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Abstract
A	key	goal	of	aging	research	was	to	understand	mechanisms	underlying	healthy	aging	
and develop methods to promote the human healthspan. One approach is to iden-
tify gene regulations unique to healthy aging compared with aging in the general 
population	 (i.e.,	 “common”	aging).	Here,	we	 leveraged	Genotype-Tissue	Expression	
(GTEx)	 project	 data	 to	 investigate	 “healthy”	 and	 “common”	 aging	 gene	 expression	
regulations	at	a	tissue	level	in	humans	and	their	interconnection	with	diseases.	Using	
GTEx	donors'	disease	annotations,	we	defined	a	“healthy”	aging	cohort	for	each	tis-
sue.	We	then	compared	the	age-associated	genes	derived	from	this	cohort	with	age-
associated	genes	from	the	“common”	aging	cohort	which	included	all	GTEx	donors;	
we	also	compared	the	“healthy”	and	“common”	aging	gene	expressions	with	various	
disease-associated	gene	expressions	to	elucidate	the	relationships	among	“healthy,”	
“common”	aging	and	disease.	Our	analyses	showed	that	1.	GTEx	“healthy”	and	“com-
mon”	 aging	 shared	 a	 large	number	of	 gene	 regulations;	 2.	Despite	 the	 substantial	
commonality,	“healthy”	and	“common”	aging	genes	also	showed	distinct	function	en-
richment,	and	“common”	aging	genes	had	a	higher	enrichment	for	disease	genes;	3.	
Disease-associated	gene	regulations	were	overall	different	from	aging	gene	regula-
tions.	However,	for	genes	regulated	by	both,	their	regulation	directions	were	largely	
consistent,	implying	some	aging	processes	could	increase	the	susceptibility	to	disease	
development;	 and	 4.	 Possible	 protective	 mechanisms	 were	 associated	 with	 some	
“healthy”	aging	gene	regulations.	In	summary,	our	work	highlights	several	unique	fea-
tures	 of	GTEx	 “healthy”	 aging	 program.	 This	 new	 knowledge	 could	 potentially	 be	
used to develop interventions to promote the human healthspan.
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1  | INTRODUC TION

Aging	 is	 the	major	 risk	 factor	 for	many	age-related	diseases,	 in-
cluding	cancers,	metabolic	diseases,	neurodegenerative	diseases,	
and	cardiovascular	diseases	 (Johnson,	Dong,	Vijg,	&	Suh,	2015).	
The	prevalence	of	 age-related	 comorbidity	 is	 high,	 as	over	80%	
of	the	elderly	population	have	at	least	one	chronic	disease	(CDC,	
2011).	Helping	this	80%	of	the	aging	population	to	 live	with	 im-
proved health has become a major task for human aging and gero-
science	research,	which	can	have	major	impact	to	socioeconomics	
and humanity.

It	remains	elusive	why	the	fortunate	20%	of	individuals	above	
65	years	of	age	can	live	without	any	major	health	issues	while	the	
rest of us have to endure one or more chronic course of illness. 
Since	very	long-lived	individuals	(e.g.,	centenarians)	tend	to	have	
a lower incidence of chronic illness than those in their 80s and 
90s	(Kheirbek	et	al.,	2017),	and	longevity	is	heritable	with	an	es-
timated	heritability	around	25%,	this	suggests	that	healthy	aging	
is	 not	 a	 random	 event,	 but	 that	 there	 are	 underlying	 biological	
mechanisms favorably interplayed with certain environmental 
factors.

Gene	expression	and	other	types	of	“omics”	data	have	been	
widely	used	to	study	the	process	of	aging	(Edwards	et	al.,	2007;	
Peters	et	al.,	2015).	For	examples,	epigenome	and	transcriptome	
landscapes with aging in mice have revealed widespread induc-
tion	 of	 inflammatory	 responses	 (Benayoun	 et	 al.,	 2019);	 like-
wise,	the	downregulation	of	mitochondrial	genes	across	human	
tissues	has	been	consistently	reported	(Glass	et	al.,	2013;	Yang	
et	 al.,	 2015).	 Studying	 transcriptomes	 across	 multiple	 species	
with varied lifespans has similarly reveled a potential role for 
gene	 expression	 regulation	 in	 contributing	 to	 longer	 lifespans	
(S.	Ma	 et	 al.,	 2018).	 In	 addition,	 epigenetic	 clock	 of	 aging	 has	
been	developed	based	on	DNA-methylation	markers	 (Horvath	
&	Raj,	 2018).	 These	 studies	 support	 that	 gene	expression	 and	
epigenetic regulations can inform our understanding of human 
aging.

Despite recent development in transcriptomic and epigenetic 
aging	research,	limited	work	has	been	performed	to	study	human	
healthy aging. To investigate how healthy aging is different from 
aging	in	the	general	population	at	a	systems	level,	one	approach	
is to profile tissues from a healthy aging cohort and compare with 
tissue	 profiles	 from	 common	 aging	 population,	 to	 identify	 gene	
regulations	unique	 to	 the	healthy	aging.	However,	obtaining	es-
sential tissues from healthy individuals is very challenging for eth-
ical	and	practical	reasons.	On	the	other	hand,	several	large-scale	
human genomic datasets are available and could be repurposed 
for	 aging	 research.	Here,	we	 leveraged	GTEx	data	 (Consortium,	
2017)	 to	 investigate	 the	potential	 difference	between	 “healthy”	
and	“common”	aging	 in	humans	and	study	their	connection	with	
diseases.

2  | RESULTS

2.1 | Identifying age-associated genes using GTEx 
data

We	obtained	gene	expression	and	genotype	data	from	GTEx	v7/v8	
and	examined	46	tissues	with	more	than	80	samples	per	tissue	type	
(Tables	S1	and	S2,	Figures	S1	and	S2).	Age-associated	gene	expres-
sions were identified using a previously established regression model 
(Yang	et	al.,	2015).	Post-mortem	 interval	 (PMI)	was	adjusted	as	an	
additional	covariate	(Equation	1),	based	on	the	evidence	that	some	
gene	expressions	 continued	 to	 change	after	donor	death	 (Ferreira	
et	al.,	2018).	Further	analysis	suggested	that	identified	aging	genes	
based	on	PMI	adjustment	were	more	comparable	with	previous	in-
dependent	 studies	 (Table	S3).	Adjusting	donor's	 death	 time	 in	 the	
day	only	slightly	changed	the	result	compared	with	PMI	adjustment	
(Figure	S3)	and	was	not	included	in	the	final	model.	For	the	46	tis-
sue	types,	tibial	artery	showed	the	largest	number	of	age-associated	
genes (n	=	8,709)	(we	called	them	as	aging	genes	for	brevity,	using	
FDR<=0.01	as	a	cutoff),	 followed	by	aorta	artery	 (n	=	5,826),	skel-
etal muscle (n	 =	4,444),	nerve	 tibial	 (n	 =	3,619)	 and	 subcutaneous	
fat (n	=	3,812).	In	contrast,	very	few	aging	genes	were	identified	in	
brain-spinal	 cord	 (n	 =	 0),	 pituitary	 (n	 =	 1),	 small	 intestine-terminal	
ileum (n	=	1)	and	liver	(n	=	7)	(Table	S4).

2.2 | GTEx human aging signatures recapitulated 
aging genes identified from other independent studies

To	evaluate	whether	aging	signatures	derived	from	GTEx	were	re-
producible,	 we	 compared	 our	 results	with	 aging	 gene	 lists	 from	
five independent studies covering multiple tissue types: brain 
(Berchtold	 et	 al.,	 2008),	 skin	 (Glass	 et	 al.,	 2013),	 adipose	 (Glass	
et	al.,	2013),	blood	(Lu	et	al.,	2018),	and	lung	(de	Vries	et	al.,	2017).	
We	found	that	aging	genes	identified	from	GTEx	showed	a	signifi-
cant	overlap	with	aging	genes	from	these	independent	studies.	For	
example,	in	brain	and	lung	tissues,	more	than	30%	of	GTEx	aging	
genes were also found in other independent brain and lung aging 
studies,	with	p-values	of	5.81	×	10−176	and	4.32	×	10−59,	 respec-
tively	(Table	S3).

To	 further	 evaluate	 the	 overlap	 of	 GTEx	 aging	 genes	 with	
other	studies,	we	collected	additional	age-associated	gene	expres-
sion	studies	 in	human	brain	 tissues	 (Kumar	et	al.,	2013;	Rhinn	&	
Abeliovich,	2017;	Twine,	Janitz,	Wilkins,	&	Janitz,	2013).	We	found	
that	GTEx	brain	aging	signatures	generally	shared	higher	similarity	
with	other	 brain	 studies	 (Table	 S5)	 compared	with	 the	 similarity	
among	these	brain	studies	themselves.	Therefore,	our	results	sug-
gested	that	the	aging	signatures	from	GTEx	can	recapitulate	and	
are largely comparable with the aging signatures from previous 
independent studies.
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2.3 | Defining GTEx “healthy” aging samples

One approach of studying human healthy aging is to profile tissue 
samples from a healthy aging cohort and compare with tissue pro-
files from the general aging population to identify features such as 
gene	expression	regulations	that	are	unique	to	the	healthy	aging	co-
hort.	Although	this	may	appear	to	be	a	routine	experiment,	it	is	actu-
ally very challenging to implement due to the difficulty in obtaining 
essential	tissues	(liver,	heart	etc.)	from	truly	healthy	individuals.	To	
collect	essential	 tissues	from	healthy	 individuals,	 it	 is	only	 feasible	
when	such	individuals	die	from	lethal	accidents.	As	lethal	accidents	
happen	at	a	low	frequency	and	are	highly	unpredictable,	ascertain-
ing	donors'	 healthy	 status	 at	 the	 time	of	 accident	 and	prompt	 tis-
sue collection from hundreds of donors right after death will be 
very	challenging	to	achieve.	On	the	other	hand,	repurposing	exist-
ing human genomic data for aging research represents a convenient 
alternative.	Since	GTEx	provides	disease	annotation	for	each	donor	
(e.g.,	ischemic	heart	disease,	chronic	respiratory	disease,	and	hyper-
tension),	it	could	be	used	to	study	the	difference	between	“common”	
and	“healthy”	aging	at	a	transcriptome	level.	However,	such	conveni-
ence is accompanied with some limitations when used for studying 
human healthy aging. It is of note that individuals not annotated with 
any	disease	may	not	necessarily	be	truly	healthy.	For	example,	a	pre-
diabetic individual may not be annotated for diabetes but should not 
be	considered	healthy	 in	a	strict-sense.	Despite	 this	 limitation,	we	
think it is possible to identify relatively healthy and/or unhealthy 
individuals/tissues	 based	 on	 donors'	 disease	 annotations,	 and	 we	
explored	different	strategies	to	define	GTEx	“healthy”	aging	cohorts.

The first approach is to filter out donors annotated with one 
or	more	diseases,	and	count	the	remaining	individuals	as	the	“true”	
healthy	cohort	(we	call	it	GTEx	“disease-free”	cohort).	Although	this	
may	appear	to	be	reasonable	to	define	GTEx	healthy	cohort,	it	has	
several	 limitations:	 1.	 As	 aforementioned,	 an	 individual	 not	 anno-
tated with any diseases is not necessarily truly healthy; 2. Rather 
limited number of samples are left for each tissue type when we fil-
ter out donors with one or more diseases; 3. The age distribution 
of	this	“disease-free”	cohort	 is	quite	different	from	the	overall	age	
distribution	(Figure	S4)	as	 it	 includes	more	younger	donors.	A	sec-
ond approach is to identify relatively healthy samples for each tissue 
type.	Specifically,	for	a	tissue	type,	we	determined	disease	catego-
ries	relevant	to	the	tissue,	for	example,	we	considered	various	lung	
diseases for the lung tissue; diabetes and obesity for the adipose 
tissue. Tissues from donors that were not annotated with the cor-
responding	 diseases	 are	 considered	 “healthy”	 (called	 “tissue-level	
healthy”).	Similarly,	we	used	different	methods	to	stratify	a	disease	
cohort.	The	first	method	is	to	consider	all	the	donors	excluding	“dis-
ease-free”	donors	(called	“disease”	cohort),	and	the	second	method	
is to consider donors who were annotated with diseases relevant to 
the	specific	tissue	(called	“tissue-level	disease”).	We	evaluated	both	
approaches	by	comparing	“healthy”	samples	with	“disease”	samples	
to	derive	differentially	expressed	genes,	and	cross-check	with	other	
independent	disease	gene	expression	signatures,	which	we	describe	
in the following section.

2.4 | Differentially expressed genes between GTEx 
“tissue-level healthy” versus. “tissue-level disease” 
best reproduce disease signatures from independent 
disease transcriptome studies

A	good	definition	of	 healthy/disease	 samples	 should	 allow	us	 to	
derive disease signatures that are comparable with disease signa-
tures	from	other	independent	studies.	We	calculated	disease	dif-
ferentially	expressed	genes	(DEGs)	between	“disease-free”	versus. 
“disease,”	 “disease-free”	 versus.	 “tissue-level	 disease,”	 “tissue-
level	 healthy”	 versus.	 “tissue-level	 disease”	 in	 subcutaneous	 fat	
and compared them with disease signatures from prior independ-
ent	studies.	As	shown	in	Table	T2,	the	“disease-free”	versus.	“dis-
ease”	did	not	identify	many	DEGs,	while	the	“tissue-level	healthy”	
versus.	“tissue-level	disease”	reported	the	largest	number	of	DEGs	
which showed the strongest overlap enrichment with prior disease 
signatures	 (see	 details	 of	 the	 comparison	 in	 Text	 S1).	 Given	 the	
aforementioned	 limitation	 of	 the	 “disease-free”	 cohort	 (i.e.,	 not	
necessarily	true	healthy,	limited	sample	size,	and	biased	age	distri-
bution),	we	consider	GTEx	“healthy”	aging	defined	at	tissue	level	
is a reasonable choice.

To	 better	 define	 a	 “tissue-level	 healthy”	 cohort,	 we	 required	
a	tissue	to	have	a	relatively	 large	number	of	aging	genes,	and	the	
sample	size	of	“tissue-level	disease”	to	be	also	relatively	large	(i.e.,	
>20%	 of	 samples	 need	 to	 be	 from	 disease	 donors).	 Four	 tissue	
types,	namely	subcutaneous	fat,	tibial	artery,	aorta	artery,	and	lung	
met these criteria and were selected for further analysis. In sub-
cutaneous fat (total n	=	385),	 the	“healthy”	aging	signatures	were	
calculated	 from	 donors	 without	 type	 2	 diabetes	 (T2D)	 and	 body	
mass	indexes	(BMIs)	<30	(n	=	236)	(Figure	1a).	In	tibial	artery	(total	
n	=	382),	 the	“healthy”	cohort	 (n	=	292)	was	defined	as	GTEx	do-
nors without ischemic heart disease/heart attack/acute coronary 
syndrome. In lung (total n	=	379),	the	“healthy”	cohort	(n	=	257)	was	
defined	as	donors	without	chronic	respiratory	diseases,	asthma	or	
pneumonia	(Table	S6).

As	 we	 pointed	 out	 previously,	 the	 DEGs	 by	 comparing	 “tis-
sue-level	 healthy”	 versus.	 “tissue-level	 disease”	 samples	 showed	
the strongest overlap with disease signatures from other indepen-
dent	 studies	 in	 the	corresponding	 tissues	 (Table	S7).	For	example,	
Soronen	et	al.	(Soronen	et	al.,	2012)	reported	148	insulin-resistance	
related	genes	from	adipose	tissue,	81	of	them	overlapped	with	GTEx	
DEGs	 in	 subcutaneous	 fat,	 with	 a	 p-value	 of	 1.23	 ×	 10−42. These 
DEGs	 showed	no	 significant	overlap	enrichment	 in	 artery	or	 lung,	
suggesting	 the	 disease-associated	 genes	 were	 highly	 tissue-spe-
cific.	Similarly,	genes	associated	with	coronary	heart	disease	(CHD)	
identified	from	peripheral	whole	blood	(Joehanes	et	al.,	2013)	were	
exclusively	 enriched	 for	 GTEx	 tibial	 artery	 DEGs	 (p-value	 =	 .03).	
Obesity-related	genes	obtained	 from	fat	 (Font-Clos,	Zapperi,	&	La	
Porta,	2017)	were	overrepresented	only	 in	DEGs	from	subcutane-
ous fat and lung (p-values	=	7.90	×	10−4	 and	2.28	×	10−3,	 respec-
tively),	 but	 not	 in	 tibial	 artery.	 Genes	 involved	 in	 COPD	 detected	
from	lung	(Wang	et	al.,	2008)	were	found	strongly	enriched	for	GTEx	
lung	DEGs	(p-value	=	5.79	×	10−4),	while	not	 in	other	tissue	types.	
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Together,	 these	comparisons	 indicated	that	our	definition	of	GTEx	
“healthy”	aging	at	tissue	level	was	biologically	meaningful.

In	 addition	 to	 the	 “healthy”	 and	 “common”	 aging	 cohorts,	 we	
also	 considered	 an	 “unhealthy”	 aging	 cohort	 in	 subcutaneous	 fat	
(n	 =	 183)	 to	 facilitate	 the	 comparison.	 In	 general,	 age-related	 dis-
eases	develop	in	old	population,	while	young	individuals	should	be	
mostly	free	of	these	diseases.	Instead	of	using	“tissue-level	disease”	
samples	to	define	the	“unhealthy”	aging	cohort,	we	created	an	“un-
healthy”	cohort	by	combining	healthy	donors	(without	type	2	diabe-
tes	and	BMI	<	30)	in	their	20–40	years	and	unhealthy	donors	(with	
type	2	diabetes	and	BMI	>	30)	 in	 their	40–70	years.	We	excluded	
young	donors	with	T2D	and	BMI>=30	because	the	“disease”	in	these	
individuals	were	not	associated	with	aging,	and	including	these	sam-
ples	impacted	our	capability	of	identifying	age-associated	genes.	In	
fact,	only	58	age-associated	genes	were	 found	 in	 the	 “tissue-level	
disease”	 cohort,	while	4,341	age-associated	genes	were	 identified	
in	this	“unhealthy”	cohort.	The	choice	of	age	40	as	the	cutoff	age	is	
arbitrary,	but	partially	due	to	the	fact	that	GTEx	donors	older	than	
40	years	are	more	likely	to	have	age-related	diseases	(Figure	S4).

2.5 | Some “common” aging genes could be driven 
by diseases while some “healthy” aging genes are 
likely protective genes

To	compare	“healthy”	and	“common”	aging	signatures,	we	divided	aging	
genes	into	three	groups:	aging	genes	only	seen	in	the	“common”	cohort	
(“common-specific	aging	genes,”	CSAGs),	 aging	genes	only	observed	
in	 the	 “healthy”	 cohort	 (“healthy-specific	 aging	 genes,”	HSAGs),	 and	
common	aging	genes	identified	from	both	cohorts	(“core-aging	genes,”	
CAGs).	In	general,	we	observed	a	large	overlap	between	“common”	and	
“healthy”	aging	signatures	in	all	the	four	tissues	we	inspected.	For	ex-
ample,	in	subcutaneous	fat,	3,812	“common”	aging	genes	overlapped	
with	2,366	“healthy”	aging	genes	by	2,177	genes	(Figure	1b	and	Table	
S6),	suggesting	that	there	exists	a	core	aging	program	regardless	of	the	
health	status	of	the	aging	individuals.	Similarly,	we	found	“unhealthy”	
aging	 (4,341	genes)	also	shared	 large	number	of	 its	gene	regulations	
with	 “common”	 (2,724	genes)	and	 “healthy”	aging	 (1,846	genes),	de-
spite	 that	 “unhealthy”	 and	 “healthy”	 aging	genes	were	derived	 from	
different	samples	(Figure	S5).

We	provided	examples	of	gene	regulation	for	CAGs,	CSAGs,	and	
HSAGs	in	Figure	1.	As	an	example	of	CSAGs,	the	expression	of	integrin	
subunit alpha X (ITGAX)	significantly	correlated	with	age	in	subcutane-
ous	fat	in	the	“common”	and	“unhealthy”	cohorts	(FDR	=	7.12	×	10−4 
and	 1.35e	 ×	 10−5,	 respectively),	 while	 its	 association	 with	 age	 was	
much	less	significant	in	the	“healthy”	cohort	(FDR	=	0.03)	(Figure	1d	

and	Figure	S5c).	 ITGAX encodes integrin alpha X chain protein (also 
named	CD11c),	 previous	 studies	 reported	 that	CD11c	 expression	 in	
adipose	tissue	was	significantly	increased	in	both	diet-induced	obesity	
mice	and	humans	(Wu	et	al.,	2010).	This	is	consistent	with	our	results	
as ITGAX	was	upregulated	in	GTEx	adipose	tissue	of	donors	with	high	
BMIs	and	T2D	(Figure	1d	and	Figure	S5c),	suggesting	its	upregulation	is	
associated	with	disease	development	in	“unhealthy”	aging.	In	contrast,	
as	an	example	of	HSAGs,	ATP	Binding	Cassette	Subfamily	A	Member	
8 (ABCA8)	showed	strong	upregulation	with	age	(FDR	=	8.15	×	10−3)	
in	the	“healthy”	cohort	 (Figure	1e	and	Figure	S5d),	while	no	associa-
tion	was	observed	in	the	“unhealthy”	cohort	(FDR	=	0.23).	HDLc	lev-
els	were	found	decreased	by	29%	(p	=	.01)	in	ABCA8 deficiency mice 
on	a	high-cholesterol	diet	compared	with	wild-type	mice	 (Trigueros-
Motos	et	al.,	2017).	ABC	transporters	protect	cells	against	unrelated	
(toxic)	substances	by	pumping	them	across	cell	membranes	(Tang	et	al.,	
2010).	Lastly,	for	CAGs,	the	upregulated	expression	of	cyclin	depen-
dent	kinase	 inhibitor	2A	 (CDKN2A)	was	 significantly	associated	with	
age	 (FDR	=	5.43	×	10−14,	1.79	×	10−8	and	1.31	×	10−9,	 respectively)	
in	all	three	cohorts	(Figure	1c	and	Figure	S5b).	CDKN2A encodes for 
INK4	family	member	p16	(or	p16INK4a)	which	is	a	well-recognized	cell	
senescence	 marker	 (Coppé	 et	 al.,	 2011).	 The	 increased	 expression	
of CDKN2A has been suggested as a biomarker of physiological age 
(Krishnamurthy	et	al.,	2004).

In	 addition,	 we	 found	 that	 CAGs	 and	 CSAGs	 had	 significant	
higher	overlap	with	disease-associated	DEGs	compared	to	HSAGs.	
As	 shown	 for	 subcutaneous	 fat	 (Figure	 1b),	 202	 and	 400	 genes	
from	CSAGs	and	CAGs	were	disease	DEGs	(p-values	=	5.40	×	10−3 
and	1.36	×	10−32,	 respectively;	Table	S8).	 In	 contrast,	only	17	dis-
ease	DEGs	were	also	HSAGs	 (p-value	=	 .78).	 Similarly,	CAGs	 from	
tibial	 artery	 were	 specially	 enriched	 for	 its	 disease	 DEGs	 (p-
value	=	9.73	×	10−10),	and	lung	CSAGs	were	also	overrepresented	in	
lung	disease	DEGs	(p-value	=	3.09	×	10−11).	While	HSAGs	were	found	
much	less	significantly	enriched	for	disease	DEGs	in	either	tibial	ar-
tery (p-value	=	.03)	or	lung	(p-value	=	1.00).

2.6 | The direction of aging gene regulation is 
largely consistent with the regulation direction of 
genes associated with age-related diseases

One key question in geroscience is to understand why aging dra-
matically	increases	the	incidence	of	various	age-related	diseases.	
We	compared	our	aging	signatures	with	seven	disease	signatures,	
four	 from	previous	 independent	 studies	 (insulin-resistance,	obe-
sity,	CHD,	and	COPD)	and	three	from	GTEx	calculated	DEGs.	We	
observed	 that	 most	 of	 the	 disease	 DEGs	 were	 not	 aging	 genes	

F I G U R E  1  Examples	of	age-associated	gene	expression	changes	in	GTEx	subcutaneous	fat.	(a)	Cartoon	illustration	of	separating	donors	
into	the	“tissue-level	healthy,”	“common,”	and	“tissue-level	disease”	cohorts.	(b)	Venn	diagram	shows	the	relationship	among	“common”	
aging	genes,	“healthy”	aging	genes,	and	DEGs	calculated	between	the	“tissue-level	healthy”	cohort	and	the	“tissue-level	disease”	cohort	
in	subcutaneous	fat.	(c,	d,	e)	Scatter	plots	show	three	representative	age-associated	gene	expression	patterns	in	three	gene	sets	(from	top	
to	bottom:	CAGs,	CSAGs,	or	HSAGs).	The	red	line	and	dots	denote	the	regression	line	and	gene	expression	levels	for	the	“disease”	cohort,	
the	blue	color	is	for	the	“healthy”	cohort.	Violin	plots	show	the	gene	expression	differences	between	“healthy”	(blue)	and	“disease”	(red)	
individuals for the corresponding genes displayed in the scatter plots
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from	 GTEx	 (Table	 S9).	 Using	 insulin-resistance/obesity-related	
DEGs	as	an	example,	over	60%	of	them	were	not	associated	with	
age	 in	 subcutaneous	 fat.	 Furthermore,	 as	 previously	 noticed,	
“healthy”	aging	was	less	enriched	for	disease	DEGs	compared	with	
“common”	aging.	For	example,	in	subcutaneous	fat,	36%	of	“com-
mon”	 aging	 genes	were	 found	 as	 insulin-resistance	 genes,	while	
only	27%	of	 “healthy”	aging	genes	were	 insulin-resistance	genes	
(Figure	2a).

Although	disease	and	aging	signatures	were	largely	different,	a	
substantial	 number	 of	 gene	 expression	 regulations	 were	 common	
between	 them.	We	 considered	 it	 interesting	 to	 test	 if	 age-associ-
ated	 gene	 expression	 (particularly	 in	 the	 “healthy”	 aging)	 would	
have similar directions as the regulation changes in disease condi-
tions.	We	decided	to	focus	on	the	“healthy”	aging	cohort	since	the	
“common”	 aging	 cohort	 contained	 disease	 individuals;	 therefore,	
the	 “common”	 aging	 gene	 regulations	were	 not	 independent	 from	

disease-associated	 gene	 regulations.	On	 the	other	 hand,	 “healthy”	
aging	genes	were	identified	from	the	“healthy”	cohort,	which	shared	
no	donors	with	 the	 “disease”	 cohort.	Our	 results	 showed	 that	 the	
direction	of	“healthy”	aging	gene	regulations	were	largely	consistent	
with	 the	 direction	 of	 disease	DEG	 regulations	 (Figure	 2b,c).	Using	
FERM	domain	 containing	 4B	 (FRMD4B)	 in	 subcutaneous	 fat	 as	 an	
example,	 it	 is	an	 inflammation-related	gene	whose	expression	was	
upregulated	in	the	adipose	tissue	in	insulin-resistant	compared	to	in-
sulin-sensitive	group	(Wiklund	et	al.,	2016).	Our	results	also	showed	
that	the	gene	expression	of	FRMD4B was upregulated with age and 
disease.	This	illustrates	that	even	with	“healthy”	aging,	some	genes'	
regulation may promote the tissue to a state that resembles the dis-
ease state.

While	 the	 direction	 of	 gene	 expression	 regulation	 is	 largely	
consistent	 between	 “healthy”	 and	 disease	 signatures,	 some	 gene	
regulations	 showed	opposite	 regulation	directions	 (Figure	2d).	 For	

F I G U R E  2   The relationship between 
age-associated	versus.	disease-associated	
genes.	(a)	The	percentage	of	aging	genes	
(blue:	“healthy”	aging;	red:	“common”	
aging)	overlapped	with	disease	DEGs	
and	the	percentage	of	disease	DEGs	
that were not associated with age (gray 
bars).	Disease	DEGs	include	four	disease	
signatures	from	prior	work	(insulin-
resistance,	obesity,	coronary	heart	
disease	[CHD],	and	chronic	obstructive	
pulmonary	disease	[COPD])	and	three	
disease	DEGs	based	on	GTEx	analysis	
(simply	labeled	as	DEG).	The	tissues	
plotted	were	subcutaneous	fat	(SF),	tibial	
artery	(TA),	and	lung.	(b)	The	number	of	
“healthy”	aging	genes	whose	direction	
was	consistent	(blue)	or	inconsistent	(red)	
with the direction of gene regulations in 
6	disease	DEGs	as	in	a	(no	common	genes	
were	found	between	COPD	and	“healthy”	
aging	genes	in	lung).	(c)	An	example	of	
“healthy”	aging	gene	in	subcutaneous	
fat with the same direction of gene 
expression	change	as	disease	DEG.	(d)	An	
example	of	“healthy”	aging	gene	in	tibial	
artery with an opposite direction of gene 
expression	change	from	disease	DEG.	The	
red line and dots denote the regression 
line	and	samples	for	the	“disease”	cohort,	
the	blue	line	and	dots	are	for	the	“healthy”	
cohort.	Violin	plots	show	the	gene	
expression	differences	between	“healthy”	
(blue)	and	“disease”	(red)	individuals
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example,	malonyl-CoA-Acyl	 carrier	 protein	 transacylase	 (MCAT),	 a	
gene related to pathways like fatty acid metabolism and mitochon-
drial	fatty	acid	beta-oxidation,	 its	gene	expression	was	found	neg-
atively	correlated	 to	plasma	HDL	 levels	 (Ma,	Dempsey,	Stamatiou,	
Marshall,	&	Liew,	2007).	In	GTEx	data,	MCAT showed a downregu-
lation	in	“healthy”	aging	but	was	upregulated	in	disease	population	
in	the	tibial	artery,	suggesting	the	downregulation	of	this	gene	could	
potentially	be	beneficial	for	“healthy”	aging.

2.7 | Difference in function enrichment between 
“healthy” and “common” aging signatures

We	 investigated	 the	 function	 similarity	 and	 difference	 between	
“healthy”	 and	 “common”	 aging	 signatures	 using	 DAVID	 tools	
(Dennis	 et	 al.,	 2003).	 Genes	 were	 divided	 into	 up-	 and	 down-
regulation with respect to age and were annotated separately 
(Table	S10).

GO annotation and pathway analysis revealed differential function 
enrichment	 for	genes	 involved	 in	CAGs,	CSAGs	and	HSAGs.	Among	
genes	 downregulated	with	 age,	 subcutaneous	 fat	CAGs	 and	CSAGs	
and	tibial	artery	CAGs	were	characterized	with	changes	in	mitochon-
drial	 function,	energy/oxidation	derivation,	and	several	neurodegen-
erative	diseases.	Mitochondria	have	been	found	intimately	linked	to	a	
wide	range	of	processes	associated	with	aging	including	senescence,	
inflammation	and	age-dependent	decline	in	tissue	and	organ	function	
(Cui,	Kong,	&	Zhang,	2012;	Sun,	Youle,	&	Finkel,	2016).	Downregulated	
HSAGs	in	tibial	artery	were	found	related	to	ribosome,	RNA	processing	
and	the	regulation	of	translation.	Downregulated	CSAGs	in	lung	were	
found	 to	 be	 involved	 in	 cell-cycle,	 while	 no	 functional	 enrichments	
were	found	in	lung	HSAGs	(Figure	3	and	Table	S11).

Genes upregulated with age were enriched for different functions 
compared	with	genes	downregulated	with	age	(Figure	3).	For	example,	
CAGs	in	subcutaneous	fat	were	characterized	for	response	to	immune/
defense/inflammatory,	T-cell	receptor	signaling	pathway	and	chemok-
ine signaling pathway. It has been reported that aging is associated with 

F I G U R E  3  Function	enrichment	of	the	CAGs,	CSAGs,	and	HSAGs.	(a)	GO	terms	and	KEGG	pathways	enriched	in	the	CAGs.	(b)	GO	terms	
and	KEGG	pathways	enriched	in	the	CSAGs.	(c)	GO	terms	and	KEGG	pathways	enriched	in	the	HSAGs.	The	red	bars	denote	upregulated	
genes	with	age,	the	blue	bars	represent	downregulated	genes	with	age
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increased	T-cell	chemokine	expression	(Chen	et	al.,	2003).	Upregulated	
CAGs	in	tibial	artery	were	enriched	for	similar	functions	as	adipose	tis-
sue,	and	 in	addition,	 they	were	also	found	associated	with	 intestinal	
immune	network	for	IgA	production	and	MHC	protein	complex.	Very	
few	functions	were	observed	in	upregulated	CSAGs	and	HSAGs,	and	
they	were	mostly	associated	with	extracellular	component	(a	full	list	of	
functional	annotations	is	provided	in	Table	S11).

2.8 | Link GTEx age-associated gene expression 
with known diseases and candidate human 
aging genes

Previously,	 we	 compiled	 a	 list	 of	 disease	 genes	 for	 277	 diseases/
traits	 based	 on	 the	 NIH	 Genome-wide	 association	 study	 (GWAS)	
catalog	 (Welter	 et	 al.,	 2014)	 and	Online	Mendelian	 Inheritance	 in	
Man	(OMIM)	(Amberger,	Bocchini,	Schiettecatte,	Scott,	&	Hamosh,	
2015)(see	Methods	 for	 details).	Using	 this	 combined	 gene	 list,	we	
investigated	 the	 disease	 gene	 enrichment	 for	 CAGs,	 CSAGs,	 and	

HSAGs	in	four	tissues,	considering	up-/downregulated	aging	genes	
separately.	To	visualize	the	results,	we	displayed	the	top	5	disease/
traits that had significant enrichment in at least one type of aging 
genes	for	each	tissue	in	Figure	4.

We	found	that	disease	gene	enrichment	for	“healthy”	and	“com-
mon”	aging	signatures	varied	in	a	tissue-specific	manner.	For	the	up-
regulated	 aging	 genes,	most	 of	 the	 significant	 disease	 enrichment	
was	observed	in	either	CAGs	or	CSAGs	but	to	a	lesser	degree	in	the	
HSAGs	(Figure	4a).	For	example,	in	tibial	artery,	CAGs	were	found	to	
be	strongly	associated	with	multiple	bowel	diseases,	including	ulcer-
ative	colitis,	inflammatory	bowel	disease	and	celiac	disease,	but	very	
few	enrichments	were	observed	for	the	HSAGs.

For	the	downregulated	aging	genes,	we	generally	observed	more	
significant overlaps with various disease traits for all types of aging 
genes,	including	the	HSAGs	(Figure	4b).	For	example,	CAGs	in	subcu-
taneous fat were overrepresented for disease traits like cholesterol 
and	hypertriglyceridemia;	while	downregulated	HSAGs	were	strongly	
related	to	HDL	cholesterol-triglycerides	(“good”	cholesterol).	HSAGs	
also showed strong enrichment for genes related to ribosome and 

F I G U R E  4  Enrichment	of	disease	genes	in	three	aging	gene	sets.	(a,	b)	The	enrichment	between	up/downregulated	aging	genes	and	
complex	disease	genes	in	three	aging	gene	sets	(from	left	to	right:	CAGs,	CSAGs	or	HSAGs)	corresponding	to	four	tissues	(subcutaneous	
fat	(SF);	aorta	artery	(AA),	tibial	artery	(TA),	and	Lung).	−log10 transformed p-values	were	displayed	in	a	color-scale	with	more	solid	colors	
corresponding to more significant p-values
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RNA	processing	(Figure	3c);	previous	studies	have	reported	that	both	
caloric	 restriction	 and	 rapamycin	 treatment	 extend	 health/lifespan	
and	substantially	decrease	mRNA	levels	of	ribosomal	proteins	through	
reduced	mTOR	activity	(Frenk	&	Houseley,	2018);	therefore,	regula-
tion of the ribosomal proteins could bring benefit to the healthy tissue 
aging.	We	also	performed	gene	set	enrichment	analysis	(GSEA)	to	the	
age-associated	genes	 in	subcutaneous	 fat	and	 found	 they	were	en-
riched	for	very	few	diseases	(FDR	<	0.05)	in	either	the	“common”	aging	
or	“healthy”	aging	cohorts	(Figure	S6).

Last	 but	 not	 least,	 we	 tested	 the	 enrichment	 of	 literature	 cu-
rated	 candidate	human	 aging	 genes	with	 respect	 to	 “healthy”	 and	
“common”	aging	signatures.	A	 total	of	307	candidate	human	aging	
genes	were	downloaded	from	GenAge	(de	Magalhaes	&	Toussaint,	
2004).	We	then	calculated	the	overlap	enrichment	with	three	aging	
gene	sets	(Table	S12).	Our	results	showed	that	CAGs	in	subcutane-
ous	 fat	 and	 aorta	 artery	were	 enriched	 for	 human	GenAge	 genes	
(p-value	<	.01),	neither	CSAGs	nor	HSAGs	were	enriched	for	them.	
However,	in	lung,	CSAGs	have	stronger	overlap	with	GenAge	genes	
compared	to	CAGs	and	HSAGs.

3  | DISCUSSION

We	 studied	 the	 difference	 between	 GTEx	 “healthy”	 and	 “com-
mon”	 aging	 at	 a	 transcriptome	 level	 by	 leveraging	 GTEx	 data.	
GTEx	“healthy”	and	“common”	aging	shared	a	large	proportion	of	
genes,	 suggesting	 the	existence	of	a	core	aging	program	regard-
less	of	the	individual's	health	status.	Despite	the	large	overlap	be-
tween	 “healthy”	 and	 “common”	 aging	 genes,	HSAGs	 and	CSAGs	
showed	 different	 function	 enrichment,	 and	 CAGs/CSAGs	 had	
higher	 enrichment	 for	 disease	 genes.	 Since	 certain	 CSAGs	 be-
come	age-associated	only	when	disease	 individuals	are	 included,	
their	 association	 with	 age	 in	 the	 “common”	 cohort	 is	 therefore	
likely	driven	by	the	disease.	We	also	noticed	that	most	of	the	age-
associated	 gene	 expression	 changes	were	 relatively	 small	 based	
on	the	log	fold	change,	this	indicate	that	the	difference	between	
“healthy”	and	“common”	aging	was	likely	a	result	of	the	accumula-
tion	of	small	gene	expression	difference	in	hundreds	to	thousands	
of genes.

Disease-associated	 gene	 regulations	 are	 overall	 different	 from	
age-associated	genes,	supporting	that	aging	and	disease	are	funda-
mentally	distinct	 in	 their	gene	regulations.	However,	disease-asso-
ciated transcriptome signatures do share some common genes with 
“healthy”	aging	signatures.	For	these	shared	genes,	the	direction	of	
gene	regulation	in	“healthy”	aging	is	largely	consistent	with	the	reg-
ulation direction induced by disease. This suggests that transcrip-
tome regulation in healthy aging could facilitate the development of 
disease.	 For	 example,	 even	 in	 the	 “healthy”	 aging	 adipose	 tissues,	
we	observed	elevated	inflammation	gene	expression	(e.g.,	CDKN2A,	
IL4R,	TGFB1, and PTPN22	in	CAGs	and	TNFS4F	in	the	HSAGs),	and	it	
has	been	noticed	that	obesity-related	chronic	low-grade	inflamma-
tion	 is	 responsible	 for	 the	decrease	of	 insulin	 sensitivity	 (L.	Chen,	
Chen,	Wang,	&	Liang,	2015).

We	speculated	 that	 some	 “healthy-specific”	 aging	genes	may	
provide	protective	mechanisms	to	prevent	disease	development,	
therefore	to	promote	a	healthy	aging	phenotype.	Among	the	top	
few	upregulated	HSAGs	in	the	subcutaneous	fat	were	KLF4,	EAF2, 
and ABCA8	 (S2_Data).	The	overexpression	of	ABCA8 can lead to 
significant	increase	of	plasma	HDLc	levels	(Trigueros-Motos	et	al.,	
2017).	The	EAF2	gene	has	complex	and	overall	protective	functions	
in	different	cell	and	tissue	types.	For	example,	EAF2 is a key factor 
mediating	androgen	protection	of	DNA	damage	via	Ku70/Ku80	in	
prostate	 cancer	 cells	 (Ai	 et	 al.,	 2017).	 It	 may	 also	 suppress	 oxi-
dative	stress-induced	apoptosis	of	HLE-B3	cells	exerted	through	
the	activation	of	Wnt3a	signaling	(Feng	&	Guo,	2018).	KLF4 func-
tions	as	an	immediate-early	regulator	of	adipogenesis	specifically	
induced	 in	 response	 to	 cAMP	 (Birsoy,	Chen,	&	Friedman,	2008),	
while abiogenesis is known to be reduced in elderly individuals and 
correlates with the deteriorated functions of old adipose tissues 
(Kirkland,	Tchkonia,	Pirtskhalava,	Han,	&	Karagiannides,	2002).	It	
could be an important and unique feature for the healthy aging 
program to regulate these protective genes to provide the resil-
ience in these aging tissues.

Accumulating	 evidence	 has	 shown	 the	 impact	 of	 sex	 dimor-
phism	on	aging	and	gene	expression	across	mammal	tissues	(Naqvi	
et	al.,	2019;	Sampathkumar	et	al.,	2019).	For	example,	in	both	the	
“common”	 and	 “healthy”	 cohorts	 of	 subcutaneous	 fat,	we	 found	
CDKN2A in males showed a stronger upregulation with age com-
pared	to	females	(the	coefficient	of	sex	term	was	significantly	non-
zero	with	FDR	=	2.05	×	10−9	and	1.21	×	10−8	in	the	“common”	and	
“healthy”	cohorts,	 respectively)	 (Figure	S7).	Loss	of	CDKN2A has 
been	found	to	induce	sexually	dimorphic	leanness	in	female	mice	
(Kim	 et	 al.,	 2019).	 Systematically	 understanding	 the	 underlying	
transcriptional	 impact	on	 sex	differences	 in	 aging	will	 be	 crucial	
to	 tailor	 therapeutic	 strategies	 that	 target	 sex-specific	 disease	
mechanisms.

We	 pointed	 out	 that	 our	 definition	 of	 GTEx	 “healthy”	 aging	
cohort	 is	 different	 from	 a	 strict-sense	 healthy	 aging	 population.	
Since	our	“healthy”	aging	 is	defined	at	 tissue	 level,	 this	does	not	
exclude	 the	 possible	 cross-talk	 between	 certain	 disease	 catego-
ries	 with	 the	 tissue	 type	 under	 consideration.	 For	 instance,	 the	
“healthy”	 cohort	 for	 subcutaneous	 fat	 could	 contain	 individuals	
with	ischemic	heart	disease,	asthma	or	chronic	obstructive	pulmo-
nary	disease	(COPD).	Whether	this	approach	can	reliably	recapit-
ulate the relationship between healthy aging and common aging 
need	 to	 be	 verified	 in	 the	 future.	 In	 addition,	we	 used	 all	 GTEx	
samples	to	approximate	the	general	aging	population	in	the	soci-
ety	(“common”	aging).	Further	investigation	is	needed	to	evaluate	
if	 the	 GTEx	 cohort	 can	 represent	 the	 general	 aging	 population.	
On	the	other	hand,	it	has	been	and	will	continue	to	be	difficult	to	
collect	essential	tissues	from	truly	healthy	individuals.	Therefore,	
we consider this work can serve as an intermediate step to under-
standing	healthy	aging	in	the	strict-sense.

In	conclusion,	we	performed	a	comparative	analysis	of	“healthy”	
and	 “common”	 aging	 genes	 based	 on	 transcriptomic	 data	 from	
GTEx.	We	found	“common”	aging	signatures	are	comparably	more	
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associated with genes and pathways that cause disorders during 
aging	process,	while	 “healthy”	 aging	 is	 likely	 to	 contain	 genes	 and	
pathways	that	boost	resilience.	As	a	future	direction,	a	meaningful	
effort would be to catalog the protective aging gene regulations in 
details and identify actionable targets to promote the healthy aging 
program	in	“common”	aging	populations.

4  | METHODS

4.1 | Linear regression model for age-associated 
gene detection

We	 implemented	a	 linear	 regression	model	 to	 identify	 age-associ-
ated	gene	expression	(Equation	1).

More	details	of	the	model	are	provided	in	Text	S3.

4.2 | Differential expression between the 
“disease” and “healthy” individuals

For	differential	expression	analysis,	we	used	the	statistical	methods	
implemented	 in	the	 limma-voom	package	 (Table	S6).	We	created	a	
design	matrix	 taking	 into	 account	 2	 conditions	 (i.e.,	 “disease”	 and	
“healthy”	cohorts)	and	considered	several	covariates:

FDR	value	<	0.05	was	considered	as	significant	DEGs.	Additional	
information	can	be	found	in	Text	S4.

4.3 | Function annotation for GTEx aging signatures

DAVID	tool	was	used	to	perform	GO	annotation.	CAGs,	CSAGs,	and	
HSAGs	gene	 lists	were	 submitted	 to	DAVID	by	 choosing	GO_FAT	
and	 KEGG	 pathway	 terms	 to	 describe	 the	 overrepresented	 func-
tional terms. The threshold for overrepresented GO terms was set 
to	FDR	<	0.05.

4.4 | Assemble disease gene list and identify 
significant overlap between disease and aging genes

Disease	genes	were	retrieved	from	two	sources:	NIH	GWAS	Catalog	
and	OMIM.	We	only	 considered	 genes	 in	 the	GWAS	catalog	with	
p-value	<	5	×	10−8,	 a	widely	 accepted	 threshold	 for	 genome-wide	

significance. Clustering and manual curation were used to merge 
genes	 in	 GWAS	 and	 OMIM.	We	 only	 considered	 disease	 catego-
ries	 that	contained	with	at	 least	 five	genes.	We	then	performed	a	
Hypergeometric	 based	 test	 between	 the	 disease	 genes	 and	 three	
age-associated	gene	sets	 in	 four	tissues.	Fast	gene	set	enrichment	
analysis	(fgsea)	(Sergushichev,	2016)	was	used	to	carry	out	the	GSEA	
in	subcutaneous	fat,	which	is	an	R	friendly	package	that	generates	
equivalent	results	as	the	GSEA	web	tool	from	Broad	Institute.
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