP criteria, the machine-learning
models had a higher ability to predict oxygen therapy.
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