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Abstract: Autism Spectrum Disorders (ASD) affect around 1.5% of the global population, which
manifest alterations in communication and socialization, as well as repetitive behaviors or restricted
interests. ASD is a complex disorder with known environmental and genetic contributors; however,
ASD etiology is far from being clear. In the past decades, many efforts have been put into developing
new models to study ASD, both in vitro and in vivo. These models have a lot of potential to help to
validate some of the previously associated risk factors to the development of the disorder, and to test
new potential therapies that help to alleviate ASD symptoms. The present review is focused on the
recent advances towards the generation of models for the study of ASD, which would be a useful tool
to decipher the bases of the disorder, as well as to conduct drug screenings that hopefully lead to the
identification of useful compounds to help patients deal with the symptoms of ASD.

Keywords: autism spectrum disorders (ASD); animal models; cellular models; genome editing; human
induced pluripotent stem cells (hiPSCs); neurodevelopmental disorders (NDDs); rodents; zebrafish

1. Introduction

1.1. Definition and Epidemiology of Autism Spectrum Disorders

Autism Spectrum Disorders (ASD)-affected individuals are characterized by the presence of social
and communication impairments and the lack of common skills in developing, maintaining, and
understanding relationships. In addition to these symptoms, patients might also develop stereotyped
or repetitive patterns of behavior, interests and/or activities. According to the 5th edition of the
Diagnostic and Statistical Manual of Mental Disorders (DSM-5), the ASD category includes the
following neurodevelopmental disorders (NDDs): early infantile autism, childhood autism, Kanner’s
autism, high functioning autism, atypical autism, pervasive developmental disorder not otherwise
specified (PDD-NOS), childhood disintegrative disorder, and Asperger’s disorder [1].

The prevalence of ASD is estimated to be around 1.5% [2–4], although these data vary depending
on the year and the country dataset consulted (Figure 1). Differences among datasets could be
associated with real differences on ASD prevalence, but also with errors due to diagnostic difficulties
or lack of trustworthy data [5].
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Figure 1. Map of the prevalence of Autism Spectrum Disorders (ASD) around the world in 2017. 
Light green: prevalence between 0–0.4%; blue: prevalence between 0.4–0.6%; green: prevalence 
between 0.6–0.8%; dark green: prevalence between 0.8–1%. Countries from which no data are 
available are plotted in grey. The figure was elaborated using R software (R Core Team, Vienna, 
Austria) to represent open access data which have been previously standardized to age and sex 
[2,4,6]. 

1.2. Aetiology of Autism Spectrum Disorders 

Depending on whether the origin of ASD is known or not, the disorder can be classified into 
two subgroups: syndromic and non-syndromic ASD. Syndromic ASD includes those cases with a 
well-characterized etiology, whereas non-syndromic ASD cases have a less defined etiology, with 
multiple factors contributing to the development of the disorder [7]. 

ASD can be linked to prenatal, perinatal and postnatal risk factors, which can be either genetic 
or environmental [8]. Several environmental factors have been found strongly correlated with ASD 
development, such as advanced parental age, pregnancy and birth complications, vitamin D 
deficiency and heavy metal exposition [8–10]. 

Regarding genetics, their relevance in ASD risk development has been known for over 50 years, 
mainly due to the results observed in twin studies. The first twin studies indicated that ASD 
concordance could be around ~90% in monozygotic twins, in comparison with a 30% concordance 
observed in dizygotic twins [11–13]. However, recent data seem to indicate that ASD concordance in 
monozygotic twins might be lower (~50%) [10]. 

Despite the obvious challenges associated with the identification of ASD causes, many 
susceptibility genes have been identified by genetic analysis, including exome sequencing and 
genome-wide association studies (GWAS). ASD-associated genes are frequently involved in the 
regulation of neural and synaptic development and its alteration can lead to dysfunctions in brain 
areas that regulate high cognitive functions [13–16]. In addition, molecular alterations in excitatory 
cortical neurons, microglia and cortico-cortical projection neurons have also been associated with 
ASD severity [17]. 

Both common and rare genetic variants have been associated with ASD development. Available 
data suggest that de novo mutations in coding regions are among the most frequent variants 

Figure 1. Map of the prevalence of Autism Spectrum Disorders (ASD) around the world in 2017. Light
green: prevalence between 0–0.4%; blue: prevalence between 0.4–0.6%; green: prevalence between
0.6–0.8%; dark green: prevalence between 0.8–1%. Countries from which no data are available are
plotted in grey. The figure was elaborated using R software (R Core Team, Vienna, Austria) to represent
open access data which have been previously standardized to age and sex [2,4,6].

1.2. Aetiology of Autism Spectrum Disorders

Depending on whether the origin of ASD is known or not, the disorder can be classified into
two subgroups: syndromic and non-syndromic ASD. Syndromic ASD includes those cases with a
well-characterized etiology, whereas non-syndromic ASD cases have a less defined etiology, with
multiple factors contributing to the development of the disorder [7].

ASD can be linked to prenatal, perinatal and postnatal risk factors, which can be either genetic
or environmental [8]. Several environmental factors have been found strongly correlated with ASD
development, such as advanced parental age, pregnancy and birth complications, vitamin D deficiency
and heavy metal exposition [8–10].

Regarding genetics, their relevance in ASD risk development has been known for over 50 years,
mainly due to the results observed in twin studies. The first twin studies indicated that ASD
concordance could be around ~90% in monozygotic twins, in comparison with a 30% concordance
observed in dizygotic twins [11–13]. However, recent data seem to indicate that ASD concordance in
monozygotic twins might be lower (~50%) [10].

Despite the obvious challenges associated with the identification of ASD causes, many susceptibility
genes have been identified by genetic analysis, including exome sequencing and genome-wide
association studies (GWAS). ASD-associated genes are frequently involved in the regulation of neural
and synaptic development and its alteration can lead to dysfunctions in brain areas that regulate high
cognitive functions [13–16]. In addition, molecular alterations in excitatory cortical neurons, microglia
and cortico-cortical projection neurons have also been associated with ASD severity [17].

Both common and rare genetic variants have been associated with ASD development. Available
data suggest that de novo mutations in coding regions are among the most frequent variants associated
with ASD. However, other genetic alterations such as copy number variations (CNVs) and chromosomal
alterations have also been associated with the development of the disorder [7,13,18,19].

One of the most complete recompilation of ASD-associated genes is the SFARI Gene Database [20,21].
In the 2020 database release, genes are classified according to a gene score (1, 2 or 3) that takes into
account the amount of information supporting the implication of a certain gene in ASD development.
Genes with score 1 are high confidence ASD-associated genes with a minimum of three de novo
disrupting mutations linked in patients to the development of the disorder. Genes with score 2 are
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strong candidates with two de novo disrupting mutations associated with ASD development. Finally,
genes with score 3 are those with one reported de novo disrupting mutation linked to ASD, but the
results have not been replicated yet.

A total of 913 genes have been registered into the SFARI Gene Database (https://gene.sfari.org/,
latest release 2020) as ASD-associated genes with their corresponding score following the previously
mentioned criteria (Figure 2a) [20,21]. These genes are not evenly distributed throughout the genome,
for instance, high confidence ASD-associated genes (gene score 1) are particularly abundant in the
chromosome X (Figure 2b,c). Some authors have linked this observation with the male-to-female ASD
ratio which is about 4 to 1 [11,22].
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Figure 2. Human ASD-associated genes according to the SFARI Gene Database (2020). Gene score 1:
high confidence genes with a minimum of three de novo likely gene disrupting mutations associated to
ASD. Gene score 2: strong candidate genes with two de novo gene-disrupting mutations associated to
ASD. Gene score 3: suggestive evidence of the association of the gene with ASD development, due to
one reported de novo likely gene-disrupting mutation. (a) Classification of the 913 ASD-associated
genes in the SFARI Gene Database according to the gene score and their presence in syndromic or
non-syndromic ASD patients (NS = non-specified); (b) ASD-associated genes distribution in the human
genome; (c) Percentage of ASD-associated genes identified on each human chromosome. The figure
was elaborated using open-access data from SFARI Gene Database (obtained in January 2020) and R
software [6,20,21].

https://gene.sfari.org/


Genes 2020, 11, 1376 4 of 45

1.3. Diagnostic of Autism Spectrum Disorders

Nowadays, ASD diagnosis is based on standard clinical criteria (Table 1) that evaluate the
symptoms and their severity in each case [1]. However, ASD symptoms can vary a lot between
individuals. In the most severe cases, an accurate diagnosis is usually made at an early age (1–2% of
the population), but milder phenotypes can be harder to identify for clinicians, as different NDDs can
co-occur and symptoms might be very similar [1,7,23].

Table 1. Standard clinical criteria for the identification and diagnosis of ASD in the population according
to the DSM-5 [1].

Clinical Diagnosis Criteria for ASD

Deficits in social communication and interaction
Restricted and repetitive patterns of behavior, interests, or activities

Symptoms present during early development
Presence of impairments in important areas of an individual’s functioning

Symptoms are not better explained by other mental disorder

ASD: Autism Spectrum Disorders; DSM-5: the 5th edition of the Diagnostic and Statistical Manual of
Mental Disorders.

The current approach to diagnose and treat ASD patients is far from optimal. To improve this
situation, it is essential to broaden the current knowledge of ASD bases, which could give us new
insights to improve the diagnosis and treatment of patients.

1.4. Treatment of Autism Spectrum Disorders

Treatment for ASD patients is essentially focused on ameliorating the symptoms of the disorder
to reduce the impact it has on the daily activities of the affected individuals. To this end, it is frequent
that patients receive a combination of therapeutic approaches, including behavioral therapy and/or
medication (see Table 2 for a list of ASD-related therapies). There is no medication that can completely
alleviate ASD symptoms or cure the disorder. However, some compounds—such as α2-adrenergic
agonists and olanzapine—have been approved to ameliorate some symptoms of the disorder, but their
efficiency is limited [24,25].
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Table 2. Therapeutic options available to treat ASD symptoms. Available therapeutic approaches can be classified into three groups: psychosocial therapies,
pharmacology and complementary alternative medicine. In the table below, it can be found a list of the available therapies divided into these three categories,
including a brief explanation on which ASD symptoms can be ameliorated by their use, as well as their previously reported side effects [24,25].

Type of Therapy Therapy Procedure Areas with Improvement Side Effects

Psychosocial therapies Applied behavior analysis (ABA) Repetition of learning trials (positive
reinforcement)

Intellectual functioning, language, daily
living skills and socialization

Long-term and costly therapy, need
patient’s cooperation and

motivation

Pivotal Response Treatment (PRT) Targets specific skills and motivations Improve communication skills and less
disruptive behaviors compared to ABA No significant side effects

Parent-mediated early interventions Interventions that can be applied at
home by parents Socialization and communication No significant side effects

Social skills interventions Interventions to improve social skills Emotional regulation, communication
and socialization No significant side effects

Pharmacology Risperidone Atypical Antipsychotics Irritability, socialization and
communication

Weight gain, increased appetite and
somnolence

Aripiprazole Atypical Antipsychotics Irritability Weight gain and somnolence
Olanzapine Atypical Antipsychotics Irritability Weight gain

Ziprasidone Atypical Antipsychotics Irritability Cardiovascular alterations and
somnolence

Paliperidone Atypical Antipsychotics Irritability Weight gain and extrapyramidal
symptoms

Haloperidol Typical Antipsychotics Hyperactivity, stereotypical behaviors
and learning on discrimination tasks

Somnolence, irritability and
dystonic reactions

Antidepressants: venlafaxine Typical Antipsychotics Repetitive behaviors, socialization and
communication

Hyperactivity, inattention, nausea
and polyuria

Antidepressants: clomipramine Typical Antipsychotics Stereotypical behavior and anger
management No significant side effects

Divalproex sodium Mood stabilizers Irritability and repetitive behaviors No significant side effects

Methylphenidate Stimulants/atomoxetine/α-2 agonists Hyperactivity Appetite decrease, insomnia,
irritability and emotional outbursts

Atomoxetine Stimulants/atomoxetine/α-2 agonists Hyperactivity and impulsivity No significant side effects
α-2 agonists: clonidine and

guanfacine Stimulants/atomoxetine/α-2 agonists Hyperactivity Somnolence

Naltrexone Other medications Hyperactivity and impulsivity No significant side effects
Complementary alternative

medicine Melatonin Sleep disturbances No significant side effects
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2. Genome Editing Systems, a Promising Tool for Modeling Human Disorders

As mentioned before, both genetic and environmental risk factors contribute to ASD development.
Due to this complexity, deciphering the individual impact of each risk factor on the development of
ASD was a difficult task for researchers for a long time, and it is still a challenge.

This scenario recently changed due to the development of improved genetic edition systems
which allow simplifying the study of the function of selected genes and their relationship with
disease-related phenotypes. To date, there are three main types of genetic editing systems available: Zinc
Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs) and CRISPR/Cas
(Clustered Regularly Interspaced Short Palindromic Repeats). The first editing tools available were
ZFNs, in 1996 [26] and TALENs, in 2010 [27], both based on the recognition between a DNA sequence
and a protein. A new editing system based on DNA-RNA recognition was developed in 2013, which
received the name of CRISPR/Cas [28]. This technology supposed a revolution in the field of genome
editing, which is now accessible to almost every laboratory worldwide.

The increased accessibility of CRISPR/Cas system makes it a powerful tool in many research areas,
from agriculture to ecological vector control or biomedicine. To the purpose of the present review, it is
especially interesting to mention the broad applications of CRISPR/Cas system in biomedical research,
ranging from targeted genome editing to the regulation of gene expression or even the labeling of
endogenous sequences. This technology has a great potential to generate pre-clinical models of many
human disorders, both in vitro and in vivo, that could help to understand the molecular pathways
that lead to the development of a certain pathology [29–31].

Fundamentals of Genomic Editing

All three systems (Figure 3) create specific breaks into the DNA, which in turn trigger the cellular
DNA repair mechanisms. Eukaryotic cells have two main routes of DNA repair: non-homologous end
joining (NHEJ) and homology-directed repair (HDR). NHEJ pathway is faster, but also prone to error,
generating insertions or deletions (indels) due to its activity. NHEJ often alters gene’s reading frame
or inserts stop codons at unusual places, generating truncated proteins that are unable to properly
function. HDR pathway is more precise as it can correct alterations using a donor sequence as a
template. Taking advantage of the HDR system allows the introduction of specific modifications in the
genome, which can be as small as one single nucleotide [32].
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(DSBs) at desired positions in the genome. To function, this edition system requires two zinc finger 

Figure 3. The main genomic editing systems available at the moment. (a) Zinc Finger Nucleases—ZFNs:
two zinc finger nucleases act as a dimer, each one harboring a DNA binding domain and a DNA
cleaving domain FokI; (b) Transcription Activator-Like Effector Nucleases—TALENs: TALENs act as a
dimer, each one harboring a DNA binding domain (TAL effectors) and a DNA cleaving domain FokI;
(c) CRISPR/Cas9: a sgRNA binds to the DNA and to the Cas9 endonuclease, facilitating the creation of
double-strand breaks (DSBs) in the DNA. The image is original and was created by the authors of the
present review.

ZFNs are a type of DNA-binding proteins that can be used to create double-strand breaks (DSBs)
at desired positions in the genome. To function, this edition system requires two zinc finger nucleases,
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each one harboring two essential domains: a DNA binding domain and a DNA cleaving domain.
The DNA binding domain is composed of protein modules, each one able to recognize a specific
nucleotide triplet. The second essential domain of a ZFN is the sequence-independent cleaving domain,
which is derived from the endonuclease FokI (Figure 3a). The combination of both domains allows the
ZFN to act as a site-specific nuclease [26,33]. ZFNs are an efficient editing system that can be applied
to multiple experimental models, including cell cultures and animal models [34–37]. However, despite
their efficiency, the use of ZFNs has not been widespread due to the difficulty of the experimental
design and the required validation.

TALENs emerged in 2010 as an alternative to ZFNs. TALENs function is based on the combination
of FokI cleavage activity and transcription activator-like effectors (TALEs) (Figure 3b) which target
individual base pairs. In comparison with ZFNs, TALENs are easier to synthesize, but the required
protein design is still challenging [27,38].

As mentioned above, the most recently developed genomic editing system was CRISPR/Cas9
which is based on bacterial immune systems CRISPR type II. In comparison with ZFN and TALENs,
CRISPR/Cas9 stands out for its relative simplicity, as it only needs two elements to function. The first
one is the Cas9 nuclease, which contains two endonuclease domains, HNH and RuvC-like, which
create DSBs in the DNA. The other essential element of this system is the single guide (sgRNA), which
is composed of two regions: trans-activating CRISPR RNA (tracrRNA) and CRISPR RNA (crRNA).
The tracrRNA, allows the binding between the Cas9 nuclease and the guide itself, whereas the crRNA
is fundamental for the recognition of a specific target site in the genome (Figure 3c) [28–31].

The original model has been modified over the years, introducing modifications and improvements
in its functioning. Nowadays, Cas9 can be substituted by other enzymes, expanding the applications
of the technique.

CRISPR/Cas immune systems have been found in a wide range of prokaryotes, both bacteria
and archaea. This indicates that there might be a broad number of Cas-like proteins that remain
undiscovered to date, which could have new characteristics and/or properties of interest for genetic
engineering purposes [39]. Some of them have already been characterized such as Cas13 family
members, which are able to introduce breaks into RNA, opening the possibility of mRNA manipulation
using the CRISPR system [40,41].

New types of Cas nucleases could be useful in order to broaden our battery of CRISPR/Cas
modifying enzymes, but the possibility of engineering known nucleases, such as Cas9, is also interesting.
For instance, a lot of effort has been put into the development of inducible forms of Cas9, as well as
into altering its recognition site (PAM sequence) and improving its fidelity [42,43]. In addition, it is
also intriguing the development of versions of Cas9 with one (Cas9 nickases, nCas9) or two (dead
Cas9, dCas9) non-active catalytic domains. These modified Cas9s can be in turn fused with other
enzymatic domains, which is the functional base of CRISPR interference (CRISPRi) [44], CRISPR
activation (CRISPRa) [45], base editing [46] and prime editing [47].

One important drawback of CRISPR/Cas technology is the presence of off-target effects in the
genome of the edited cells, which can be especially dangerous for clinical applications. Notwithstanding,
there are mechanisms that can help to evaluate the occurrence of non-specific effects, such as
whole-exome sequencing (WES) or whole-genome sequencing (WGS), although the latter generates
a huge amount of data to be analyzed and biologically interpreted. Remarkably, the results of the
studies carried to date seem to indicate that the occurrence of off-targets is, in fact, similar to the normal
mutation rate of cells [48,49].

Genetic edition by CRISPR/Cas system has been applied successfully on many model organisms,
including Caenorhabditis elegans [50], Drosophila melanogaster [51], zebrafish [52], rodents [53], and
even primates [54]. CRISPR/Cas has also been used in human cell cultures, both of somatic [28] and
embryonic cell lines [55].
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Both the introduction of indels (knockout, KO) and specific genetic modifications (knock-in, KI)
can be a powerful tool to model gene–base disorders, as it allows researchers to precisely study the
association between genes or genetic variants and the development of an altered phenotype.

3. In Vitro Models of ASD: The Stem Cell Revolution

Cellular models are very useful for studying diseases with an important genetic contribution,
especially if these diseases cause alterations in cell types easy to maintain in the laboratory. As it was
previously mentioned, ASD often has a strong genetic component, and its effects are primarily seen on
cells of the central nervous system associated with high cognitive functions. These cell types cannot be
obtained from biopsies, which supposes an obstacle for the study of ASD bases using cell cultures as a
model. In addition, neurons are a highly specialized cell type with a low proliferation rate, so they
cannot be cultured for the long term, and thus, model cell lines are hard to establish [7,56,57].

However, this scenario changed in 2006, when Yamanaka and his collaborators identified
mechanisms that allow reprogramming adult somatic cells representing new perspectives in molecular
biology and biomedicine. These techniques allow the transformation of differentiated cell lines into
induced pluripotent stem cells (hiPSCs) by expressing four genes, known as the Yamanaka factors
(Oct3/4, Sox2, Klf4, c-Myc) [58]. The main advantages of hiPSCs are their self-renewal capability and
their differentiation potential. A new and exciting possibility for the study of neurodevelopmental
disorders was then born, as hiPSCs can afterwards be differentiated into cell types from the nervous
system. The development of novel reprogramming methods and differentiation protocols makes it
now possible to generate cell lines directly from patients, obtaining, as a result, specialized in vitro
models to study the cause of the disorder in a particular individual [57,59].

Cellular models directly derived from patients have several advantages in comparison with other
in vitro models, such as embryonic cell lines. With this approximation, models for disorders caused
by rare variations can be created, which is the case for ASD (Table 3). Cellular models obtained from
patients have proven to be highly robust, reliable and realistic, conserving the genetic background of
the source. As they match the genetic background of the patients, the biological base of their respective
disorders can be analyzed. An additional advantage of these cellular models is that they can be used
to revert potentially pathogenic genetic variants, which can help to validate the association between
the detected genotype and an altered phenotype [57,59,60].

Cell lines obtained from patients are versatile models, in which analyses to establish the cell
and molecular mechanism implied in the curse of the disorder, can be conducted. When addressing
neurological disorders, it is possible to study alterations in neuronal morphology, synaptic transmission,
cell migration and differentiation capability, among others [56,59,60].

These models are useful to establish a relationship between a genotype and a phenotype, but also
to develop new therapeutic approaches, including cell therapy and pharmacological treatments.
This can be achieved by studies for the identification of new therapeutic targets or biomarkers, as well
as drug sensibility assays, which are helpful to validate the action of the selected drugs prior to clinical
assays [57,59].

For all the stated reasons, this approach opens new possibilities for the study of the molecular
bases of complex disorders, such as ASD. Several research groups have been working in this field to
study both syndromic and non-syndromic forms of ASD. In Table 3, a list of ASD-associated genes
that have been studied using this approach can be found. Some long non-coding RNAs (lncRNAs),
such as PTCHD1-AS or COSMOC [61,62] are also included. Further information about recent studies
that implicate lncRNAs, other non-coding mutations, and regulatory variants in ASD susceptibility
can be found in the excellent review by Ross et al. [63].

Despite the advantages of in vitro models, it is undeniable that cell culture cannot fully recapitulate
all the complexity behind the development of ASD, for this reason, animal models are still a fundamental
tool to fully understand them.
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Table 3. Types of alterations observed in neural-like cell lines with a lack of expression of ASD-associated genes. Neural-like cell lines developed to study ASD have
been obtained by the differentiation of human induced pluripotent stem cells (hiPSCs) from patients or by the inactivation of the selected ASD-associated gene in
controls, using genomic editing systems.

Cell Lines Derived from
hiPSCs ASD-Associated Gene Alterations Due to the Lack of Expression of ASD-Associated Gene References

Cortical neurons EHMT1

Reduced neurite length and complexity
Altered neuronal activity

Increased expression of proliferation genes
Decreased expression of maturation and migration genes

[64]

MECP2 Increased synaptogenesis and dendritic complexity
Altered neuronal network synchronization [65]

NRXN1 Altered ion transport and calcium signaling [66]

PTCHD1 Decreased frequency of miniature excitatory postsynaptic currents
N-methyl-D-aspartate receptor (NMDARs) hypofunction [61]

PTCHD1-AS Decreased frequency of miniature excitatory postsynaptic currents [61]

SHANK2

Increased number of synapses, dendritic length and complexity
Increased frequency of spontaneous excitatory postsynaptic currents

Altered expression of genes associated to neuronal morphogenesis, plasticity
and synapse

[67]

SHANK3 Synaptic alteration and decreased dendritic spines [68,69]

TSC2

Mitochondria disorganization and altered mitophagy
Increased soma size and neurite number

mTORC1 signaling pathway hyperactivation
Increased neuronal activity and upregulation of cell adhesion genes

[70,71]

Dopaminergic neurons RELN Altered neuronal migration [72]

Glutamatergic neurons AFF2 Alteration in genes associated with neuronal development
Decreased synaptic activity: reduced spontaneous excitatory postsynaptic currents [73]

ASTN2 Alteration in genes associated with neuronal development
Decreased synaptic activity: reduced spontaneous excitatory postsynaptic currents [73]

ATRX Alteration in genes associated with neuronal development
Decreased synaptic activity: reduced spontaneous excitatory postsynaptic currents [73]

CNTN5 Increased neuronal activity [74]
KCNQ2 Decreased synaptic activity: reduced spontaneous excitatory postsynaptic currents [73]

SCN2A Alteration in genes associated with morphogenesis
Decreased synaptic activity: reduced spontaneous excitatory postsynaptic currents [73]
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Table 3. Cont.

Cell Lines Derived from
hiPSCs ASD-Associated Gene Alterations Due to the Lack of Expression of ASD-Associated Gene References

Neuron-like cells ARHGEF9 Altered mTORC1 signaling pathway [75]

CACNA1C

Altered calcium signaling
Altered differentiation of neurons from cortical layers

Increased production of norepinephrine and dopamine
Altered expression of tyrosine hydrolase

[76,77]

CDKL5 Alterations in neuronal activity [78]

CHD8 Altered expression of genes associated with neural development, β-catenin/Wnt
signaling, extracellular matrix and skeletal system development [79]

COSMOC Impaired redox homeostasis
Altered PTBP2 splicing [62]

FMR1

Altered DNA methylation patterns
Altered expression of genes associated with neuronal development, migration and

maturation
Altered neurite formation and neuronal differentiation

[80–82]

SHANK3 Alterations in the soma and neurites, as well as alterations in synaptic transmission
Altered expression of genes associated to motility and neurogenesis [83,84]

TRPC6 Reduce neurite length and complexity
Altered glutamatergic synapse formation and reduced sodium influx [85]

Neural organoids CHD8 Alterations in the expression of gens associated with neurogenesis, β-catenin/Wnt
signaling, neuronal differentiation and axonal guidance [86]

Neural progenitor cells NRXN1
RELN

Alterations in neuronal adhesion and differentiation
Overactivation of mTORC1 pathway

[87,88]
[89]

TRPC6 Altered calcium signaling and expression of genes involved in cell adhesion and
neurite formation [85]

ZNF804A Altered expression of pathways mediated by interferon-α 2 [90]

Olfactory placodal neurons SHANK3 Decreased number of synapses
Alterations during neural development in the soma and neurites [91]

Purkinje cells TSC2
Hypoexcitability and synaptic dysfunction

mTORC1 pathway hyperactivation
Altered neuronal differentiation

[92]
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4. Animal Models in ASD Research

Traditionally, animal models have been used to study the complex background of ASD, as it
was not possible to establish human neuronal cell cultures with an unlimited proliferation capability.
Animal models are especially useful for studying disorders of the central nervous system because they
help to validate the implication of selected genes in the curse of the disorder.

For an organism to be an adequate model for any human disease or disorder, including ASD,
it should have the following characteristics: strong analogies to human phenotype (Table 4); the same
biological alteration that causes the human disease; and analogous response to treatments that could
ameliorate the human disease or disorder [7,93–95].

Two main approaches have been used to identify animal models for ASD. The first approach
is forward genetics, in which ASD-like phenotypes are identified in the selected animal model, and
then the molecular bases of the observed alterations are elucidated. The second approach is reverse
genetics, in which targeted mutations are introduced into the genome of the animal model, and then
the phenotype is characterized [96].

Rodents are the most used animal models in neuroscience research, being Mus musculus the most
frequent one. This does not mean that mice are better models than other species, but it has more to
do with a practical issue: the mouse genome was sequenced first and tools to manipulate it were
developed faster. Nevertheless, nowadays, this information and tools are available for a wide range of
model organisms, some of them with a lot of potential in ASD modeling, such as Rattus norvegicus
or Danio rerio. This means that new animal models to study ASD might be developed in the near
future [96–99].

Table 4. Assays to evaluate the presence of ASD-like alterations in model organisms (rodents and
zebrafish). The behavioral assays are focused on detecting alterations in the three core areas affected
in ASD-patients: socialization, non-social patterns of behavior (including repetitive behavior, motor
alterations and limited range of activities) and communication [93,98,99].

Areas of Interest Behavioral Assays in Rodents Behavioral Assays in Zebrafish

Socialization

• Social approach task: time spent with an
unknown individual compared to a new
non-social object

• Social preference tests (affiliation and
recognition): time expend with an unknown
animal in comparison with a familiar one

• Free interaction test: time spent interacting
with unknown individuals compared to the
time spent doing other activities
(e.g., exploring)

• Social interactions: presence of interactions
such as sniffing, following, pushing each
other, etc.

• S Preference for
conspecific individuals.

• Shoal formation: measure of the
natation distance between
individuals (nearest neighbor
distance, farthest neighbor distance,
average inter-individual distance,
time spent inside the shoal and
polarization).

• Social interactions: presence of
behaviors such as approaching,
circling, mouth opening, biting,
chasing, etc.

Non-social patterns
of behavior

• Open field test: presence and duration of
spontaneous motor stereotypies.

• Reversal learning tasks: these tests evaluate
the capability of the individual to habituate to
a new routine. A routine should be established
for the animals (acquisition phase) before a
new one is introduced (reversal phase).

• Range of interests: measure of the exploratory
activity of the subject animal.

• Burying behavior: presence of
digging behaviors.

• Repetitive behavior: presence of
repetitive patterns of
locomotor activity.

• Inhibitory avoidance response: a
two-chamber tank is set up, with one
chamber harboring an attractive
stimulus paired with and aversive
response. The latency of the
individuals to enter the chamber
harboring the aversive response
is measured.
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Table 4. Cont.

Areas of Interest Behavioral Assays in Rodents Behavioral Assays in Zebrafish

Communication

• Ultrasonic vocalizations (USV): reduced levels
of USVs or non-usual patterns of acoustic
communication have been observed in models
for ASD, as well as altered patterns of response
to them.

• Habituation and dishabituation to social odors:
response to a change in a familiar odor for a
new one.

• Non-available

4.1. Rodents and the Modelling of Human Disorders

Rodents have several characteristics that explain why they have been so widely used to model
human disorders. First, they have a short generation time and, due to their small size and their
social behavior, they can be easily maintained in an animal facility in the laboratory. Additionally,
their genome has been sequenced, revealing a high similarity with humans. In addition to this, tools to
modify the genomes of both species have been developed, as well as neurological, behavioral (Table 4)
and pharmacological assays to evaluate the presence of ASD-like alterations [53,98].

It is undeniable that central nervous system organization is more complex in humans than in
rodents. This complexity is reflected not only in the number of regions present in the brain, but also in
the number of cells and connections, as well as their diversity. These differences are translated into
cognitive and behavioral differences, so it is very unlikely that a rodent model can fully recapitulate
the phenotype observed in ASD patients. However, pathways involved in ASD development can be
studied in rodent models by using gene editing technologies which lead to the development of animals
with phenotypes similar to the observed in humans [7,94]. Although both Mus musculus and Rattus
norvegicus are rodents and as such share some common characteristics, there are also key differences
between them in terms of physiology, behavior and pharmacological response that affect the type of
information that can be obtained from each one.

In terms of physiology, there is a clear difference in body size and weight between both species.
The small size of mice can be useful in drug development assays as a lower dose is needed to treat the
animal. However, the bigger size of the rats can be an advantage if brain surgery is necessary or if
imaging techniques are used, but it also increases the housing costs.

Concerning neurophysiology, some differences are notorious between mice and rat brains. First,
it has been shown that some neurotransmitters and their receptors have different distributions on both
species. Second, it also has been observed that both species have differences in their neurogenesis,
affecting regions such as the hippocampus or the cortical regions, which have been associated with
ASD development [97,98].

In terms of pharmacology, proteins derived from mice and rats are highly similar, but key
substitutions in important regions to ligand binding have been identified. Is important to acknowledge
these differences, especially when using these models to identify potential new drugs for ASD treatment,
as they might not perform equally in humans [97,98].

With reference to behavior, both species live in hierarchical groups with complex social interactions,
but the interaction between individuals is quite different in both cases. Mice are more territorial and
aggressive than rats, but also less impulsive. There are also differences in their cognitive capacities,
as rats are easier to train and perform more stably over time, not being as altered by the human
presence as mice [97].

Regarding communication, both species have acoustic (USVs) and olfactory signals (pheromones)
to transmit messages to conspecifics, but these are slightly more rich in R. norvegicus, with both adults
and pups emitting a wider range of sounds in different types of situations, from isolation to play [98].

Rodents have been a fundamental preclinical tool to clarify the complex etiology of ASD, as well
as to test new potential treatments before clinical trials. One of the reasons for such success is that they
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can recapitulate the core symptoms of ASD: impairments in social interaction, communication and
presence of repetitive behaviors [94,98].

4.1.1. Mus Musculus in ASD Research

Certain mouse strains with ASD-like phenotypes have arisen due to inbreeding procedures,
for example, BTBR T+tf/J strain. This strain is very interesting as it recapitulates many of the human
ASD-symptoms, such as social behavior impairments (reduced interaction between individuals,
aversion for frontal interaction, etc.), communication impairments (altered patterns or responses to
both USV and scent marking) and repetitive behaviors (increase in self-grooming, burying behaviors
and preferences for certain objects or spaces). BTBR mice also develop difficulties in learning-related
tasks and higher levels of anxiety in the presence of a menace. At the molecular level, this strain
shows alterations in the development of the brain, which are also present in humans with ASD. Several
ASD-linked genes have been identified to be disrupted in BTBR mice, such as kynurenine 3-hydroxylase,
a protein involved in neuroprotection and dopamine signaling, Disc1, and Ext1, a protein involved in
the synthesis of guidance molecules [94,100]. However, the majority of ASD relevant mouse models
available to date have been generated using reverse genetics, by altering the orthologous ASD-linked
genes in the mouse genome. Nowadays, there are nearly 200 mouse models (Figure 4) developed to
study such genes, which can be found on SFARI GENE Database [20,21]. Examples of M. musculus
models for ASD-candidate genes can be found in Table 5.
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Figure 4. Mus musculus models developed to study ASD-associated genes. (a) Comparison between
the human ASD-associated genes deposited in the SFARI Gene Database, and the number of
ASD-associated genes modeled in Mus musculus. Genes are classified according to their SFARI
gene score (NS = non-specified); (b) Number of mouse models developed to study ASD-associated
genes, classified according to the SFARI gene score (NS = non-specified). The figure was elaborated
using open-access data from SFARI Gene Database (obtained in January 2020) and R software [6,20,21].

4.1.2. Rattus norvegicus in ASD Research

Due to their more complex behavior and social interactions, rats have been postulated as a model
organism with high potential to study NDDs, including ASD.

The first rat KO models available to study ASD were generated in 2010 using ZFN and ENU
induced mutagenesis [98]. Nowadays, the number of available rat models has increased, including
genetic models for certain ASD-risk genes (Table 6), and some pharmacological rescue models.

Nevertheless, despite the obvious suitability of rodent models for ASD modeling and the invaluable
information they offer, there are still some noticeable drawbacks that have led researchers to opt for
more manageable models, such as zebrafish.
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Table 5. Phenotype observed in Mus musculus models of ASD-associated genes. The table includes the some of the developed models to study the function and
implication in ASD of genes classified with score 1 (high confidence) or gene score 2 (strong candidate) in the SFARI Gene database [20,21]. In the cases in which several
models have been developed, the phenotype column only includes their common characteristics; LOF—loss of function, SVZ—subventricular zone, MGE—medial
ganglionic eminence, KO—knockout.

ASD-Associated Gene/Mus musculus Gene Modification Technique Main Phenotypical Observations Reference

ADNP/Adnp KO by homologous recombination

Embryonic lethality (KO)
Developmental delay

Decreased neuronal survival
Social and memory impairments

[101–103]

ARID1B/Arid1b
KO by CRISPR/Cas9

Conditional heterozygous KO by Cas9
(floxed allele)

Increased lethality
Abnormal brain and heart development

Decreased neuronal precursor proliferation and cortical thickness
Anxiety and social interaction alterations

Decreased cognitive flexibility

[104,105]

ASH1L/Ash1l KO with gene trap vector, piggyBac or
CRISPR/Cas9

Increased lethality and infertility
Delayed eye development

Reduced adiposity
Altered immune response

Reduced chromatin modification

[106–108]

CHD2/Chd2
Targeted KO with cassette

Cre-flox
Conditional LOF in interneurons

Growth delay and increased mortality
Abnormal synaptic transmission

Reduced number of neural precursors and interneurons
Altered hippocampal morphology

Decreased object recognition memory
Decreased spatial working memory

[109,110]

CHD8/Chd8 Knockdown (shRNAs)
KO by CRISPR/Cas9 or Cre-LoxP

Altered brain development, corticogenesis and differentiation of
neural precursors

Reduced density of the dendritic tree
Decreased myelination

Increased anxiety and altered sociability
Increased repetitive behaviors

Altered memory patterns

[111–118]

CIC/Cic Conditional LOF in the neocortex,
hippocampus and pallium

Altered hippocampal and cortical morphology
Reduced number of postmitotic excitatory neurons of the forebrain

Reduced dendritic complexity
Reduced social interactions

[119]
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Table 5. Cont.

ASD-Associated Gene/Mus musculus Gene Modification Technique Main Phenotypical Observations Reference

CNTNAP2/Cntnap2 Targeted KO by gene replacement

Delayed growth
Cortical disorganization in the brain
Decreased levels of neuroreceptors
Repetitive behaviors and seizures
Impairments in social interactions

[120–125]

GABRB3/Gabrb3 Conditional LOF in endothelial cells
Targeted KO

Altered brain morphology
Reduced number of interneurons

Reduced neuronal migration
Decreased levels of GABA neurotransmitter
Increased seizures, anxiety and depression

Reduced social and tactile memory

[126–130]

PTEN/Pten

Conditional LOF in: forebrain gabaergic
and dopaminergic neurons; secondary

progenitors in the subpallium SVZ;
Purkinje cells; dentate gyrus,

hippocampus, cortex or ventricular zone
of the MGE

Increased lethality
Altered brain morphology

Reduced number of interneurons
Increased neuronal size and connectivity

Impaired neuronal differentiation
Altered synaptic function

Increased apoptosis in brain cells
Increased thickness in the cerebellum
Decreased number of Purkinje cells

Reduced coordination
Reduced social memory

[131–137]

RELN/Reln Spontaneous mutation

Altered morphology of the brain, cerebellum, cortex and
olfactory bulb

Reduced number of Purkinje cells
Altered neuronal migration patterns

Altered metabolism of neurotransmitters
Impaired coordination

Increased anxiety response levels

[138–140]

SCN2A/Scn2a
Targeted KO by gene interruption

Conditional LOF in dorsal telencephalic
excitatory neurons

Increased apoptosis and mortality
Seizures and hyperactivity

Increased rearing
Reduced anxiety responses

[141–143]
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Table 5. Cont.

ASD-Associated Gene/Mus musculus Gene Modification Technique Main Phenotypical Observations Reference

SHANK2/Shank2 Conditional LOF in Purkinje cells
Targeted KO

Altered synaptic currents
Increased anxiety and hyperactivity

Reduced coordination
Increased repetitive behaviors

Reduced social approach
Decreased spatial learning and memory

[144–148]

TAOK2/Taok2 Targeted KO by Cre-LoxP

Abnormal brain morphology and spine density
Reduced dendritic length and complexity
Reduced cortical lamination and thickness

Impaired memory of context

[149]

TBR1/Tbr1

Conditional LOF in neurons of cortical
layer 6 and subplate

Targeted KO by homologous
recombination

Altered brain morphology
Reduced neuronal connectivity

Reduced number of interneurons
Altered differentiation of brain cells

Altered cortical organization
Altered synaptic currents

Increased anxiety aggressiveness
Increased aggressive

[146,150–153]

UPF3B/Upf3b Targeted KO by gene trap

Reduced spine density
Altered morphology of cortical neurons

Poor differentiation of neural progenitors
Impaired sensorimotor gating

Abnormal clasping reflex
Abnormal sleep pattern

Impaired startle response to acoustic stimuli

[154]
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Table 6. Phenotype observed in Rattus norvegicus models of ASD-associated genes. The table includes the developed models to study the function and implication in
ASD of genes classified with score 1 (high confidence) or gene score 2 (strong candidate) in the SFARI Gene database [20,21]. In the cases in which several models have
been developed, the phenotype column only includes their common characteristics.

ASD-Associated Gene/Rattus norvegicus Gene Modification Technique Main Phenotypical Observations Reference

BCKDK/Bckdk KO by spontaneous mutation

Neuronal alterations
Reduced protein phosphorylation

Infertility
Altered development

[155]

CACNA1C/Cacna1c KO by ZFN Altered social behavior and reduced USVs
Increased perseverative behaviors [156,157]

CNTNAP2/Cntnap2 KO by ZFN
Seizures

Hyperactivity
Altered audition and sleep routines

[158,159]

CYFIP1/Cyfip1 KO by CRISPR/Cas9 Neuronal alterations
Altered behavioral flexibility in learning tasks [160]

FMR1/Fmr1 KO by ZFN

Increased repetitive behaviors and social alterations.
Altered sensorimotor gating

Memory difficulties
Neuronal alterations

Altered auditory responses

[161–163]

MECP2/Mecp2 KO by ZFN

High mortality
Malocclusion

Neuronal alterations
Hypoactivity

Altered social interaction and speech responses.
Memory alterations

Decreased grip strength

[164,165]

NLGN2/Nlgn2 Overexpression in the hippocampus Decreased response to new stimuli and aggressive behavior [166]

NLGN3/Nlgn3 KO by ZFN

Increased repetitive behaviors
Hyperactivity and altered sleep routines

Decreased body weight
Altered juvenile play behavior and startle response

Altered sensorimotor gating

[162,167]

NRXN1/Nrxn1 KO by biallelic deletion
Hyperactivity

Altered startle response
Memory alterations

[168]
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Table 6. Cont.

ASD-Associated Gene/Rattus norvegicus Gene Modification Technique Main Phenotypical Observations Reference

PTEN/Pten Heterozygous KO by ZFN Neuronal alterations [169]

SCN1A/Scn1a KO by ENU mutagenesis

Increased repetitive behaviors
Hyperactivity and anxiety

Learning and memory difficulties
Motor alterations

Reduced dopamine levels

[170]

SHANK2/Shank2 KO by ZFN

Alterations in social behavior
Hyperactivity and increased repetitive behavior

Memory alterations
Neuronal alterations

[171]

SHANK3/Shank3 KO by ZFN Alterations in social behavior
Neuronal alterations [172]

TCF4/Tcf4 KO by CRISPR/Cas9 and knockdown by
shRNA in the prefrontal cortex Altered electrophysiological properties in neurons [173]

TSC2/Tsc2 KO by spontaneous mutation

Enhanced episodic-like memory
Enhanced seizure-induced plasticity

Increased induction of phospho-p42-MAPK in the
hippocampus

Increased basal oxygen consumption in the brain

[174,175]

UBE3A/Ube3a KO by CRISPR/Cas9 Motor, learning and memory difficulties [176]
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4.2. Zebrafish and the Modeling of Human Disorders

In recent years, the zebrafish has been postulated as an ideal animal model for the study of the
genetic background of several human diseases and remarkably, more than 800 laboratories around
the world use nowadays zebrafish as a model [177]. The introduction of the zebrafish as an animal
model dates back to the early 1960s, initially used to study vertebrate development and genetics [178].
Since then, researchers have progressively drawn on this animal in several human scientific fields, from
genetic diseases, regeneration pathways or toxicology assays to high-throughput drug screenings [179].

Zebrafish is a freshwater fish, native from the streams of the south-eastern Himalayan region, and
it owns its name due to its fusiform morphology and the horizontal stripes on each side of the body.
There is a notorious sexual dimorphism, which allows the distinction between males and females [180].
Although this fish is able to survive in a range of temperatures from 12 ◦C to 39 ◦C in nature, its optimal
temperature in controlled conditions is 28.5 ◦C [181,182]. The biological features that help to explain its
use in laboratories, as well as its success as a translational model in biomedical research, in particular in
neurosciences [96,99,183], have been increasingly listed since the 1990s [178]. It is worth highlighting
the frequent reproduction (once a week), producing between 200 and 400 embryos per couple, enabling
the performance of high-throughput assays. The external fertilization and optical transparency of
embryos and larvae allow researchers to easily manipulate animals and observe their development,
specifically imaging of neurodevelopmental processes and neural activity, even at a single-cell level
without using invasive techniques [179]. In addition, zebrafish nearly completes basic development
within 24 h, has rapid growth and sexual maturation (3–5 months), and interestingly, zebrafish has
delayed development of the adaptive immune system (10–14 days), which is the main basis of its use
in cancer research, and possesses an extraordinary tissue regeneration ability [184–186]. Furthermore,
there are some other practical issues that make zebrafish stand out when compared with rodents,
such as the relatively easy and cost-effective maintenance or the small size of adult individuals, which
allows breeding a high number of animals in the facility.

4.2.1. Zebrafish and Mammals: Conservation throughout Evolution

Comparative studies have revealed that the order of neurodevelopmental events across species is
highly conserved, even also in zebrafish, although time points, complexity and organization differ,
mainly regarding morphogenesis and neurogenesis. In this sense, morphogenesis of zebrafish brain is
completed within 3 days and mechanisms behind the formation of different brain structures, such as
the neural tube or the telencephalon, differ with respect to those in mammals [187–189]. Nevertheless,
the most significant brain regions and major subdivisions, as well as cell types, differentiation,
connectivity, signaling pathways and gene expression patterns, are highly conserved [190–192].
Additionally, there are some structural and functionally equivalent neuroanatomic regions such as
zebrafish lateral, dorsal and medial pallium, which share characteristics with the human hippocampus,
neocortex and amygdala, respectively [193]. While this review will not explain in depth zebrafish and
mammals neural structures development and their conservation, we refer the reader to the excellent
review by Kozol et al., 2018 [194].

Regarding structural homology and ASD, an interesting example of a critical period is the
cerebellar structure and its development. In zebrafish, the cerebellar primordial becomes evident
at 22 h post-fertilization (hpf) [189], and the differentiation of excitatory or inhibitory neurons,
glutamatergic and GABAergic respectively, begins at 3 days post-fertilization (dpf) and layers are
detectable at 5 dpf [195]. Equivalent to mammals, although in distinct expression domains, the
expression by cerebellar progenitors of atoh1 genes gives rise to the excitatory cells and the expression
ptf1a leads to the formation of inhibitory cells [196]. Glutamatergic neurons include granule cells
and GABAergic neurons include Purkinje cells and in the adult zebrafish such cells are arranged in
three layers: molecular, Purkinje cell and granule layer [195]. Purkinje cells are fundamental for the
cerebellar neural circuit and its function as they receive synaptic information, process it and relay
such information through their efferent projections to the cerebellar nuclei which, in turn, connect
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the cerebellum to the brain and spinal cord, regulating several cognitive, language, motor, sensory
and emotional functions [197]. It becomes then evident the importance that these cells have in the
proper function of the nervous system and precisely, in the majority of ASD cases, one of the most
reproducible and apparent observations is the significant reduction in Purkinje cells number and
size [198–200]. Guissart et al., identified several mutations in a nuclear receptor (RORα), essential for
cerebellar development, in families with variable neurodevelopmental delay and intellectual disability,
including cognitive, motor and behavioral phenotypes. They developed a zebrafish mutant model
by CRISPR/Cas9 and were able to recapitulate the neuroanatomical features of patients, showing a
reduction of Purkinje and granule cells [201]. This is only an example that provides a rationale for
using zebrafish as a model to study neurodevelopmental disorders such as ASD. Nevertheless, the
specific role that Purkinje cells have in the development of ASD-like phenotypes is still unclear.

With regard to genetics, the zebrafish genome-sequencing project was initiated at the Welcome
Trust Sanger Institute in 2001 and in 2013, Howe et al., released a high-quality sequence assembly
of the zebrafish genome, showing that approximately 70% of the human genes have one zebrafish
orthologue, being >80% human disease-related genes [202]. Regarding development, as mentioned
before, expression patterns in early developmental genes are homologous in both zebrafish and
humans and major neurotransmitter systems such as GABA, glutamate, norepinephrine, cholinergic
and dopaminergic pathways as well as glial cells are conserved between both species [190,191,203,204].
In addition, Lovett-Barron et al. established a novel method to discover behavioral-related cellular
elements and evidenced evolutionarily conserved cellular and molecular systems involved in basic
neuromodulatory circuits [205].

In regards to behavior, it has also been demonstrated that zebrafish shares behavioral patterns
with humans, including physiological, emotional and social responses [99].

Altogether, these data reaffirm the suitability of the zebrafish as a biomedical research model
and its relevance to our understanding of genes, neural circuits and the physiopathology behind
neurodevelopmental disorders as ASD.

Henceforth, we will focus on the available genetic strategies applicable in zebrafish in order to
develop reliable models to functionally validate ASD-candidate genes, and the techniques that might
be utilized to characterize morphological, molecular and behavioral features.

4.2.2. Gene Targeting in Zebrafish

One of the main attractions of zebrafish as the disease-model animal is the relative ease
and versatility to conduct genetic manipulations in embryos, from transient downregulation or
overexpression of a certain gene to permanent gene-targeted mutations [52,206].

Regarding transient reverse genetic approaches, the most commonly used in zebrafish is
morpholino-based (MO) expression silencing. MOs are small modified oligonucleotides that are able
to bind a selected target by complementary knocking down the gene function without altering the
sequence. MOs can either bind the translation start site of the mRNA and thus, interfere with the
progression of the ribosomal initiation complex, or to the splicing sites of the pre-mRNAs, leading to
abnormal mature mRNAs [207]. Since the release of these antisense oligos in the latest 1990s [208], and
given their relatively low cost and ease of use, several zebrafish models have been developed in order
to unravel the implication of specific genes in many human diseases. In Table 7, several examples of
morpholino-based studies for ASD-candidate genes are shown. Nevertheless, despite its extended use
in biomedical research and although the majority of zebrafish studies of neurodevelopmental disorder
genes have been based on MOs, these molecules present important disadvantages that should be
considered. Firstly, their transient effect (up to 4 dpf) do not allow to study the gene function beyond
the early developmental stages [209]. In addition, it has been reported MOs may lead to off-target
effects, resulting in non-specific phenotypes for the gene of study or triggering apoptosis through
p53 pathway activation, so a careful design must be carried out, it is recommended to use a control
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MO, rescue experiments with RNA might be performed to confirm MO specificity and when possible,
morphant phenotypes should be confirmed in genetic mutants [210,211].

With respect to the generation of stable zebrafish mutant lines, the Targeted Induced Local Lesions
in Genomes (TILLING) has been largely used. This technique is based on the exposure to a mutagen
known as ethylnitrosourea (ENU), an alkylating agent which, by ethylating oxygen or nitrogen atoms
in DNA bases, induces error-prone replication and in turn, leading to random point mutations in the
genome. Next, sequencing is performed in order to identify loss of function mutations. From the
beginning of its use [212], this procedure has been successfully applied to generate several models
of KO zebrafish. This methodology has been quite useful to correlate specific genes with observed
phenotypes, although the generation of a stable mutant line for a gene of interest is relatively limited
as it is difficult to identify the desired mutation, costs are substantial and screening zebrafish libraries
takes a long time [213]. Some zebrafish ENU knockout models for ASD-candidate genes are listed in
Table 7.

In order to solve TILLING drawbacks, nuclease-based technologies were later introduced,
speeding up the zebrafish knockout generation and, as previously mentioned, these techniques include
TALEN and ZFN, whose functioning is basically the same [214,215]. Despite both techniques enabled
researchers to improve the generation of zebrafish mutant lines, it is challenging to specifically design
such systems, there is a high ratio of off-target and they are still time and cost consuming. Examples of
knockout zebrafish models for ASD-candidate genes are shown in Table 7.

Recently, due to the development and optimization of new genetic editing protocols based on
CRISPR/Cas system more accurate mutant zebrafish lines were achieved, as the system offers superior
efficiency and flexibility with respect to the previously mentioned gene-editing methods [52,216,217].
With regard to CRISPR and neurodevelopmental disorders and in order to highlight its large applicability
and utility, it is worth mentioning the extraordinary study recently performed by Thyme et al. They
focused on more than 100 genomic loci at which common variants exhibited genome-wide significant
associations in a schizophrenia case/control analysis and performed high-throughput CRISPR/Cas9
(132 genes) in zebrafish. By doing so, they were able to observe and describe a phenotypic landscape
of schizophrenia-associated genes, to prioritize more than 30 candidates and to provide hypotheses to
associate specific genes with biological mechanisms [218]. In Table 7, some examples of CRISPR/Cas9
zebrafish models are listed.



Genes 2020, 11, 1376 22 of 45

Table 7. Phenotype observed in Danio rerio ASD-associated genes models. Genes are classified with score 1 (high confidence) or score 2 (strong candidate) following
the SFARI Gene database [20,21]. In the cases in which several models have been developed, phenotype refers to the characteristics shared by all of them.

ASD-Linked Gene/Danio rerio Gene Modification Technique Main Phenotypical Observations Reference

ARID1B/arid1b Knockdown by MOs Reduced body length
Altered expression of chondrogenic/osteogenic genes [219]

ARX/arxa Knockdown by MOs Altered brain development
Neuronal alterations [220]

AUTS2/auts2a and auts2b Knockdown by MOs
Microcephaly

Altered jaw development Motor alterations
Neuronal alterations

[221]

CACNA1C/cacna1c Knockdown by MOs Cardiac alterations
Altered jaw development [222]

CEP41/cep41 Knockdown by MOs Neuronal alterations
Social behavior alterations [223]

CHD2/chd2 Knockdown by MOs

Altered development
Microcephaly, abnormal body curvature

Swim bladder absence
Motor difficulties

[224]

CHD8/chd8 Knockout by CRISPR/Cas9 and
knockdown by MOs

Macrocephaly
Reduction in post-mitotic enteric neurons [225,226]

CNTNAP2/cntnap2a and cntap2b Knockout by ZFN

Altered development
Microcephaly

Neuronal alterations
Motor alterations

[36]

CTNND2/ctnnd2b Knockdown by MOs Reduced body length
Notochord alterations [227]

DYRK1A/dyrk1a Knockout by TALENs Altered response to social stimuli [228]

FMR/fmr1 Knockout by ENU-mutagenesis and
CRISPR/Cas9

Altered cephalic development
Hyperactivity

Increased anxiety
Altered social behavior

Learning difficulties

[229–231]
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Table 7. Cont.

ASD-Linked Gene/Danio rerio Gene Modification Technique Main Phenotypical Observations Reference

KCNJ10/kcnj10 Knockdown by MOs Motor alterations
Altered development [232]

KDM6A/kdm6a Knockdown by MOs

Reduced body length
Altered development
Notochord alterations
Neuronal alterations

[233,234]

MECP2/mecp2 Knockout by ENU-mutagenesis and
knockdown by MOs

Altered immune response
Neuronal alterations [235–237]

MET/met Knockdown by MOs High mortality
Neuronal alterations [238]

MYT1L/mytl1a and mytl1b Knockdown by MOs Reduced levels of oxytocin [239]

NBEA/nbea Knockout by ENU-mutagenesis and
TALENs

Neuronal alterations
Altered response to startle stimuli [240]

NR3C2/nr3c2 Knockout by CRISPR/Cas9 Altered social behavior
Altered sleep routines [241]

OXTR/oxtr Knockout by TALENs Altered oxytocin signaling pathway
Memory alterations in social and non-social recognition [242]

RELN/reln Knockout by TALENs Altered social behavior
Altered serotonin signaling pathway [243]

RERE/rerea and rereb Knockout by ENU-mutagenesis Altered startle response to stimuli
Vision and hearing difficulties [244]

SHANK3/shank3a and shankb Knockout by CRISPR/Cas9
Altered development
Neuronal alterations

Reduced social behavior, hypoactivity
[245,246]

SYNGAP1/syngap1a and syngap1b Knockdown by MOs

Delayed development
High mortality

Neuronal alterations
Motor difficulties

[245]
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Aside from these genome-editing techniques, several transgenic zebrafish lines fluorescently
labeled have been developed throughout the last years, enabling researchers to better characterize
neurodevelopmental zebrafish models. Table 8 summarizes some of the available transgenic lines and
their specific expression pattern.

Table 8. Examples of developed zebrafish transgenic lines.

Transgenic Line Expression Pattern Reference

ath5:GFP Retinal ganglion cells [247]
brn3c:GFP Retinal ganglion cells [248]
dat:EGFP Dopaminergic neurons [249]

elavl3:lynTagRFP Post-mitotic neurons [250]
En-1:GFP Circumferential ascending interneurons [251]
flk1:GFP Endothelial cells [252]

gad1b:RFP Gabaergic neurons [253]
gfap:GFP Radial glial cells [254]
glyt2:GFP Glycinergic neurons [255]
gsx1:GFP Gabaergic neurons [253]
isl1:GFP Cranial motor neurons [256]

kctd15a:GFP Torus lateralis [257]
mnx1:GFP Motor neurons [258]

neurod:EGFP Immature neurons [259]
neurog1:GFP Primary neurons [260]
olig2:EGFP Oligodendrocytes [261]
pet1:GFP Serotonergic neurons [262]
qrfp:GFP Rostral hipothalamus [263]

sox10:GFP Neural crest cells/Neurocranium cartilague [264]
tbx2b:EGFP Cone photoreceptor cells [265]
Vglut2a:GFP Glutamatergic neurons [253]
vmat2:GFP Monoaminergic neurons [266]

4.2.3. Characterization of Zebrafish Models

Once the zebrafish knockdown or knockout model to study ASD-candidate genes is generated
(with or without transgenic lines), there are several techniques that might be utilized to its accurate
characterization, being mainly focused on morphological, molecular and behavioral features.

Regarding morphological characterization, the parameters to be analyzed may include a series of
general observations such as body, heart, head, eyes otolith or jaw malformations, yolk deformation
or edema and tail bending. Secondly, in order to determine if there exists a delay or abnormality
in development some measures might be taken, such as body length, head, eye and yolk sac area
or otolith–eye and jaw–eye distance, as well as the different brain regions thickness, area and
weight [246,267,268]. This characterization is image-based and might be performed manually, or with
available commercial image software.

To molecularly characterize zebrafish knockdown or knockdown embryos, researchers can draw
upon several techniques, but some of the most commonly applied when it comes to functionally
validate candidate genes in the zebrafish model are summarized below.

With regard to gene expression patterns, many of the genes mentioned in transgenic lines in
Table 8 can serve as markers in qPCR assays, which offer information about how much the gene is
expressed, or in in situ hybridization (ISH) assays with RNA probes, which allow localizing where the
gene is being expressed in a precise time point. Other markers to perform ISH or qPCR with, that may
be useful in neurodevelopment research are sox2 (neural stem cells self-renewal and pluripotency cells),
vglut2.2 (glutamatergic marker), th1 (dopaminergic marker), neurog1 (neuronal determination marker),
c-fos (neuronal activator marker), crh (paraventricular nucleus neurons), c-myc (tectal proliferation
zone and retina), emx1 (telencephalon) or otx2a and pax2a (diencephalon and midbrain–hindbrain
boundary) [267,269,270]. In addition, immunofluorescence leads the researchers to know where the
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protein is acting, and if there are differences in the amount of protein among individuals, although these
assays are relatively limited in zebrafish due to the absence of several specific antibodies. Nevertheless,
some have been successfully used such as anti-serotonin (serotonergic neurons), anti-GFAP (radial glia
cells) [267], acetylated anti-α-tubulin (brain axonal tracts), anti-sox10 (neural crest cells migration) [223],
anti-homer1 (post-synaptic protein), anti- synaptophysin (pre-synaptic terminals) [246], znp-1 (primary
motor neurons) [269], anti-phosphohistone H3 (M-phase, cell proliferation) [36,226], anti-PCNA (cell
proliferation) [270], anti-caspase3 (apoptotic cells) [228] or anti-PSD95 (synaptic marker) [271].

Transcriptomic analyses may be performed in-depth with RNA-sequencing (RNA-seq), although
it requires a great amount and high-quality material. Excellent research with RNA-seq, which in
addition highlights the suitability of zebrafish to study the implication of environmental factors in
ASD-risk, was performed by Lee et al. They exposed embryos to valproic acid—known to induce
autism-like effects—and further performed RNA-seq, finding a direct correlation between zebrafish
transcriptome and several ASD-associated genes [272]. This technique may also be useful to assess
genetic compensation among individuals with phenotypic variability [273].

Concerning behavioral characterization, the precocious behaviors that embryo and larvae
display [274] have led to the development of many tests that have proven to be valuable and accurate
in zebrafish models. In this sense, different research groups have already study alterations in learning
abilities [275], decision-making [276], sensorial capabilities [277,278], emotional responses [279,280]
and social interactions [107,281,282], among others. These mechanisms are especially relevant when
using zebrafish as a model for studying ASD, as many of these responses are altered in humans
suffering from these disorders.

Finally, due to the possibility to use large numbers of the individual to test different drugs or
chemicals and the ease of the delivery of the substance—diluted in water [283]—zebrafish has been
proposed to conduct high-throughput screenings of neuroactive compounds. This approach would
enable the identification of novel compounds with the potential to be used in new treatments for ASD
and other NDDs, and additionally, allow the evaluation of their toxicity [284,285].

4.2.4. Limitations of Zebrafish to Model Human Disorders

As stated throughout this section, not only can zebrafish be used to study the genetic bases
of ASD, but also to highlight the relevance of environmental factors on autism-like phenotypes
development [285]. Nevertheless, there are some drawbacks that should be considered when using
zebrafish to study human diseases, mainly related to the retention of many duplicate genes due to
the whole genome duplication [286]. This means that in some cases, researchers ought to study both
genes at the same time. However, this issue might be overcome if the planning of projects is accurately
carried out.

5. Future Challenges

The present review has been focused on the need of developing reliable models to study the
complex genetic background of ASD. These models could be useful to improve our knowledge of the
disorder and also to lead the way to the discovery of new potential treatments for patients.

In a disorder as complex as ASD, with individuals having such a diverse genetic background,
the possibility of creating personalized models could be very useful in the clinic. Due to the accessibility
of the genome editing technologies, such as CRISPR/Cas, it is now more feasible to consider the
possibility of creating models that recapitulate the causal mutations detected on patients, and in turn
determine which drug therapy is more adequate for each case, which represents one of the first steps
towards personalized medicine.

Another interesting approach that has recently been postulated is the possibility of conducting
direct reprogramming in vivo [287]. Basically, this technology could allow differentiating adult somatic
cells into other cell types without the need for a hiPSC intermediate state. This methodology could be
very interesting as a cell therapy option for many diseases and disorders. An imbalance of excitatory
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and inhibitory neuronal networks has been correlated with the presence of ASD and other psychiatric
disorders, which potentially could be corrected with this technology. However, more data need to be
reconnected to confirm that this correlation is indeed causal and that cell therapy could be an adequate
therapy option.

5.1. In Vitro Modelling

Despite the potential of NDDs modeling using hiPSC-derived cell lines, there are still some issues
that need to be addressed. First, it is important to further optimize reprogramming strategies, as the
heterogeneity between hiPSCs colonies is still high. By doing this, it is expected to reduce the variation
between cell lines and increase the reproducibility of the experiments. CRISPR/Cas technology could
help to address this issue, as it makes it possible to create isogenic cell lines that genetically differ only
in the edited position [57]. However, CRISPR/Cas technology has not proven to be highly efficient on
hiPSCs, probably due to the protective effect of p53 pathway. This pathway triggers apoptosis when
DNA damage is detected, including the DSBs caused by Cas9 [288,289]. Increasing the efficiency of
edition and reducing possible off-target effects are other two important milestones to overcome in
the future.

Together with deoptimization of the reprogramming and editing mechanisms to reduce technical
variability, it would be also necessary to focus on differentiation, standardizing culture conditions to
obtain cell lines with reduced variability among each other. Such reduction becomes an especially
relevant issue when complex disorders or diseases are being studied, as multiple factors contribute to
the global phenotype.

In order to guarantee patients’ health and security and unless these issues are properly addressed,
researchers may avoid the use of hiPSC-derived cell lines in cell therapy. Additionally, the cost of this
type of therapy would still be, nowadays, extremely limiting for its global application.

5.2. In Vivo Modelling

New animal mutant lines could be used to study the phenotypic alterations caused by genes
associated with ASD, including behavioral, neuroanatomical and morphological features. In this sense,
not only can they be useful to address the etiology of the disorder, but also to conduct drug-screening
assays in order to identify compounds with the ability to rescue such altered phenotype and thus,
offering a promising sign that they could also be effective in human clinical trials [95,99]. In this regard,
zebrafish has been postulated as a promising model and, although it is undeniable that zebrafish assays
are not enough to translate a compound to clinical trials, it may allow the development of relatively
fast and cost-effective drug-screenings, accelerating the pre-screening selection of compounds which in
turn, might be further tested in other animal models, such as rodents.

Most models developed to study ASD were designed to study monogenic disorders, which
represent a small fraction of ASD cases, so the establishment of new models to study more complex
ASD backgrounds is one of the challenges that need to be overcome in the future decades [7].

In addition to this, there are other challenges that need to be addressed. First, behavioral assays
need to be improved to better characterize the animal model phenotype and its equivalence with
human alterations. The second issue is the lack of genetic diversity in most part of the developed
models, as they come from a lineage of inbred animals. For sure, this is a complication for assessing the
variability and complexity of a disorder, as well as for testing new potential drug targets to alleviate its
symptoms [7].

Animal research has been a source of many debates in the past decade, as there is public concern
about the ethics of the use of animal models in science [290,291]. Critics argue that the biological
differences between humans and other animals can mislead research investigations (approximately
90% of drugs that pass animal tests do not pass clinical trials) and that they could be substitute by
in vitro models [292]. Although it is true that non-animal models have proven to be very useful for
certain assays, to date there is no in vitro model that can fully show the complexity of functioning of a
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living creature [293]. Taking this complexity into account is essential to have a better understanding of
biological processes and also to identify the side effects of potential drug treatments. For this reason,
many health organizations worldwide still require animal testing before allowing new compounds to
go into clinical trials.

However, this does not mean that the use of animals in research should be free of regulation and
animal facilities should follow standard procedures to ensure the well-being of the animals. This is
necessary from both the ethical and the scientific point of view as trustworthy results can only be
obtained if animals are maintained in accurate, non-stressful conditions [290,291,294].

In order to improve the way animals are used in research, many organizations have published
guidelines and recommendations to help designing experiments that minimize the use of animals
without compromising the acquisition of quality data. Examples include the 3Rs of animal research
principle (Reduce, Replace and Refine), as well as more detailed guidelines such as ARRIVE (Animals
in Research: Reporting In Vivo Experiments) or PREPARE (Planning Research and Experimental
Procedures on Animals: Recommendations for Excellence), which every scientist should take into
account for their experiments [295,296].
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Abbreviations

ABA Applied Behavior Analysis
ADNP/Adnp Activity dependent neuroprotector homeobox
AFF2 AF4/FMR2 family, member 2
ARHGEF9 Cdc42 guanine nucleotide exchange factor 9
ARID1B/Arid1b/arid1b AT-rich interaction domain 1B
ARRIVE Animals in Research: Reporting In Vivo Experiments
ARX/arxa Aristaless related homeobox
ASD Autism Spectrum Disorders
ASH1L/Ash1l ASH1 like histone lysine methyltransferase
ASTN2 Astrotactin 2
atoh1 Atonal bHLH transcription factor 1
ath5 Atonal bHLH transcription factor 7
ATRX α thalassemia/mental retardation syndrome X-linked
AUTS2/auts2a and auts2b Autism susceptibility candidate 2
BCKDK/Bckdk Branched chain ketoacid dehydrogenase kinase
brn3c POU class 4 homeobox 3
CACNA1C/Cacna1c/cacna1c Calcium channel voltage-dependent, L type, α 1C subunit
Cas CRISPR-associated genes
Cas13 CRISPR-associated endoribonuclease Cas13
Cas9 CRISPR associated endonuclease Cas9
CDKL5 Cyclin-dependent kinase-like 5
CEP41/cep41 Testis specific, 14
CHD2/Chd2/chd2 Chromodomain helicase DNA binding protein 2
CHD8/Chd8/chd8 Chromodomain helicase DNA binding protein 8
CIC/Cic Capicua transcriptional repressor
c-Myc MYC proto-oncogene
CNTN5 Contactin 5
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CNTNAP2/Cntnap2/cntnap2a and cntap2b Contactin associated protein-like 2
CNVs Copy Number Variations
Cre Cre recombinase
crh Corticotropin releasing hormone
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
CRISPRa CRISPR activation
CRISPRi CRISPR interference
crRNA CRISPR RNA
CTNND2/ctnnd2b Catenin (cadherin-associated protein), delta 2
CYFIP1/Cyfip1 Cytoplasmic FMR1 interacting protein 1
D. rerio Danio rerio
dat Dopamine transporter/Solute carrier family 6 member 3
dCas9 Catalytically dead Cas9
Disc1 Disrupted in schizophrenia 1
DNA Deoxyribonucleic acid
dpf Days post-fertilization
DSBs Double-Strand Breaks
DSM-5 Diagnostic and statistical manual of mental disorders, 5th edition
DYRK1A/dyrk1a Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A
EHMT1 Euchromatic histone-lysine N-methyltransferase 1
elavl3 ELAV like neuron-specific RNA binding protein 3
emx1 Empty spiracles homeobox 1
En-1 Engrailed homeobox 1
ENU N-ethyl-N-nitrosourea
Ext1 Exostosin glycosyltransferase 1
FMR1/Fmr1/fmr1 Fragile X mental retardation 1
FokI Type IIS restriction endonuclease from Flavobacterium okeanokoites
GABA γ-aminobutyric acid
GABRB3/Gabrb3 γ-aminobutyric acid type A receptor, subunit beta3
gad1b Glutamate decarboxylase 1b
GFAP/gfap Glial fibrillary acidic protein
glyt2 Sodium and chloride dependent glycine transporter 2
gsx1 GS homeobox 1
GWAS Genome-Wide Association Studies
HDR Homology-directed repair
hiPSCs Human induced pluripotent stem cells
HNH Endonuclease domain characterized by histidine and asparagine

residues
hpf Hours post-fertilization
Indel Insertion and/or deletion
isl1 ISL LIM homeobox 1
KCNJ10/kcnj10 Potassium voltage-gated channel subfamily J, member 10
KCNQ2 Potassium voltage-gated channel subfamily Q, member 2
kctd15a Potassium channel tetramerization domain containing 15a
KDM6A/kdm6a Lysine demethylase 6A
KI Knock-in
Klf4 Kruppel like factor 4
KO Knockout
lncRNA Long non-coding RNA
LOF Loss of function
M. musculus Mus musculus
MAPK Mitogen-activated protein kinase
MECP2/Mecp2/mecp2 Methyl CpG binding protein 2
MET/met Met proto-oncogene
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MGE Medial ganglionic eminence
mnx1 Motor neuron and pancreas homeobox 1
MOs Morpholinos
mRNA Messenger RNA
mTORC1 Mammalian target of rapamycin complex 1
MYT1L/mytl1a and mytl1b Myelin transcription factor 1-like
NBEA/nbea Neurobeachin
nCas9 Cas9 nickase
NDDs Neurodevelopmental disorders
neurod Neurogenic differentiation factor 1
neurog1 Neurogenin 1
NHEJ Non-homologous end joining
NLGN2/Nlgn2 Neuroligin 2
NLGN3/Nlgn3 Neuroligin 3
NMDARs N-methyl-D-aspartate receptors
NR3C2/nr3c2 Nuclear receptor subfamily 3, group C, member 2
NRXN1/Nrxn1 Neurexin 1
NS Non specified
Oct3/4 Octamer binding transcription factor 3/4
olig2 Oligodendrocyte lineage transcription factor 2
otx2a Orthodenticle homeobox 2a
OXTR/oxtr Oxytocin receptor
p53 Tumor protein p53
PAM Protospacer adjacent motif
PCNA Proliferating cell nuclear antigen
PDD-NOS Pervasive developmental disorder not otherwise specified
pet1 FEV transcription factor,
PREPARE Planning Research and Experimental Procedures on Animals:

Recommendations for Excellence
PRT Pivotal Response Treatment
PTCHD1 Patched domain containing 1
PTCHD1-AS PTCHD1 antisense RNA
PTEN/Pten Phosphatase and tensin homolog
ptf1a Pancreas associated transcription factor 1a
R. norvegicus Rattus norvegicus
RELN/Reln/reln Reelin
RERE/rerea and rereb Arginine-glutamic acid dipeptide repeats
RNA Ribonucleic acid
RNA-seq RNA sequencing
RORα Nuclear receptor ROR-α
RuvC Endonuclease domain involved in DNA repair
SCN1A/Scn1a Sodium channel, voltage-gated, type I, α subunit
SCN2A/Scn2a Sodium channel, voltage-gated, type II, α subunit
SFARI Simons Foundation Autism Research Initiative
sgRNA Single guide RNA
SHANK2/Shank2 SH3 and multiple ankyrin repeat domains 2
SHANK3/Shank3/shank3a and shankb SH3 and multiple ankyrin repeat domains 3
shRNA Short hairpin RNA
Sox2/sox2-sox2 SRY-box transcription factor 2
sox10 SRY-box transcription factor 10
SVZ Subventricular zone
SYNGAP1/syngap1a and syngap1b Synaptic Ras GTPase activating protein 1
TALENs Transcription Activator–Like Effector Nucleases
TALEs Transcription Activator-Like Effectors
TAOK2/Taok2 TAO kinase 2
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TBR1/Tbr1 T-box brain transcription factor 1
tbx2b T-box transcription factor 2b
TCF4/Tcf4 Transcription factor 4
th1 Tyrosine hydroxylase 1
TILLING Targeting Induced Local Lesions in Genomes
tracrRNA Trans-activating crRNA
tRNA Transfer ribonucleic acid
TRPC6 Transient receptor potential cation channel, subfamily C, member

6
TSC2/Tsc2 Tuberous sclerosis 2
UBE3A/Ube3a Ubiquitin protein ligase E3A
UPF3B/Upf3b UPF3B regulator of nonsense mediated mRNA decay
USVs Ultrasonic vocalizations
vglut2.2 Vesicular glutamate transporter 2.2
vglut2a Vesicular glutamate transporter 2.1
vmat2 Vesicular monoamine transporter 2
WES Whole exome sequencing
WGS Whole genome sequencing
ZFNs Zinc Finger Nucleases
ZNF804A Zinc finger protein 804A
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Chikahisa, S.; Nishino, S.; et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with
Timothy Syndrome. Nat. Med. 2011, 17, 1657–1662. [CrossRef]
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