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Abstract
A key goal of aging research was to understand mechanisms underlying healthy aging 
and develop methods to promote the human healthspan. One approach is to iden-
tify gene regulations unique to healthy aging compared with aging in the general 
population (i.e., “common” aging). Here, we leveraged Genotype-Tissue Expression 
(GTEx) project data to investigate “healthy” and “common” aging gene expression 
regulations at a tissue level in humans and their interconnection with diseases. Using 
GTEx donors' disease annotations, we defined a “healthy” aging cohort for each tis-
sue. We then compared the age-associated genes derived from this cohort with age-
associated genes from the “common” aging cohort which included all GTEx donors; 
we also compared the “healthy” and “common” aging gene expressions with various 
disease-associated gene expressions to elucidate the relationships among “healthy,” 
“common” aging and disease. Our analyses showed that 1. GTEx “healthy” and “com-
mon” aging shared a large number of gene regulations; 2. Despite the substantial 
commonality, “healthy” and “common” aging genes also showed distinct function en-
richment, and “common” aging genes had a higher enrichment for disease genes; 3. 
Disease-associated gene regulations were overall different from aging gene regula-
tions. However, for genes regulated by both, their regulation directions were largely 
consistent, implying some aging processes could increase the susceptibility to disease 
development; and 4. Possible protective mechanisms were associated with some 
“healthy” aging gene regulations. In summary, our work highlights several unique fea-
tures of GTEx “healthy” aging program. This new knowledge could potentially be 
used to develop interventions to promote the human healthspan.
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1  | INTRODUC TION

Aging is the major risk factor for many age-related diseases, in-
cluding cancers, metabolic diseases, neurodegenerative diseases, 
and cardiovascular diseases (Johnson, Dong, Vijg, & Suh, 2015). 
The prevalence of age-related comorbidity is high, as over 80% 
of the elderly population have at least one chronic disease (CDC, 
2011). Helping this 80% of the aging population to live with im-
proved health has become a major task for human aging and gero-
science research, which can have major impact to socioeconomics 
and humanity.

It remains elusive why the fortunate 20% of individuals above 
65 years of age can live without any major health issues while the 
rest of us have to endure one or more chronic course of illness. 
Since very long-lived individuals (e.g., centenarians) tend to have 
a lower incidence of chronic illness than those in their 80s and 
90s (Kheirbek et al., 2017), and longevity is heritable with an es-
timated heritability around 25%, this suggests that healthy aging 
is not a random event, but that there are underlying biological 
mechanisms favorably interplayed with certain environmental 
factors.

Gene expression and other types of “omics” data have been 
widely used to study the process of aging (Edwards et al., 2007; 
Peters et al., 2015). For examples, epigenome and transcriptome 
landscapes with aging in mice have revealed widespread induc-
tion of inflammatory responses (Benayoun et al., 2019); like-
wise, the downregulation of mitochondrial genes across human 
tissues has been consistently reported (Glass et al., 2013; Yang 
et al., 2015). Studying transcriptomes across multiple species 
with varied lifespans has similarly reveled a potential role for 
gene expression regulation in contributing to longer lifespans 
(S. Ma et al., 2018). In addition, epigenetic clock of aging has 
been developed based on DNA-methylation markers (Horvath 
& Raj, 2018). These studies support that gene expression and 
epigenetic regulations can inform our understanding of human 
aging.

Despite recent development in transcriptomic and epigenetic 
aging research, limited work has been performed to study human 
healthy aging. To investigate how healthy aging is different from 
aging in the general population at a systems level, one approach 
is to profile tissues from a healthy aging cohort and compare with 
tissue profiles from common aging population, to identify gene 
regulations unique to the healthy aging. However, obtaining es-
sential tissues from healthy individuals is very challenging for eth-
ical and practical reasons. On the other hand, several large-scale 
human genomic datasets are available and could be repurposed 
for aging research. Here, we leveraged GTEx data (Consortium, 
2017) to investigate the potential difference between “healthy” 
and “common” aging in humans and study their connection with 
diseases.

2  | RESULTS

2.1 | Identifying age-associated genes using GTEx 
data

We obtained gene expression and genotype data from GTEx v7/v8 
and examined 46 tissues with more than 80 samples per tissue type 
(Tables S1 and S2, Figures S1 and S2). Age-associated gene expres-
sions were identified using a previously established regression model 
(Yang et al., 2015). Post-mortem interval (PMI) was adjusted as an 
additional covariate (Equation 1), based on the evidence that some 
gene expressions continued to change after donor death (Ferreira 
et al., 2018). Further analysis suggested that identified aging genes 
based on PMI adjustment were more comparable with previous in-
dependent studies (Table S3). Adjusting donor's death time in the 
day only slightly changed the result compared with PMI adjustment 
(Figure S3) and was not included in the final model. For the 46 tis-
sue types, tibial artery showed the largest number of age-associated 
genes (n = 8,709) (we called them as aging genes for brevity, using 
FDR<=0.01 as a cutoff), followed by aorta artery (n = 5,826), skel-
etal muscle (n  = 4,444), nerve tibial (n  = 3,619) and subcutaneous 
fat (n = 3,812). In contrast, very few aging genes were identified in 
brain-spinal cord (n  =  0), pituitary (n  =  1), small intestine-terminal 
ileum (n = 1) and liver (n = 7) (Table S4).

2.2 | GTEx human aging signatures recapitulated 
aging genes identified from other independent studies

To evaluate whether aging signatures derived from GTEx were re-
producible, we compared our results with aging gene lists from 
five independent studies covering multiple tissue types: brain 
(Berchtold et al., 2008), skin (Glass et al., 2013), adipose (Glass 
et al., 2013), blood (Lu et al., 2018), and lung (de Vries et al., 2017). 
We found that aging genes identified from GTEx showed a signifi-
cant overlap with aging genes from these independent studies. For 
example, in brain and lung tissues, more than 30% of GTEx aging 
genes were also found in other independent brain and lung aging 
studies, with p-values of 5.81 × 10−176 and 4.32 × 10−59, respec-
tively (Table S3).

To further evaluate the overlap of GTEx aging genes with 
other studies, we collected additional age-associated gene expres-
sion studies in human brain tissues (Kumar et al., 2013; Rhinn & 
Abeliovich, 2017; Twine, Janitz, Wilkins, & Janitz, 2013). We found 
that GTEx brain aging signatures generally shared higher similarity 
with other brain studies (Table S5) compared with the similarity 
among these brain studies themselves. Therefore, our results sug-
gested that the aging signatures from GTEx can recapitulate and 
are largely comparable with the aging signatures from previous 
independent studies.
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2.3 | Defining GTEx “healthy” aging samples

One approach of studying human healthy aging is to profile tissue 
samples from a healthy aging cohort and compare with tissue pro-
files from the general aging population to identify features such as 
gene expression regulations that are unique to the healthy aging co-
hort. Although this may appear to be a routine experiment, it is actu-
ally very challenging to implement due to the difficulty in obtaining 
essential tissues (liver, heart etc.) from truly healthy individuals. To 
collect essential tissues from healthy individuals, it is only feasible 
when such individuals die from lethal accidents. As lethal accidents 
happen at a low frequency and are highly unpredictable, ascertain-
ing donors' healthy status at the time of accident and prompt tis-
sue collection from hundreds of donors right after death will be 
very challenging to achieve. On the other hand, repurposing exist-
ing human genomic data for aging research represents a convenient 
alternative. Since GTEx provides disease annotation for each donor 
(e.g., ischemic heart disease, chronic respiratory disease, and hyper-
tension), it could be used to study the difference between “common” 
and “healthy” aging at a transcriptome level. However, such conveni-
ence is accompanied with some limitations when used for studying 
human healthy aging. It is of note that individuals not annotated with 
any disease may not necessarily be truly healthy. For example, a pre-
diabetic individual may not be annotated for diabetes but should not 
be considered healthy in a strict-sense. Despite this limitation, we 
think it is possible to identify relatively healthy and/or unhealthy 
individuals/tissues based on donors' disease annotations, and we 
explored different strategies to define GTEx “healthy” aging cohorts.

The first approach is to filter out donors annotated with one 
or more diseases, and count the remaining individuals as the “true” 
healthy cohort (we call it GTEx “disease-free” cohort). Although this 
may appear to be reasonable to define GTEx healthy cohort, it has 
several limitations: 1. As aforementioned, an individual not anno-
tated with any diseases is not necessarily truly healthy; 2. Rather 
limited number of samples are left for each tissue type when we fil-
ter out donors with one or more diseases; 3. The age distribution 
of this “disease-free” cohort is quite different from the overall age 
distribution (Figure S4) as it includes more younger donors. A sec-
ond approach is to identify relatively healthy samples for each tissue 
type. Specifically, for a tissue type, we determined disease catego-
ries relevant to the tissue, for example, we considered various lung 
diseases for the lung tissue; diabetes and obesity for the adipose 
tissue. Tissues from donors that were not annotated with the cor-
responding diseases are considered “healthy” (called “tissue-level 
healthy”). Similarly, we used different methods to stratify a disease 
cohort. The first method is to consider all the donors excluding “dis-
ease-free” donors (called “disease” cohort), and the second method 
is to consider donors who were annotated with diseases relevant to 
the specific tissue (called “tissue-level disease”). We evaluated both 
approaches by comparing “healthy” samples with “disease” samples 
to derive differentially expressed genes, and cross-check with other 
independent disease gene expression signatures, which we describe 
in the following section.

2.4 | Differentially expressed genes between GTEx 
“tissue-level healthy” versus. “tissue-level disease” 
best reproduce disease signatures from independent 
disease transcriptome studies

A good definition of healthy/disease samples should allow us to 
derive disease signatures that are comparable with disease signa-
tures from other independent studies. We calculated disease dif-
ferentially expressed genes (DEGs) between “disease-free” versus. 
“disease,” “disease-free” versus. “tissue-level disease,” “tissue-
level healthy” versus. “tissue-level disease” in subcutaneous fat 
and compared them with disease signatures from prior independ-
ent studies. As shown in Table T2, the “disease-free” versus. “dis-
ease” did not identify many DEGs, while the “tissue-level healthy” 
versus. “tissue-level disease” reported the largest number of DEGs 
which showed the strongest overlap enrichment with prior disease 
signatures (see details of the comparison in Text S1). Given the 
aforementioned limitation of the “disease-free” cohort (i.e., not 
necessarily true healthy, limited sample size, and biased age distri-
bution), we consider GTEx “healthy” aging defined at tissue level 
is a reasonable choice.

To better define a “tissue-level healthy” cohort, we required 
a tissue to have a relatively large number of aging genes, and the 
sample size of “tissue-level disease” to be also relatively large (i.e., 
>20% of samples need to be from disease donors). Four tissue 
types, namely subcutaneous fat, tibial artery, aorta artery, and lung 
met these criteria and were selected for further analysis. In sub-
cutaneous fat (total n = 385), the “healthy” aging signatures were 
calculated from donors without type 2 diabetes (T2D) and body 
mass indexes (BMIs) <30 (n = 236) (Figure 1a). In tibial artery (total 
n = 382), the “healthy” cohort (n = 292) was defined as GTEx do-
nors without ischemic heart disease/heart attack/acute coronary 
syndrome. In lung (total n = 379), the “healthy” cohort (n = 257) was 
defined as donors without chronic respiratory diseases, asthma or 
pneumonia (Table S6).

As we pointed out previously, the DEGs by comparing “tis-
sue-level healthy” versus. “tissue-level disease” samples showed 
the strongest overlap with disease signatures from other indepen-
dent studies in the corresponding tissues (Table S7). For example, 
Soronen et al. (Soronen et al., 2012) reported 148 insulin-resistance 
related genes from adipose tissue, 81 of them overlapped with GTEx 
DEGs in subcutaneous fat, with a p-value of 1.23  ×  10−42. These 
DEGs showed no significant overlap enrichment in artery or lung, 
suggesting the disease-associated genes were highly tissue-spe-
cific. Similarly, genes associated with coronary heart disease (CHD) 
identified from peripheral whole blood (Joehanes et al., 2013) were 
exclusively enriched for GTEx tibial artery DEGs (p-value  =  .03). 
Obesity-related genes obtained from fat (Font-Clos, Zapperi, & La 
Porta, 2017) were overrepresented only in DEGs from subcutane-
ous fat and lung (p-values = 7.90 × 10−4 and 2.28 × 10−3, respec-
tively), but not in tibial artery. Genes involved in COPD detected 
from lung (Wang et al., 2008) were found strongly enriched for GTEx 
lung DEGs (p-value = 5.79 × 10−4), while not in other tissue types. 
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Together, these comparisons indicated that our definition of GTEx 
“healthy” aging at tissue level was biologically meaningful.

In addition to the “healthy” and “common” aging cohorts, we 
also considered an “unhealthy” aging cohort in subcutaneous fat 
(n  =  183) to facilitate the comparison. In general, age-related dis-
eases develop in old population, while young individuals should be 
mostly free of these diseases. Instead of using “tissue-level disease” 
samples to define the “unhealthy” aging cohort, we created an “un-
healthy” cohort by combining healthy donors (without type 2 diabe-
tes and BMI < 30) in their 20–40 years and unhealthy donors (with 
type 2 diabetes and BMI > 30) in their 40–70 years. We excluded 
young donors with T2D and BMI>=30 because the “disease” in these 
individuals were not associated with aging, and including these sam-
ples impacted our capability of identifying age-associated genes. In 
fact, only 58 age-associated genes were found in the “tissue-level 
disease” cohort, while 4,341 age-associated genes were identified 
in this “unhealthy” cohort. The choice of age 40 as the cutoff age is 
arbitrary, but partially due to the fact that GTEx donors older than 
40 years are more likely to have age-related diseases (Figure S4).

2.5 | Some “common” aging genes could be driven 
by diseases while some “healthy” aging genes are 
likely protective genes

To compare “healthy” and “common” aging signatures, we divided aging 
genes into three groups: aging genes only seen in the “common” cohort 
(“common-specific aging genes,” CSAGs), aging genes only observed 
in the “healthy” cohort (“healthy-specific aging genes,” HSAGs), and 
common aging genes identified from both cohorts (“core-aging genes,” 
CAGs). In general, we observed a large overlap between “common” and 
“healthy” aging signatures in all the four tissues we inspected. For ex-
ample, in subcutaneous fat, 3,812 “common” aging genes overlapped 
with 2,366 “healthy” aging genes by 2,177 genes (Figure 1b and Table 
S6), suggesting that there exists a core aging program regardless of the 
health status of the aging individuals. Similarly, we found “unhealthy” 
aging (4,341 genes) also shared large number of its gene regulations 
with “common” (2,724 genes) and “healthy” aging (1,846 genes), de-
spite that “unhealthy” and “healthy” aging genes were derived from 
different samples (Figure S5).

We provided examples of gene regulation for CAGs, CSAGs, and 
HSAGs in Figure 1. As an example of CSAGs, the expression of integrin 
subunit alpha X (ITGAX) significantly correlated with age in subcutane-
ous fat in the “common” and “unhealthy” cohorts (FDR = 7.12 × 10−4 
and 1.35e  ×  10−5, respectively), while its association with age was 
much less significant in the “healthy” cohort (FDR = 0.03) (Figure 1d 

and Figure S5c). ITGAX encodes integrin alpha X chain protein (also 
named CD11c), previous studies reported that CD11c expression in 
adipose tissue was significantly increased in both diet-induced obesity 
mice and humans (Wu et al., 2010). This is consistent with our results 
as ITGAX was upregulated in GTEx adipose tissue of donors with high 
BMIs and T2D (Figure 1d and Figure S5c), suggesting its upregulation is 
associated with disease development in “unhealthy” aging. In contrast, 
as an example of HSAGs, ATP Binding Cassette Subfamily A Member 
8 (ABCA8) showed strong upregulation with age (FDR = 8.15 × 10−3) 
in the “healthy” cohort (Figure 1e and Figure S5d), while no associa-
tion was observed in the “unhealthy” cohort (FDR = 0.23). HDLc lev-
els were found decreased by 29% (p = .01) in ABCA8 deficiency mice 
on a high-cholesterol diet compared with wild-type mice (Trigueros-
Motos et al., 2017). ABC transporters protect cells against unrelated 
(toxic) substances by pumping them across cell membranes (Tang et al., 
2010). Lastly, for CAGs, the upregulated expression of cyclin depen-
dent kinase inhibitor 2A (CDKN2A) was significantly associated with 
age (FDR = 5.43 × 10−14, 1.79 × 10−8 and 1.31 × 10−9, respectively) 
in all three cohorts (Figure 1c and Figure S5b). CDKN2A encodes for 
INK4 family member p16 (or p16INK4a) which is a well-recognized cell 
senescence marker (Coppé et al., 2011). The increased expression 
of CDKN2A has been suggested as a biomarker of physiological age 
(Krishnamurthy et al., 2004).

In addition, we found that CAGs and CSAGs had significant 
higher overlap with disease-associated DEGs compared to HSAGs. 
As shown for subcutaneous fat (Figure 1b), 202 and 400 genes 
from CSAGs and CAGs were disease DEGs (p-values = 5.40 × 10−3 
and 1.36 × 10−32, respectively; Table S8). In contrast, only 17 dis-
ease DEGs were also HSAGs (p-value =  .78). Similarly, CAGs from 
tibial artery were specially enriched for its disease DEGs (p-
value = 9.73 × 10−10), and lung CSAGs were also overrepresented in 
lung disease DEGs (p-value = 3.09 × 10−11). While HSAGs were found 
much less significantly enriched for disease DEGs in either tibial ar-
tery (p-value = .03) or lung (p-value = 1.00).

2.6 | The direction of aging gene regulation is 
largely consistent with the regulation direction of 
genes associated with age-related diseases

One key question in geroscience is to understand why aging dra-
matically increases the incidence of various age-related diseases. 
We compared our aging signatures with seven disease signatures, 
four from previous independent studies (insulin-resistance, obe-
sity, CHD, and COPD) and three from GTEx calculated DEGs. We 
observed that most of the disease DEGs were not aging genes 

F I G U R E  1  Examples of age-associated gene expression changes in GTEx subcutaneous fat. (a) Cartoon illustration of separating donors 
into the “tissue-level healthy,” “common,” and “tissue-level disease” cohorts. (b) Venn diagram shows the relationship among “common” 
aging genes, “healthy” aging genes, and DEGs calculated between the “tissue-level healthy” cohort and the “tissue-level disease” cohort 
in subcutaneous fat. (c, d, e) Scatter plots show three representative age-associated gene expression patterns in three gene sets (from top 
to bottom: CAGs, CSAGs, or HSAGs). The red line and dots denote the regression line and gene expression levels for the “disease” cohort, 
the blue color is for the “healthy” cohort. Violin plots show the gene expression differences between “healthy” (blue) and “disease” (red) 
individuals for the corresponding genes displayed in the scatter plots
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from GTEx (Table S9). Using insulin-resistance/obesity-related 
DEGs as an example, over 60% of them were not associated with 
age in subcutaneous fat. Furthermore, as previously noticed, 
“healthy” aging was less enriched for disease DEGs compared with 
“common” aging. For example, in subcutaneous fat, 36% of “com-
mon” aging genes were found as insulin-resistance genes, while 
only 27% of “healthy” aging genes were insulin-resistance genes 
(Figure 2a).

Although disease and aging signatures were largely different, a 
substantial number of gene expression regulations were common 
between them. We considered it interesting to test if age-associ-
ated gene expression (particularly in the “healthy” aging) would 
have similar directions as the regulation changes in disease condi-
tions. We decided to focus on the “healthy” aging cohort since the 
“common” aging cohort contained disease individuals; therefore, 
the “common” aging gene regulations were not independent from 

disease-associated gene regulations. On the other hand, “healthy” 
aging genes were identified from the “healthy” cohort, which shared 
no donors with the “disease” cohort. Our results showed that the 
direction of “healthy” aging gene regulations were largely consistent 
with the direction of disease DEG regulations (Figure 2b,c). Using 
FERM domain containing 4B (FRMD4B) in subcutaneous fat as an 
example, it is an inflammation-related gene whose expression was 
upregulated in the adipose tissue in insulin-resistant compared to in-
sulin-sensitive group (Wiklund et al., 2016). Our results also showed 
that the gene expression of FRMD4B was upregulated with age and 
disease. This illustrates that even with “healthy” aging, some genes' 
regulation may promote the tissue to a state that resembles the dis-
ease state.

While the direction of gene expression regulation is largely 
consistent between “healthy” and disease signatures, some gene 
regulations showed opposite regulation directions (Figure 2d). For 

F I G U R E  2   The relationship between 
age-associated versus. disease-associated 
genes. (a) The percentage of aging genes 
(blue: “healthy” aging; red: “common” 
aging) overlapped with disease DEGs 
and the percentage of disease DEGs 
that were not associated with age (gray 
bars). Disease DEGs include four disease 
signatures from prior work (insulin-
resistance, obesity, coronary heart 
disease [CHD], and chronic obstructive 
pulmonary disease [COPD]) and three 
disease DEGs based on GTEx analysis 
(simply labeled as DEG). The tissues 
plotted were subcutaneous fat (SF), tibial 
artery (TA), and lung. (b) The number of 
“healthy” aging genes whose direction 
was consistent (blue) or inconsistent (red) 
with the direction of gene regulations in 
6 disease DEGs as in a (no common genes 
were found between COPD and “healthy” 
aging genes in lung). (c) An example of 
“healthy” aging gene in subcutaneous 
fat with the same direction of gene 
expression change as disease DEG. (d) An 
example of “healthy” aging gene in tibial 
artery with an opposite direction of gene 
expression change from disease DEG. The 
red line and dots denote the regression 
line and samples for the “disease” cohort, 
the blue line and dots are for the “healthy” 
cohort. Violin plots show the gene 
expression differences between “healthy” 
(blue) and “disease” (red) individuals
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example, malonyl-CoA-Acyl carrier protein transacylase (MCAT), a 
gene related to pathways like fatty acid metabolism and mitochon-
drial fatty acid beta-oxidation, its gene expression was found neg-
atively correlated to plasma HDL levels (Ma, Dempsey, Stamatiou, 
Marshall, & Liew, 2007). In GTEx data, MCAT showed a downregu-
lation in “healthy” aging but was upregulated in disease population 
in the tibial artery, suggesting the downregulation of this gene could 
potentially be beneficial for “healthy” aging.

2.7 | Difference in function enrichment between 
“healthy” and “common” aging signatures

We investigated the function similarity and difference between 
“healthy” and “common” aging signatures using DAVID tools 
(Dennis et al., 2003). Genes were divided into up- and down-
regulation with respect to age and were annotated separately 
(Table S10).

GO annotation and pathway analysis revealed differential function 
enrichment for genes involved in CAGs, CSAGs and HSAGs. Among 
genes downregulated with age, subcutaneous fat CAGs and CSAGs 
and tibial artery CAGs were characterized with changes in mitochon-
drial function, energy/oxidation derivation, and several neurodegen-
erative diseases. Mitochondria have been found intimately linked to a 
wide range of processes associated with aging including senescence, 
inflammation and age-dependent decline in tissue and organ function 
(Cui, Kong, & Zhang, 2012; Sun, Youle, & Finkel, 2016). Downregulated 
HSAGs in tibial artery were found related to ribosome, RNA processing 
and the regulation of translation. Downregulated CSAGs in lung were 
found to be involved in cell-cycle, while no functional enrichments 
were found in lung HSAGs (Figure 3 and Table S11).

Genes upregulated with age were enriched for different functions 
compared with genes downregulated with age (Figure 3). For example, 
CAGs in subcutaneous fat were characterized for response to immune/
defense/inflammatory, T-cell receptor signaling pathway and chemok-
ine signaling pathway. It has been reported that aging is associated with 

F I G U R E  3  Function enrichment of the CAGs, CSAGs, and HSAGs. (a) GO terms and KEGG pathways enriched in the CAGs. (b) GO terms 
and KEGG pathways enriched in the CSAGs. (c) GO terms and KEGG pathways enriched in the HSAGs. The red bars denote upregulated 
genes with age, the blue bars represent downregulated genes with age
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increased T-cell chemokine expression (Chen et al., 2003). Upregulated 
CAGs in tibial artery were enriched for similar functions as adipose tis-
sue, and in addition, they were also found associated with intestinal 
immune network for IgA production and MHC protein complex. Very 
few functions were observed in upregulated CSAGs and HSAGs, and 
they were mostly associated with extracellular component (a full list of 
functional annotations is provided in Table S11).

2.8 | Link GTEx age-associated gene expression 
with known diseases and candidate human 
aging genes

Previously, we compiled a list of disease genes for 277 diseases/
traits based on the NIH Genome-wide association study (GWAS) 
catalog (Welter et al., 2014) and Online Mendelian Inheritance in 
Man (OMIM) (Amberger, Bocchini, Schiettecatte, Scott, & Hamosh, 
2015)(see Methods for details). Using this combined gene list, we 
investigated the disease gene enrichment for CAGs, CSAGs, and 

HSAGs in four tissues, considering up-/downregulated aging genes 
separately. To visualize the results, we displayed the top 5 disease/
traits that had significant enrichment in at least one type of aging 
genes for each tissue in Figure 4.

We found that disease gene enrichment for “healthy” and “com-
mon” aging signatures varied in a tissue-specific manner. For the up-
regulated aging genes, most of the significant disease enrichment 
was observed in either CAGs or CSAGs but to a lesser degree in the 
HSAGs (Figure 4a). For example, in tibial artery, CAGs were found to 
be strongly associated with multiple bowel diseases, including ulcer-
ative colitis, inflammatory bowel disease and celiac disease, but very 
few enrichments were observed for the HSAGs.

For the downregulated aging genes, we generally observed more 
significant overlaps with various disease traits for all types of aging 
genes, including the HSAGs (Figure 4b). For example, CAGs in subcu-
taneous fat were overrepresented for disease traits like cholesterol 
and hypertriglyceridemia; while downregulated HSAGs were strongly 
related to HDL cholesterol-triglycerides (“good” cholesterol). HSAGs 
also showed strong enrichment for genes related to ribosome and 

F I G U R E  4  Enrichment of disease genes in three aging gene sets. (a, b) The enrichment between up/downregulated aging genes and 
complex disease genes in three aging gene sets (from left to right: CAGs, CSAGs or HSAGs) corresponding to four tissues (subcutaneous 
fat (SF); aorta artery (AA), tibial artery (TA), and Lung). −log10 transformed p-values were displayed in a color-scale with more solid colors 
corresponding to more significant p-values



     |  9 of 12ZENG et al.

RNA processing (Figure 3c); previous studies have reported that both 
caloric restriction and rapamycin treatment extend health/lifespan 
and substantially decrease mRNA levels of ribosomal proteins through 
reduced mTOR activity (Frenk & Houseley, 2018); therefore, regula-
tion of the ribosomal proteins could bring benefit to the healthy tissue 
aging. We also performed gene set enrichment analysis (GSEA) to the 
age-associated genes in subcutaneous fat and found they were en-
riched for very few diseases (FDR < 0.05) in either the “common” aging 
or “healthy” aging cohorts (Figure S6).

Last but not least, we tested the enrichment of literature cu-
rated candidate human aging genes with respect to “healthy” and 
“common” aging signatures. A total of 307 candidate human aging 
genes were downloaded from GenAge (de Magalhaes & Toussaint, 
2004). We then calculated the overlap enrichment with three aging 
gene sets (Table S12). Our results showed that CAGs in subcutane-
ous fat and aorta artery were enriched for human GenAge genes 
(p-value < .01), neither CSAGs nor HSAGs were enriched for them. 
However, in lung, CSAGs have stronger overlap with GenAge genes 
compared to CAGs and HSAGs.

3  | DISCUSSION

We studied the difference between GTEx “healthy” and “com-
mon” aging at a transcriptome level by leveraging GTEx data. 
GTEx “healthy” and “common” aging shared a large proportion of 
genes, suggesting the existence of a core aging program regard-
less of the individual's health status. Despite the large overlap be-
tween “healthy” and “common” aging genes, HSAGs and CSAGs 
showed different function enrichment, and CAGs/CSAGs had 
higher enrichment for disease genes. Since certain CSAGs be-
come age-associated only when disease individuals are included, 
their association with age in the “common” cohort is therefore 
likely driven by the disease. We also noticed that most of the age-
associated gene expression changes were relatively small based 
on the log fold change, this indicate that the difference between 
“healthy” and “common” aging was likely a result of the accumula-
tion of small gene expression difference in hundreds to thousands 
of genes.

Disease-associated gene regulations are overall different from 
age-associated genes, supporting that aging and disease are funda-
mentally distinct in their gene regulations. However, disease-asso-
ciated transcriptome signatures do share some common genes with 
“healthy” aging signatures. For these shared genes, the direction of 
gene regulation in “healthy” aging is largely consistent with the reg-
ulation direction induced by disease. This suggests that transcrip-
tome regulation in healthy aging could facilitate the development of 
disease. For example, even in the “healthy” aging adipose tissues, 
we observed elevated inflammation gene expression (e.g., CDKN2A, 
IL4R, TGFB1, and PTPN22 in CAGs and TNFS4F in the HSAGs), and it 
has been noticed that obesity-related chronic low-grade inflamma-
tion is responsible for the decrease of insulin sensitivity (L. Chen, 
Chen, Wang, & Liang, 2015).

We speculated that some “healthy-specific” aging genes may 
provide protective mechanisms to prevent disease development, 
therefore to promote a healthy aging phenotype. Among the top 
few upregulated HSAGs in the subcutaneous fat were KLF4, EAF2, 
and ABCA8 (S2_Data). The overexpression of ABCA8 can lead to 
significant increase of plasma HDLc levels (Trigueros-Motos et al., 
2017). The EAF2 gene has complex and overall protective functions 
in different cell and tissue types. For example, EAF2 is a key factor 
mediating androgen protection of DNA damage via Ku70/Ku80 in 
prostate cancer cells (Ai et al., 2017). It may also suppress oxi-
dative stress-induced apoptosis of HLE-B3 cells exerted through 
the activation of Wnt3a signaling (Feng & Guo, 2018). KLF4 func-
tions as an immediate-early regulator of adipogenesis specifically 
induced in response to cAMP (Birsoy, Chen, & Friedman, 2008), 
while abiogenesis is known to be reduced in elderly individuals and 
correlates with the deteriorated functions of old adipose tissues 
(Kirkland, Tchkonia, Pirtskhalava, Han, & Karagiannides, 2002). It 
could be an important and unique feature for the healthy aging 
program to regulate these protective genes to provide the resil-
ience in these aging tissues.

Accumulating evidence has shown the impact of sex dimor-
phism on aging and gene expression across mammal tissues (Naqvi 
et al., 2019; Sampathkumar et al., 2019). For example, in both the 
“common” and “healthy” cohorts of subcutaneous fat, we found 
CDKN2A in males showed a stronger upregulation with age com-
pared to females (the coefficient of sex term was significantly non-
zero with FDR = 2.05 × 10−9 and 1.21 × 10−8 in the “common” and 
“healthy” cohorts, respectively) (Figure S7). Loss of CDKN2A has 
been found to induce sexually dimorphic leanness in female mice 
(Kim et al., 2019). Systematically understanding the underlying 
transcriptional impact on sex differences in aging will be crucial 
to tailor therapeutic strategies that target sex-specific disease 
mechanisms.

We pointed out that our definition of GTEx “healthy” aging 
cohort is different from a strict-sense healthy aging population. 
Since our “healthy” aging is defined at tissue level, this does not 
exclude the possible cross-talk between certain disease catego-
ries with the tissue type under consideration. For instance, the 
“healthy” cohort for subcutaneous fat could contain individuals 
with ischemic heart disease, asthma or chronic obstructive pulmo-
nary disease (COPD). Whether this approach can reliably recapit-
ulate the relationship between healthy aging and common aging 
need to be verified in the future. In addition, we used all GTEx 
samples to approximate the general aging population in the soci-
ety (“common” aging). Further investigation is needed to evaluate 
if the GTEx cohort can represent the general aging population. 
On the other hand, it has been and will continue to be difficult to 
collect essential tissues from truly healthy individuals. Therefore, 
we consider this work can serve as an intermediate step to under-
standing healthy aging in the strict-sense.

In conclusion, we performed a comparative analysis of “healthy” 
and “common” aging genes based on transcriptomic data from 
GTEx. We found “common” aging signatures are comparably more 
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associated with genes and pathways that cause disorders during 
aging process, while “healthy” aging is likely to contain genes and 
pathways that boost resilience. As a future direction, a meaningful 
effort would be to catalog the protective aging gene regulations in 
details and identify actionable targets to promote the healthy aging 
program in “common” aging populations.

4  | METHODS

4.1 | Linear regression model for age-associated 
gene detection

We implemented a linear regression model to identify age-associ-
ated gene expression (Equation 1).

More details of the model are provided in Text S3.

4.2 | Differential expression between the 
“disease” and “healthy” individuals

For differential expression analysis, we used the statistical methods 
implemented in the limma-voom package (Table S6). We created a 
design matrix taking into account 2 conditions (i.e., “disease” and 
“healthy” cohorts) and considered several covariates:

FDR value < 0.05 was considered as significant DEGs. Additional 
information can be found in Text S4.

4.3 | Function annotation for GTEx aging signatures

DAVID tool was used to perform GO annotation. CAGs, CSAGs, and 
HSAGs gene lists were submitted to DAVID by choosing GO_FAT 
and KEGG pathway terms to describe the overrepresented func-
tional terms. The threshold for overrepresented GO terms was set 
to FDR < 0.05.

4.4 | Assemble disease gene list and identify 
significant overlap between disease and aging genes

Disease genes were retrieved from two sources: NIH GWAS Catalog 
and OMIM. We only considered genes in the GWAS catalog with 
p-value < 5 × 10−8, a widely accepted threshold for genome-wide 

significance. Clustering and manual curation were used to merge 
genes in GWAS and OMIM. We only considered disease catego-
ries that contained with at least five genes. We then performed a 
Hypergeometric based test between the disease genes and three 
age-associated gene sets in four tissues. Fast gene set enrichment 
analysis (fgsea) (Sergushichev, 2016) was used to carry out the GSEA 
in subcutaneous fat, which is an R friendly package that generates 
equivalent results as the GSEA web tool from Broad Institute.
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