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Abstract

Everyday environments often contain distracting competing talkers and back-
ground noise, requiring listeners to focus their attention on one acoustic
source and reject others. During this auditory attention task, listeners may nat-
urally interrupt their sustained attention and switch attended sources. The
effort required to perform this attention switch has not been well studied in
the context of competing continuous speech. In this work, we developed two
variants of endogenous attention switching and a sustained attention control.
We characterized these three experimental conditions under the context of
decoding auditory attention, while simultaneously evaluating listening effort
and neural markers of spatial-audio cues. A least-squares, electroencephalog-
raphy (EEG)-based, attention decoding algorithm was implemented across all
conditions. It achieved an accuracy of 69.4% and 64.0% when computed over
nonoverlapping 10 and 5-s correlation windows, respectively. Both decoders
illustrated smooth transitions in the attended talker prediction through
switches at approximately half of the analysis window size (e.g., the mean lag
taken across the two switch conditions was 2.2 s when the 5-s correlation win-
dow was used). Expended listening effort, as measured by simultaneous EEG
and pupillometry, was also a strong indicator of whether the listeners
sustained attention or performed an endogenous attention switch (peak pupil
diameter measure [p=0.034] and minimum parietal alpha power measure
[p=0.016]). We additionally found evidence of talker spatial cues in the form
of centrotemporal alpha power lateralization (p =0.0428). These results sug-
gest that listener effort and spatial cues may be promising features to pursue
in a decoding context, in addition to speech-based features.

Abbreviations: AAD, auditory attention decoding; ANOVA, analysis of variance; EEG, electroencephalography; ERSP, event-related spectral
perturbation; GLHT, general linear hypothesis test; ICA, independent component analysis (ICA); LIPSP, left inferior parietal supramarginal part;
MPD, mean pupil diameter; RTPJ, right temporoparietal junction; SEM, standard error of the mean.
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1 | INTRODUCTION

Everyday listening situations often contain multiple
competing talkers and listeners must engage auditory
attention to focus onto one source. In voluntary
sustained attention, an endogenous process, the
listener directs their attention towards a source and
top-down mechanisms influence how the source is
represented in the cortex (Golumbic et al, 2013;
Posner et al.,, 1984). In most environments, however,
listeners do not sustain their attention to one talker
continuously. Sources vie to exogenously capture
listener attention, employing bottom-up processes once
successful (Posner et al., 1984). Listeners may also
switch their attention endogenously, shifting their
attention between sources at their discretion. Listeners
using auditory attention enhancement in these com-
plex scenes would value amplification of their desired
acoustic source such as a source that is being endoge-
nously sustained or a new source that they want to
endogenously switch to. Enhancement would ideally
reduce the effect irrelevant stimuli have on a listener’s
auditory attention.

Distinct brain regions have been shown to be
involved in endogenous auditory attention (Hill &
Miller, 2010; Lee et al., 2013; Larson & Lee, 2014). Their
studies have focused on characterizing attention between
location and pitch, two core features that differ between
sources in cocktail-party scenarios. The frontal-parietal
region was found to be activated during endogenous
auditory attention towards sources that differ in both
space and pitch (Hill & Miller, 2010). Next, the frontal
eye field region was found to be activated in preparation
for and during endogenous attention towards sources
(Lee et al.,, 2013). Distinct parietal activations during
endogenous switches were then characterized (Larson &
Lee, 2014). The right temporoparietal junction (RTPJ)
and the left inferior parietal supramarginal part (LIPSP)
were active during switches between sources that differed
in space and pitch respectively. These protocols used
small speech tokens such as alphabetic characters and
unrelated sentences from a corpus (Hill & Miller, 2010;
Lee et al, 2013; Larson & Lee, 2014). The regions
involved with switching attention naturally between con-
tinuous speech sources have yet to be characterized and
will likely recruit a combination of the previously men-
tioned brain regions.

Auditory attention occurs in environments that are
more complex than during conventional clinical hear-
ing assessments. Real scenes often involve multiple
speech sources and reverberation that recruit speech-
specific auditory processes (Liberman et al., 2016). This
complexity may provide a suite of cues that can be
leveraged by the listener during auditory attention.
Realistic listening in contrast to clinical assessments
consists of longer listening tasks that may lead to more
opportunities to latch attention, greater overall compre-
hension due to the continuous speech context, and
more listener fatigue. Identifying signals and features
engaged in naturalistic switching can potentially be
used to track attention states. These states can then be
used to control stimuli enhancement which can
improve the listener’s experience. Altering the relative
levels of attended and ignored stimuli can reduce lis-
tening effort and enhance attended stimuli entrainment
(Mirkovic et al., 2019; Presacco et al., 2019; Seifi Ala
et al., 2020). Speech enhancement has the capacity to
improve listener quality of life in individuals of all
ages and levels of hearing loss (Ciorba et al.,, 2012;
Griffin et al., 2019; Liberman et al., 2016).

Auditory attention decoding (AAD) describes the
process of using cortical recordings to identify to
whom a listener is attending when multiple talker
sources are competing for the listener’s attention. AAD
in combination with speaker separation has the poten-
tial to be incorporated into cognitively controlled hear-
ing aids to provide auditory enhancement in speech-
rich scenes that traditional hearing aids struggle with
(Borgstrom et al., 2021; Popelka & Moore, 2016). The
majority of these studies’ protocols ask listeners to sus-
tain attention, not invoking switches in attention
(Geirnaert et al., 2021). However, it is critical to study
attention switching given the prevalence of switching
in real-world conditions. Various speech features and
cortical recording modalities have been used to encode
and decode attended stimuli (Akram et al., 2016;
Ciccarelli et al., 2019; Ding & Simon, 2012;
Mesgarani & Chang, 2012; O’Sullivan et al.,, 2015;
O’Sullivan et al., 2017; Puvvada & Simon, 2017). These
decoding algorithms have relied on reactive decoding
of the already attended stimuli, creating a lag in the
enhancement they could provide. Endogenous switches
are associated with top-down attentional preparatory
activity in contrast to exogenous attention switches
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(Lee et al., 2013), and thus tracking the preparatory
activity involved in endogenous attention switches
might aid in faster enhancement in comparison to
reactive decoding. Identifying preparatory features that
accompany attention switches could aid in more robust
auditory enhancement when combined with attended
stimuli decoding.

Recent work has begun incorporating switches in
their attention decoding protocols to explore alterna-
tive attention modelling techniques (Akram et al.,
2016; Miran et al., 2018, 2020; Teoh & Lalor, 2019).
In some auditory switching studies, the switch time
was determined by the protocol (Akram et al., 2016;
Hill & Miller, 2010; Lee et al., 2013; Larson &
Lee, 2014; Teoh & Lalor, 2019). These studies direct
attention switching using acoustic cues - directing the
listener to switch sources when a gap in the stimulus
occurs (Akram et al., 2016) or instructing the listener
to switch attended talker location in order to track a
dynamic talker (Teoh & Lalor, 2019). However when
naturalistic endogenous attention switches are studied,
the moment the switch occurred is known by the
listener and must be extracted. There have been
some attempts to obtain this switch time. For exam-
ple, a button press has been used to record
endogenous switch time (Miran et al., 2018, 2020).
Unfortunately, a button press may create switch-
locked pre-motor planning and muscle artefacts in the
data, potentially confounding endogenous switching
feature interpretation (Johari et al, 2019;
Stephen, 2019).

In this study, we investigated two variants of endog-
enous switches of sustained attention between compet-
ing multitalker sources. This volitional type of attention
switch is the focus of this work because listeners desire
a source of their choosing to be enhanced and want to
limit the effect exogenous stimuli have on their audi-
tory attention. In this study, listeners were asked to
remember when they endogenously switched using a
clock in order to remove an explicit evoked response,
for example, a motion artefact from a button press. For
the first analysis, we performed regularized least-
squares decoding of the attended talker envelope
(Crosse et al., 2016). We demonstrated decoder behav-
iour on data that contains natural attention switches
and additional realistic higher-order processes of memo-
rization and decision making that were incorporated
into the protocol. Next, we quantified the effort
involved with endogenous switching using measures of
EEG alpha power and pupil diameter (Seifi Ala et al.,
2020). Lastly, we analysed alpha power activity related
to the relative locations of the attended and unattended
talker locations (Deng et al., 2020).

2 | METHODS

2.1 | Experimental protocol

Ten native English speakers (5F, 5M), with self-reported
normal hearing, participated in this study. They provided
informed consent to an experimental protocol that was
approved by the MIT Committee on the Use of Humans
as Experimental Participants and The U.S. Army Medical
Research and Development Command, Human Research
Protection Office. Participants were asked to sit in a
sound treated booth between two loudspeakers posi-
tioned 6 feet away at +45°. The left and right loud-
speakers presented male talkers reading “Twenty
Thousand Leagues Under the Sea” and “Journey to the
Center of the Earth” audiobooks, respectively (O’Sullivan
et al., 2019). We simultaneously recorded participant
EEG and pupillometry using a dry electrode EEG system
(Wearable Sensing DSI-24, Fs = 300 Hz) and eye tracking
glasses (SMI ETG2, Fs = 120 Hz), respectively. A display
situated in front of the participant displayed various
stages of the protocol.

Figure 1 diagrams the instructional stages of a trial
and the time course of the three experimental conditions.
This protocol consisted of 60 one-minute trials (20 trials
of each experimental condition). At the beginning of each
trial, the display presented the trial task—a combination
of the experimental condition and initial attended talker
(left or right). Each experimental condition had an equal
number of trials that began with attention to the left and
right talker. The experimental condition presentation
order was randomized and determined using MATLAB’s
uniformly distributed pseudorandom integer generator.
During a trial, after approximately 30 s of attention
towards the initial attended talker, listeners performed
one of three tasks. Depending on the indicated experi-
mental condition, listeners were to switch attention at
their own discretion (at-will), switch attention at a
directed time (directed), or not switch attention at all
(sustained). To record the attention switch without the
use of a button press, all three experimental conditions
incorporated a time memorization task that used the
visually presented elapsed time. The subject then
reported this time after the end of a 1-min listening
period (trial). From the onset of the trial, the display pres-
ented the elapsed time which was updated once per sec-
ond. This update rate was selected instead of a finer
resolution in order to prevent increased visual processing
load and reduce the complexity of the time memorization
task. The at-will switch involved an on-demand, listener-
initiated switch; the listener used the clock to mentally
note when they switched at their discretion. The directed
switch had the listener switch at a time specified before
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FIGURE 1
During the protocol, listeners were presented

Auditory attention protocol.
with two competing spatially separated At-Will
audiobook stimuli. They were asked to begin
each trial attending to one talker and ignoring
the other. For two of the experimental Directed
conditions, listeners were asked to switch
talkers approximately halfway through the trial.
Listeners either switched attention at their Sustained
discretion (at-will switch) or switched their
attention at a time specified before the trial
began (directed switch). In the third
experimental condition, listeners were asked to
keep their attention on the initial talker for the
whole trial (sustained attention). At the end of Display
the trial, listeners recalled the time event they

either switched or continued to sustain

attention

the trial began. The participant used the clock to perform
the attention switch at a pre-determined time. The
directed switch lacks the added online decision-making
task of when to switch. It is important to note that this
task is still considered endogenous since the implementa-
tion of the switch is made by the listener in contrast to
having their attention exogenously captured at a given
time. For the sustained condition, the listener attended to
the same talker for the whole trial but was tasked to
remember a time once they saw it on the clock. This task
is modelled after the online decision-making that would
occur in the at-will switch condition, but without the
actual switch. The sustained condition controlled for the
executive functioning tasks used in the at-will experimen-
tal condition (decision making and remembering time).
Figure 1 illustrates the listener memory state across
the experimental conditions in the thought bubbles. All
three conditions’ timing events were only permitted to
occur between [25,35] seconds in order to ensure ample
data before and after the switch. The directed switch time
was randomly generated. For the other two conditions,
participants were instructed to randomize their timing
events between the range of [25,35] seconds themselves.
For the rest of the analysis, all trial times were normal-
ized relative to the timing event such that it occurs at
zero seconds. For simplicity, we will call this time, the
switch time even though no switch occurs in the control
condition where attention is sustained. Any physiological
measures seen around the switch time can be attributed
to executive functioning related to the listener’s decision
making, committing the switch time to memory, and/or
switching auditory attention between spatially separated

L @

Listener Memory Attended Ignored
State Talker Talker

o

Trial
Instructions

30 sec

60 sec

sources. Between each trial, participants recalled the tri-
al’s timing event and answered two 4-choice comprehen-
sion questions using a wireless gaming controller. Each
of the 10 participant collections contain 60 min worth of
EEG and pupillometry data as well as two comprehen-
sion responses for each trial. The protocol contains char-
acteristics that should elicit measurable effort such as a
reasonably difficult task that provides listener engage-
ment and motivation (Winn et al., 2018). Listeners were
asked to attend to continuous audio book speech stimuli
which possibly keeps their engagement throughout the
experiment more than a simpler stimuli would. Partici-
pants were motivated to follow the three experimental
conditions tasks equally and value attending to the
proper talker for the whole duration of the trial because
they needed to answer comprehension questions from
both halves of the trial.

2.2 | Auditory attention decoding

Attended and ignored talker stimuli representations dif-
fer in strength, temporal characteristics, and topography
(Ding & Simon, 2012; Golumbic et al., 2013; O’Sullivan
et al., 2015). These differences permit the separate talker
stimuli to be distinguished from each other through the
decoding of cortical signals. We performed auditory
attention decoding on all three experimental conditions
and used the output in two ways. First we used decoding
to demonstrate that the protocol’s core task of auditory
attention was not severely impacted by the inclusion of
visual and memory tasks. Then we used the decoding
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output to track a natural, nonartificial, shift in the
attended talker source.

For each participant, we trained a linear decoder to
predict the attended talker envelope from cortical signals
(EEG). We elected to use an L2 (ridge regression) regular-
ized least-squares decoding approach that used the
attended talker envelope for training (Crosse et al., 2016).
Since maximizing decoding accuracy was not the focus of
the work, we chose to use a fixed regularization of 1le6
for all subjects instead of finding the listener-specific
performance-maximizing regularization value via a vali-
dation process. The decoder used a sliding 500-ms win-
dow of EEG data to produce each attended talker
prediction sample (Ciccarelli et al, 2019). EEG
preprocessing was kept to a minimum so our decoding
results could be evaluated against real-time decoding
implementations that limit pre-processing for the sake of
speed (Alickovic et al., 2019). The EEG data used for
decoding underwent no blink rejection or visual evoked
potential response pre-processing. It was then band-
passed between [2,32] Hz using EEGLab’s Hamming
windowed FIR filter (Ciccarelli et al., 2019; Delorme &
Makeig, 2004). Each decoder is talker-invariant; training
used a balanced amount of each talker’s data. The ideally
separated talkers’ broadband audio envelopes were
extracted using a nonlinear, iterative method (Horwitz-
Martin et al., 2016). The bandpassed EEG and the audio
envelopes were then downsampled to 100 Hz.

The training and testing process was implemented
using leave-one-trial-out cross validation. The attended
talker decision at a given time was determined via a Pear-
son correlation using a window of attended talker enve-
lope predictions. A Pearson correlation was performed
between the candidate speech envelopes and the
attended speech envelope prediction, denoted by env. We
evaluated the decoder with correlation windows of
10 and 5 s. In the results, we present a detailed overview
of decoder performance using a length of 5 s because it
provides the opportunity for comparison with the listen-
ing effort analyses that also use a 5-s window.

To evaluate the accuracy of a fold of the decoder, the
decoder output, env, was first correlated with the
attended and unattended talker envelopes, env,, and
envy,, (Equations (1) and (2)). In the case of the switch
conditions, the attended and unattended talker envelopes
are composed of concatenated envelopes from the two
talkers. Attended talker decoding is considered successful
when the correlation with env,,, is greater than envy,,,
that is, when the decision vector, corrDiffs;  yng, 1S
greater than 0. Decoding accuracy is defined as the frac-
tion of nonoverlapping time, the time-varying
correlation-based decision vector, corrDiffa;_yna IS
greater than 0 (Equation 3).

HARO ET AL.

corray = corr(env,envay), (1)
COrryng = corr(env,envyy,), (2)
corrDiff asr—tma = COPT At — COTFUng. (3)

To characterize the shift in attention rather than the
accuracy, we correlated the decoder output with the two
talkers envelopes, regardless of listeners attention during
the trial. Specifically, the decoder output, env, was corre-
lated with the attended and ignored talker envelopes that
the listener commenced the trial with, env; ; and envy 5,
respectively (Equations 4 and 5). The difference between
these two correlations, denoted by corrDiffy 1_7 o,
changes sign when a switch occurs, indicating that the
attended talker is no longer the talker the listener com-
menced the trial with (Equation 6). For the switch condi-
tions, corrDiffr | _ 1, is identical to corrDiff4,; — yn, before
the switch time. For the sustained condition, corrDiff;
1— 7 2 is identical to corrDiff, _ ynq across all time.

corrry (t) = corr(env,envr ), (4)
corrr, = corr(env,envr,), (5)
corrDiff py_ g, = COFFr) — COFFT,. (6)
2.3 | Pupillometry analysis

Pupil diameter is one measure of expended effort that we
simultaneously measured during our auditory attention
protocol. We performed peak-based blink detection on
the raw pupil diameter data, interpolated data points con-
taining blink artefacts, and smoothed the data using a 1-s
median filter. The pupil diameter used for analysis was
defined as the average pupil diameter between the left
and right pupil channels. Mean pupil diameter (MPD) is
a measure of pupil dilation that is normalized on a trial
basis using a baseline from the onset of the trial
(Equation 7). Pupil dilation may be sensitive to factors
unrelated to the experimental task such as engagement,
arousal, anxiety, and lighting conditions (van Rij et al.,
2019). In Equation (7), D, is the pupil diameter averaged
across a given 5-s window. Subscripts B and ¢ indicate
whether average pupil diameter was computed across a
baseline window between [—25:20] seconds relative to
the switch time or a sliding 5-second window whose lat-
ter edge spans [—20:25] seconds relative to the switch
time, respectively. At 5 s for example, MPD captures the
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activity between [0,5] seconds proceeding the switch, not
just the activity at 5 s.

D,—Dg

B

MPD(t) = £100. (7)

We hypothesized that peak MPD around the switch
would be modulated by the amount of effort required by
the condition’s set of tasks. MPD peak magnitude around
the switch was automatically detected and used for statis-
tical testing. To test the effect of experimental condition
on peak MPD, we ran a two-factor analysis of variance
(ANOVA) with experimental condition modelled as a fac-
tor and participant modelled as a random factor. In-addi-
tion, we performed planned, pairwise t-tests between
experimental conditions with a Bonferroni correction
that conservatively adjusts the t-test p values to correct
for type-1 error that may arise during the simultaneously
run t-tests (Armstrong, 2014).

2.4 | EEG analysis

2.4.1 | Event-related spectral perturbation

In previous work, cortical measures that were already
being recorded for decoding have been used to quantify
listening effort during sustained attention (Seifi Ala
et al., 2020). To investigate effort during an endogenous
attention switch, we also evaluated EEG measures of
effort around the switch. The EEG data was
preprocessed differently for this banded analysis than
was done for the least-squares decoding analysis. In
contrast to single trial decoding, EEG power band anal-
ysis is sensitive to blinks. Blink artefacts were removed
from the data using independent component analysis
(ICA) methods found in the EEGlab toolbox
(Delorme & Makeig, 2004). Instead of absolute alpha
band power, we computed a measure of relative alpha
power in the form of event-related spectral perturbation
(ERSP) (Makeig, 1993). Similar to MPD, ERSP is a mea-
sure of alpha normalized on a trial basis using a base-
line window at the beginning of the trial. ERSP(t, c) is
a function of both time, ¢t and EEG channel, c,
(Equation 8). The absolute alpha power, P, was com-
puted as the sum of squared spectral density values
between [8,12] Hz. Spectral density was computed
across each analysis window using MATLAB’s pwelch
method. The baseline window, B, indicates that the
spectral power was computed across a baseline window
between [—25:20] seconds relative to the trial’s switch
time (Equation 8). The variable, ¢, indicates that the
spectral power was computed on a sliding 5-s window

whose latter edge spans [—20:25] seconds relative to the
switch time. Both MPD and alpha ERSP were com-
puted every 10 ms with a 4.99-s analysis window over-
lap. ERSP was computed individually for each channel,
¢, using that channel’s baseline alpha power.

P(t,c) — P(B,c)

ERSP(t,¢) =—"7 )

#100. (8)

In an attempt to remove muscle artefacts that were
not resolved by ICA, ERSP samples that were 1.5
times the interquartile range beyond the third and first
quartile were removed and replaced with linearly inter-
polated values (Elliott & Woodward, 2007). We com-
puted the mean ERSP across the parietal subset of
channels to arrive at the parietal ERSP measure. In
addition to the baseline window normalization, we z-
scored trial-level MPD and ERSP within each partici-
pant to highlight experimental condition differences
instead of participant differences. We applied a
smoothing low-pass filter on alpha ERSP order to aid
in the automatic detection of the ERSP minimum near
the switch time. We hypothesized that minimum parie-
tal alpha ERSP around the switch would also be mod-
ulated by the relative effort required by the different
condition’s set of tasks. To test the effect of experimen-
tal condition on minimum parietal alpha ERSP, we
ran a two-factor ANOVA with experimental condition
modelled as a factor and participant modelled as a
random factor. To test differences in parietal alpha
ERSP between conditions, we performed a planned,
pairwise t-tests between experimental conditions with a
Bonferroni correction.

In addition to investigating parietal alpha ERSP, we
performed exploratory testing across three power bands
(delta, theta, alpha) and three channel subsets (frontal,
centrotemporal, and parieto-occipital). These additional
ERSP responses underwent the same artefact rejection, z-
scoring, smoothing, and automatic minimum detection
steps as parietal alpha ERSP. Nine separate two-factor
ANOVA tests were run on the nine minimum ERSP mea-
sures with experimental condition modelled as a factor
and participant modelled as a random factor. These
ANOVA p values were corrected for multiple compari-
sons using the false-discovery-rate (FDR) method
(Benjamini & Hochberg, 1995). Two separate FDR cor-
rections were considered that differ in how conservative
the correction is, false positive rates (FPRs) of 0.1 and
0.05 were applied. We also evaluated two null hypotheses
that tested whether the sustained ERSP measure was
equal to each switch condition’s ERSP measure. The sep-
arate null hypotheses were FDR corrected separately
using FPRs of 0.1 and 0.05.
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2.4.2 | Lateralized alpha event related
spectral perturbation

In addition to listening effort, attended and suppressed
talker spatial cues may also modulate alpha power dur-
ing auditory attention (Deng et al., 2020). To assess this
phenomenon in our data, we extracted an alpha feature
(ERSP magnitude from Equation 8) that highlights
hemispheric differences in response to the relative
talker locations. In contrast to the decoding and listen-
ing effort analyses performed on a sliding window, we
elected to perform the alpha lateralization analysis
across long segments of time (i.e., at the trial level).
Each trial was partitioned into two 20-s segments,
located before and after the switch time. Each condition
has forty 20-s segments; twenty segments correspond to
left talker attention and twenty segments correspond to
right talker attention. The choice to segment the trials
was inspired by previous work that measured alpha lat-
eralization over the entirety of their trials (Deng et al.,
2020). Additionally, using a segment’s worth of samples
permits a better measure of alpha modulation due to
spatial cues since alpha is also modulated by effort in
this protocol.

The alpha lateralization analysis steps in Equa-
tions (9)-(13) extract the spatial cues in the topography,
and quantify the alpha lateralization in particular brain
regions. This process was implemented separately for
each experimental condition. First, alpha ERSP was aver-
aged across the segments, m, that correspond to time
when the left talker was attended, denoted by A;(t, c)
where ¢ is time and c is channel (Equation 9). Alpha
ERSP was averaged separately across segments that cor-
respond to right talker attention, denoted by Ag(t, ¢)
(Equation 10). To highlight alpha’s capacity to reflect rel-
ative talker spatial cues, the difference was taken
between the left and right attended talker alpha ERSP
responses, A;(t, ¢) and Ag(t, ¢), and averaged across the
20-s long segment duration, denoted by Ar _x(c)
(Equation 11). When Ay _ x(c) is visualized as a topogra-
phy, channels with positive magnitudes indicate a larger
alpha synchronization to a left-located attended talker
than a right-located unattended talker.

20

1
Ap(t,c) ZERSP (t,c), ©)
me segments w1th left talker attention,
Ag(t,c) = ZERSPtc) (10)

me segments \mth right talker attention,

1 20

Ap-r(c)=—-

A t,c
=/ Ao

—Ag(t,c)dt. (11)

To quantify a given region’s capacity to reflect alpha
lateralization, A; _ r(c) was averaged across a given subset
of channels separately for each hemisphere (Equations 12
and 13). Because these lateralization measures rely on the
net left minus right attended talker alpha response,
the ipsilateral and contralateral distinctions are relative to
the left talker being attended. Therefore, a stronger A;p
indicates a stronger alpha ERSP response in the hemi-
sphere ipsilateral to the left attended talker (Equation 12).
A stronger Agonnq indicates a stronger alpha ERSP
response in the hemisphere contralateral to the left
attended talker (Equation 13). Previous work has shown
larger alpha magnitude lateralization in the hemisphere
ipsilateral to the attended source (contralateral to the
ignored source). This alpha lateralization may reflect
suppression of the ignored source (Deng et al., 2020).

),c € left channel subset, (12)

lpSl_ ZAL R

contra E AL R

),c € right channel subset.  (13)

As indicated by previous work, we hypothesized that
alpha lateralization in the parieto-occipital region would
be sensitive to the relative spatial locations of the
attended and unattended talkers (Deng et al., 2020). A
three-factor ANOVA was run on hemispheric alpha mag-
nitudes with experimental condition and the spatial loca-
tion (i.e., ipsilateral vs. contralateral) modelled as factors
and participant modelled as a random factor. We hypoth-
esized that spatial location would have a differential
effect on each hemisphere’s alpha magnitude, indicating
alpha lateralization.

In addition to parieto-occipital region, we explored
alpha lateralization in the centrotemporal region and
across the entire hemisphere. We performed the same
three-factor ANOVA test on each of the additional regional
alpha lateralization measures. To correct for the explor-
atory ANOVA tests performed on these additional regions,
we applied a Bonferroni correction since the number of
exploratory tests did not warrant an FDR correction.

3 | RESULTS

3.1 | Attended talker comprehension

Participants answered 120 4-choice comprehension ques-
tions and scored above chance (25%) with a mean
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accuracy of 56% (SEM = 3%). Our protocol’s lack of
attended talker continuity may be the main reason our
comprehension accuracy is lower than another study that
used the same stimuli and a larger fraction of the com-
prehension question corpus (O’Sullivan et al., 2019). Our
lower accuracy most likely can be attributed to the fact
that our attended talker was randomly assigned at the
onset of every trial and two-thirds of the time, the
attended talker was switched midway through the trial.
The lower comprehension scores may also be due to the
additional visual, decision-making, and working-memory
tasks that listeners are asked to perform while they
attend to auditory stimuli (O’Sullivan et al., 2019;
Senkowski et al., 2008). Participants achieved mean com-
prehension accuracies of 58%, 51%, and 58% across at-
will, directed, and sustained conditions, respectively
(Figure 2a). A two-factor ANOVA was run with experi-
mental condition modelled as a factor and participant
modelled as a random factor. It determined a main effect
of experimental condition on comprehension accuracy
(F(2,18) = 4.247,p = 0.0308). However, Bonferroni-
corrected pairwise t-tests found no differences in compre-
hension accuracy between conditions.

3.2 | Attended talker decoding

Attention decoding was evaluated using nonoverlapping
correlation window lengths of 10 and 5 s (Equation 3).
The grand-mean accuracy dropped from 69.4% (SEM =
1.9%) to 64.0% (SEM = 1.5%) when the correlation win-
dow length was halved from 10 to 5 s. Both the 10 and
5-s correlation window data illustrate similar relative
accuracies across experimental conditions. For simplicity,
we will present the 5-s correlation window data since it
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FIGURE 2

shares the same duration as the window used for the
MPD and ERSP analyses. A two-factor ANOVA was run
with experimental condition modelled as a factor and
participant modelled as a random factor. It found no
effect of experimental condition on trial-level decoding
accuracy evaluated using the 5-s correlation window
(F(2,18) = 1.83,p = 0.189) (Figure 2b).

In addition to computing the attended talker
decoding accuracy, we computed a similarity metric
between the decoder output and the initial attended and
unattended talkers (Equation 6). When a listener engaged
in a switch in attention, it took approximately half the
length of the correlation window for the correlation with
the initial talker to weaken below the correlation with
the secondary talker (Figure 3). This result was present
for both the 10- and 5-s correlation window data.
Again, for simplicity we are only reporting the 5-s data
results. For the 5-s correlation window, grand-mean
corrDiffr 1 _ 1 », changed sign at 2.31 and 2.15 s for the at-
will and directed switch conditions, respectively.

3.3 | Event related spectral perturbation
and mean pupil diameter

The grand-mean alpha ERSP topographic distribution for
each experimental condition is visualized in Figure 4.
Around the switch time, grand-mean alpha ERSP topog-
raphies demonstrate differences in the conditions that
contain a switch in contrast to the sustained condition.
The grand-mean MPD and parietal alpha ERSP time
course with standard error of the mean (SEM) is depicted
in Figure 5a,b. All conditions across the two modalities
have a slow trend in magnitude over the course of the
trial, similar to Seifi Ala et al. (2020). Before the switch
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Comprehension and decoding accuracy across experimental conditions. (a) Participants achieved a mean accuracy of 56%

(SEM = 3%) on forced-choice comprehension questions (chance = 25%) asked at the end of each trial. There was a main effect of
experimental condition on comprehension but no pairwise differences. (b) Least-squares attended talker decoding achieved an accuracy of
64.0% (SEM = 1.5%) when computed over a nonoverlapping 5-s correlation window. There are no differences in accuracy between

experimental conditions
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time, both MPD and parietal alpha ERSP appear similar
across experimental conditions, likely because the atten-
tion task is similar across the trials in that time region.
Near the switch time, both MPD and parietal ERSP fluc-
tuate and separate by experimental condition. The peak
MPD and minimum parietal alpha ERSP across the three
conditions are visualized in Figure 5a,c.

A two-factor ANOVA was run separately for the peak
MPD and minimum parietal alpha ERSP measures with
experimental condition modelled as a factor and partici-
pant modelled as a random factor. The ANOVA found a
main effect of experimental condition on peak MPD
around the switch (F (35 =7.668,p=0.0039). The
Bonferroni-corrected pairwise t-tests found a difference
in the peak MPD measure between the sustained and at-
will switch conditions (p =0.034) (Figure 5b). A separate
ANOVA found a main effect of experimental condition
on minimum parietal alpha ERSP around the switch

FIGURE 4 Grand-mean alpha event
related spectral perturbation (ERSP)
topography for each experimental condition
20 sampled at time points before, during, and
after the switch time. Alpha ERSP was
0 computed using a sliding 5-s window of
data, therefore the sampled topographies
shown capture activity from the preceding
5 s of time. At 5 s, the switch conditions
(top two panels) have larger alpha
desynchronizations than the sustained
condition

(F(218)=5.715,p=0.012). The Bonferroni-corrected
pairwise t-tests found a difference in the minimum parie-
tal alpha ERSP measure between the sustained and at-
will switch conditions (p =0.016), (Figure 5d). No other
MPD and ERSP differences between conditions were
found.

Exploratory ERSP analysis was performed across nine
spectral-spatial ERSP combinations made up of three
power bands (delta, theta, alpha) and three channel sub-
sets (frontal, centrotemporal, and parieto-occipital). Two
separate  FDR corrections were run on main-effect
p values, that differed in their level of conservativeness
(FPRs of 0.1 and 0.05 were considered). The less conser-
vative FDR correction (FPR of 0.1) determined a main
effect of experimental condition on minimum centro-
temporal alpha around the switch
(F(2,18) = 5.236,p =0.0161). The more conservative FDR
with a FPR of 0.05 found a main effect of experimental
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FIGURE 5 Mean pupil diameter (MPD) and parietal alpha event related spectral perturbation (ERSP). (a) Grand-mean MPD over time.

(b) Peak MPD measure around the switch time. (c) Grand-mean parietal alpha ERSP over time. (d) Minimum parietal alpha ERSP measure
around the switch time. Experimental condition has a main effect on peak MPD and minimum parietal ERSP around the switch time. Peak

MPD and minimum parietal alpha ERSP measures are different between the sustained attention and at-will switch conditions

condition on parieto-occipital alpha ERSP
(F(2,18) = 7.225,p = 0.00497). To correct for multiple com-
parisons of pair-wise t-test p values, two separate FDR
corrections were run using FPRs of 0.1 and 0.05. The
more conservative FDR (FPR of 0.05) determined a differ-
ence in minimum centrotemporal alpha ERSP around
the switch between the sustained and at-will switch con-
ditions (p=0.0056). Minimum parieto-occipital alpha
ERSP around the switch was found to be different
between the sustained and at-will switch conditions
(p =0.0056, FPR of 0.05). Minimum frontal alpha ERSP
around the switch was found to be different between the
sustained and directed switch conditions (p=0.0041,
FPR of 0.05). Together these results show evidence of
global alpha desynchronizations around the switch time
that may be due to the expended effort required to switch
attended sources and/or perform a taxing decision mak-
ing task while attending.

3.4 | Alpha lateralization

Figure 6a illustrates the net alpha ERSP, A; _ g(n), for
each experimental condition. We hypothesized that sup-
pression towards the unattended talker would manifest
as a stronger parieto-occipital alpha in the hemisphere
ipsilateral to the net attended talker location (left hemi-
sphere). A three-factor ANOVA revealed no effect of spa-
tial location on parieto-occipital alpha hemispheric
magnitude  (F(19)=3.44,p=0.0966). Since alpha

lateralization was not present in the parieto-occipital
region, we did not perform a generalized linear hypothe-
sis test (GLHT) on the region’s alpha measure.

In a secondary exploratory analysis, centrotemporal
and hemispheric alpha lateralization was evaluated.
Bonferroni-corrected testing found a main effect of the
spatial location on centrotemporal alpha hemispheric
magnitude (F(,9) = 7.728,p = 0.0428). Because the centro-
temporal region had the strongest main effect of spatial
location, centrotemporal alpha hemispheric magnitudes,
Ajpsi and Aoy, are visualized for each experimental con-
dition in Figure 6b. We performed a GLHT on centro-
temporal alpha to test for within condition differences
between ipsilateral and contralateral hemispheric alpha
magnitudes. Although spatial location had a main effect
on centrotemporal alpha lateralization, none of the
GLHT comparisons were significant after a Bonferroni
correction. The uncorrected GLHT found that within the
experimental conditions, ipsilateral and contralateral
centrotemporal alpha magnitude were different for the
at-will condition (p =0.03991) but not the other two con-
ditions (p = 0.18243 (directed), p =0.1760 (sustained)).

4 | DISCUSSION

We studied endogenous attention switching in the con-
text of developing decoding algorithms that can be used
in natural, every-day multitalker listening environments.
Our experimental protocol allowed listeners to
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FIGURE 6 Alpha lateralization
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endogenously switch attention between continuous
speech sources while their effort was characterized
through EEG and pupillometry measurements. In addi-
tion to effort, we detected two types of endogenous atten-
tion switches using both talkers’ speech envelopes and
spatial locations. While this decoding result is not the
first to demonstrate endogenous attention switch
decoding (Miran et al., 2018, 2020), to the best of our
knowledge, it is the first study to decode multitalker con-
tinuous speech without the potential confound of sensori-
motor planning. We also introduced a novel
characterization of the effort involved with attention
switching between speech sources. This builds upon
effort measures associated with sustained attention
between competing speech sources (Seifi Ala et al., 2020)
and attention switching between pair of competing
speech tokens (McCloy et al., 2017). Pupil diameter and
parietal alpha measures indicated that the effort associ-
ated with performing an endogenous at-will attention
switch was greater than our sustained-attention condi-
tion. Listener centrotemporal alpha power was also found
to be modulated by the relative spatial locations of the
stimuli. Our decoding results highlight latencies inherent
in speech-feature decoding. Our EEG and pupil diameter
findings support leveraging attention-switch decoding
and other nonspeech features for improving the accuracy
and decreasing the decision latency involved with cogni-
tively controlled hearing aids.

4.1 | Switching latency of envelope-
based attention decoding

Listeners who struggle with speech understanding in
multitalker scenes would greatly benefit from enhance-
ment that instantaneously cues on the talker they wish to
attend. For practical applications, decoding algorithms

must operate in a causal manner, incrementally produc-
ing a decoding decision from a given window of previous
data. When there is a switch in attention, this analysis
window length translates into a decoding latency.
Although the 5-s correlation window would produce a
faster detection of a switch than a 10-s correlation win-
dow, it is at a cost. The 5-s correlation decision produced
noisier predictions over time and reduced decoding accu-
racy by 5.2% when compared to the 10-s window.
Another group systematically studied this trade-off using
a linear model on another data set that contained simu-
lated attention switches. They achieved optimal accura-
cies of 62% and 68% using an evaluation window of 2.54
and 11.28 s, respectively (Geirnaert et al., 2019).

Our study in contrast, evaluates performance on EEG
data that contains real human switches in attention and
confirms that switches can be detected after a lag equal
to approximately half the decision window length using a
standard least-squares decoding method. We originally
hypothesized that when an attention switch occurs, there
is a measurable latency associated with the time it takes
for the listener to go from attending to one source to
another. While the decoding lag defines the fastest the
decoder can detect an attended talker change, it assumes
a negligible human switching delay. In both 10 and 5 s
evaluations of our decoder, we observed the decision vec-
tor, corrDiffr, _ 15, change sign at a lag equal to half the
respective correlation window length, indicating a switch
in the listener’s attended talker. For the 5-s correlation
window length, mean switch time was 2.31 and 2.15,
respectively, for our at-will and directed experimental
conditions (Figure 3). Since the decoded switch time was
less than half the window size, this indicates that lis-
teners were potentially switching slightly before the
reported switch time. Future work needs to be done to
more precisely define and measure when and how long it
takes for a listener to switch attention.
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Supplementing envelope-decoding with other fea-
tures may further reduce the algorithmic switching
time for attention decoding. For context, another
group’s state-modeling algorithm found algorithmic
delays of 1.9, 1.75, and 1.5 s for simulated switch data,
real switches in EEG, and real switches in MEG,
respectively (Miran et al., 2018). The decoding lag in
our data set and others, demonstrates the need for fur-
ther inquiry into alternative decoding features such as
expended effort, cortical power lateralization in
response to spatial cues, pupillometry, and eye-gaze.
We propose that this multimodal decoding approach
could be implemented in various ways. The data would
first need to utilize a normalization or remapping step
to place the various feature types into the same space
(Geirnaert et al., 2020). One option is to train a model
that treats the time varying pupil and EEG measures
of effort as additional physiological channels that can
be concatenated to the EEG data. In this case,
nonlinear models such as a recurrent neural network,
could leverage its capacity to retain a running memory
to merge various physiological measures that operate
on different time scales to produce an attended predic-
tion (Geravanchizadeh & Roushan, 2021). A state-
modeling approach could also be used to update the
attended talker state when an marker of effortful lis-
tening has taken place (Miran et al., 2018). A third
option is to combine a weighted sum of separate classi-
fiers to produce a prediction that involves the various
cues a listener might be leveraging. For example, dec-
oded attended talker location and acoustic predictions
could be combined and scaled with an effort-measure
weight.

4.2 | Increased listening effort is
associated with auditory attention
switching

Our results suggest that the effort required to switch
attention was greater than the effort required to sustain
attention. We found a main effect of experimental condi-
tion on peak MPD and minimum parietal alpha ERSP
around the switch time. Peak MPD and minimum parie-
tal alpha ERSP reflect both the effort due to switching
and higher-order cognitive tasks (in-the-moment decision
making and time memorization), depending on the
experimental condition instructions (Figure 5b,d). In our
experiment, both the at-will and sustained conditions
involve decision making and time memorization and
only differ in whether an attention switch occurs. There-
fore the differences in the switch and sustained condition
measures are due to the effort required to implement the

switch in attention. We did not find differences in peak
MPD or minimum parietal alpha ERSP between the
directed condition and other two conditions. This indi-
cates that these two measures of effort are not sensitive
to differences between the directed condition’s tasks and
the other two condition’s tasks. In addition to fluctua-
tions around the switch time, Figure 5a illustrates a slow
downward trend in MPD and slow rising trend in parietal
alpha ERSP. Its not clear whether these changes in MPD
and ERSP are related to a change in effort and may be
indicative of physiological adaptation over the course of
the trial.

Our results show that pupil diameter increases dur-
ing our complex attention switching tasks in manner
that is consistent with previous pupil diameter mea-
sures performed during an exogenous attention switch
between competing alphabetic character pairs (McCloy
et al, 2017). In addition to understanding the effort
associated with attention switching, pupil diameter
measured throughout the entire 60-min collection can
be leveraged to determine the impact a listener’s effort
has on decoding accuracy. In future studies, pupil
diameter can be used as a measure of fatigue over the
course of long stretches of effortful listening and to
determine auditory training’s efficacy in reducing such
fatigue (Pichora-Fuller et al., 2016). These attention
switching conditions could be implemented in clinic to
gauge listener effort when performing auditory atten-
tion between stimuli with low speech intelligibility
(Pichora-Fuller et al., 2016; Paul et al.,, 2021; Winn
et al., 2018; Zekveld et al., 2018). These measures could
help gain insight on an individual’s fatigue associated
with everyday difficult listening conditions out side the
clinic as well.

Our alpha ERSP results are consistent with
previous sustained attention effort characterization
(Seifi Ala et al.,, 2020). We also found stronger alpha
desynchronization in the at-will experimental condition
which had the most demanding combination of tasks. In
the at-will condition, the listener expended effort around
the switch when they performed an online decision-
making task of when to switch, wrote the switch time
to memory, and shifted auditory attention between
sources. As expended effort increases, cortical networks
activate, resulting in decreased cortical synchrony
and decreased alpha ERSP (Jensen & Mazaheri, 2010;
Pfurtscheller, 2001; Seifi Ala et al., 2020). Our exploratory
analysis found a main effect of experimental condition on
minimum alpha ERSP computed across centrotemporal
and parieto-occipital channels. Our results differ in the
brain regions activated. These differences may be due
task differences, other previous work has also shown
frontal and centrotemporal region activations during
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endogenous attention switches (Hill & Miller, 2010;
Larson & Lee, 2014).

4.3 | EEG alpha power is lateralized by
attentional spatial cues

Several prior studies have suggested that the spatial loca-
tion of acoustic stimuli lateralizes alpha power during an
attention task (Bonnefond & Jensen, 2012; Bednar &
Lalor, 2018; Deng et al., 2020; Weisz et al., 2011). It has
been shown that stimulus suppression increases parieto-
occipital alpha in the hemisphere ipsilateral to the
attended talker in an attention task of competing sources
(Deng et al., 2020). We hypothesized parieto-occipital
alpha lateralization would be present did not find a main
effect of spatial location on parieto-occipital alpha hemi-
spheric  magnitude (p=0.0966). However, our
Bonferroni-corrected exploratory analysis performed on
two additional channel subsets found evidence of centro-
temporal alpha lateralization. Of the three channel sub-
sets that were evaluated, spatial location impacted
centrotemporal alpha hemispheric magnitude the most
(p =0.0428). The channel subset where the alpha laterali-
zation was found to be strongest may differ from previous
work because our task utilized read speech rather than
previous work with single syllables (Deng et al., 2020).
Another possibility could be related to the fact that we
computed alpha ERSP instead of individualized peak
alpha magnitude for our alpha measure, or the fewer
number of EEG electrodes in our study.

Our results further support that even with a demand-
ing task of attention between continuous speech stimuli,
some alpha lateralization effects may be present.
Although there is evidence of spatially modulated alpha
power, this cue is limited for single-trial decoding use
due to the 20-s long segments over which the feature was
computed. Better features may exist for leveraging spatial
cues for decoding. For example, a decoding method that
used common spatial pattern filters to determine direc-
tional focus without the use of speech-features, per-
formed at an accuracy of 80% and window length of 1 s
(Geirnaert et al., 2020).

44 | Leveraging attention switches for a
cognitively controlled hearing aid

Cognitively controlled hearing aids have the capacity to
improve the listener experience in cluttered environ-
ments through listener-steered speech enhancement
(Geirnaert et al., 2021). Understanding endogenous
switching may speed attention decoding by identifying

the intended attended talker throughout a switch before
the new attended talker is fully attended to. Speech-
feature based decoding relies on the attended speech
being encoded in the listener’s cortical signals. It remains
unknown how these speech-feature based algorithms
would work on real attention switches in individuals
with hearing impairment (Decruy et al., 2020; Van
Canneyt et al., 2021). On the other hand, sensing effort
expended in an attempt to attend to a new source and
ignore another, could be leveraged to help decode intent
in this situation. It is probable that the attention pro-
cesses involved with an endogenous switch may begin to
show themselves in cortical signals earlier than an exoge-
nous capture in attention due to the decision-making and
planning involved. Therefore, supplementing speech-
feature based decoding with features that are directly
related to switches in auditory attention, may result in
decreased decoding lag and increased accuracy. The neu-
ral and pupil diameter markers associated with switching
effort, as shown in our results, could potentially be lever-
aged as one of these features.

This work further supports exploring nonacoustic,
multimodal features for attention decoding. Our results
demonstrated that speech-feature based decoding still
functions in the presence of additional higher-order corti-
cal tasks, indicating that nonspeech features have prom-
ise to be fused with speech-features for robust multicue
feature decoding. This work did not focus on maximizing
decoding accuracy nor minimizing the switch detection
lag but future work could aim to use these additional fea-
tures as part of decoding models. Specifically, alpha ERSP
and pupil diameter features may be relevant since their
slope began to change sign slightly before or at the time
listeners reported their switch. Individuals naturally also
use both auditory and visual attention in a multitalker
listening task, therefore eye gaze can also be pursued as a
noncovert feature for auditory attention decoding (Best
et al., 2017; Favre-Felix et al., 2018; O’Sullivan et al.,
2019).

5 | CONCLUSION

In this study, we characterized the effort associated with
endogenous auditory attention switching using both cor-
tical and pupil diameter measures. Decoding real endoge-
nous switches in attention illustrated the problematic lag
associated with decoding methods that rely on attended
talker speech features. MPD and alpha ERSP measures of
effort were sensitive to endogenous switches of auditory
attention. Our listening effort features have a potential
application in a multimodal, multifeature decoding algo-
rithm for use in a cognitively controlled hearing aid. Both
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effort features hold promise in being quick to reflect the
onset of switching while being stable in their time course,
potentially leading to a shorter lag in switch detection.
The study’s effortful attention switching tasks may also
apply to the development of objective neural markers of
listening effort that are intended for clinical use (Paul
et al., 2021; Pichora-Fuller et al., 2016; Zekveld et al.,
2018). One last application of these switching effort mea-
sures is in the field of attention disorders and develop-
ment (Hanania & Smith, 2010). Characterizing auditory
attention across populations and within individuals is
important to pursue in combination with developing
effort-based features for decoding. In addition to clinical
hearing ability (Decruy et al., 2020; Fuglsang et al., 2020;
Vanthornhout et al., 2018), expended cognitive effort dur-
ing listening may greatly impact an individuals auditory
attention decoding accuracy. Cognitive-controlled
hearing-aid technology can leverage listener effort in
many ways. Decoding algorithm speed and accuracy, lis-
tener benefit due to enhancement, and efficacy of audi-
tory training can all utilize measures of effort.
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