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Percepts and words can be decoded from distributed neural activity
measures. However, the existence of widespread representations
might conflict with the more classical notions of hierarchical
processing and efficient coding, which are especially relevant in
speech processing. Using fMRI and magnetoencephalography dur-
ing syllable identification, we show that sensory and decisional
activity colocalize to a restricted part of the posterior superior
temporal gyrus (pSTG). Next, using intracortical recordings, we
demonstrate that early and focal neural activity in this region
distinguishes correct from incorrect decisions and can be machine-
decoded to classify syllables. Crucially, significant machine decoding
was possible from neuronal activity sampled across different
regions of the temporal and frontal lobes, despite weak or absent
sensory or decision-related responses. These findings show that
speech-sound categorization relies on an efficient readout of focal
pSTG neural activity, while more distributed activity patterns,
although classifiable by machine learning, instead reflect collateral
processes of sensory perception and decision.
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The discovery of spatially distributed cortical representations,
exploitable for “mind reading,” in all domains of cognitive

neuroscience during the past decade (1–5) raises fundamental
issues about the nature of neural coding in the human brain.
These findings, showing that the stimuli present in our envi-
ronment or mentally evoked are represented in distributed
neural activity, are leading scientists even to reconsider the no-
tion of local computational units, such as canonical microcircuits
(6, 7). However, whether all the information that is encoded and
decodable in our brain contributes to our perceptual represen-
tations and our decisions remains an important issue in neuro-
science. The relevance of this question is exemplified by the
extreme scattering and redundancy of word-meaning represen-
tations throughout the brain that was recently shown using voxel-
wide modeling of fMRI data (8). Decoding models probing
multidimensional statistical dependencies between experimental
conditions or stimulus features and spatiotemporal activity pat-
terns distributed across voxels/neuronal populations require
careful interpretation (9–11). Distributed neural activity patterns
could be taken to indicate either that the information they
contain is critical to cognitive operations or simply that they
could be used as such, e.g., for stimulus categorization (12).
However, the sensitivity of decoding models applied to neuro-
physiological data and the multidimensional features they rely on
to give positive results do not necessarily parallel the capacity of
our brain to make use of these neural patterns and multidi-
mensional features in specific tasks (11, 13–15). Data-driven
results arising from multivariate decoding models might lead
us to conclude that spatially distributed activity patterns are used
for performing cognitive operations when in fact they might only

follow from these operations, reflect associative processes, or
arise from processing redundancy. This concern is relevant at any
scale, considering that the implicit assumption behind multivar-
iate decoding methods is that there is functional meaning in the
geometry of the decoded pattern, whether this pattern is deco-
ded across individual neurons or across voxels containing several
hundred thousand neurons.
Interpreting broadly distributed spatial maps for speech

sounds can be particularly difficult. Unlike visual stimuli, whose
identity relies heavily on spatial encoding, speech sound identity
relies mainly on temporal encoding (16, 17). Despite the rele-
vance of hierarchical temporal processing in speech perception
(18), wide cortex coverage with fMRI and more recently with
electrocorticography (ECoG) indicates (i) that the original
acoustic speech signal can be reliably reconstructed from broadly
distributed high-frequency neural activity sampled cross-regionally
throughout the superior temporal lobe (19–21) and (ii) that local
phonemic-identity information in speech is poorly encoded by
temporally resolved neural activity (2) but is finely represented
by distributed cortical patterns covering a significant portion
of the left temporal lobe (1). Because optimal decoding occurs
when redundant information from contiguous but functionally
distinct territories is pooled together, assigning perceptual rele-
vance to such large-scale representations is ultimately tricky and
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might conflict with the notion that speech sounds are first spectro-
temporally encoded in auditory cortex before being more abstractly
recoded in downstream areas (22). Accordingly, focal lesions of the
temporal lobe can selectively impair different speech-perception
processes (23), and recent studies in monkey even show that au-
ditory decision-making causally relies on focal auditory cortex
activity (24).
Listening to speech has long been known to elicit brain activity

across both temporal and frontal cortices (25). Whether this ac-
tivity reflects the use of distributed representations of phonemes
as probed with decoding models or focal and selective hierarchi-
cal processing as probed with encoding models is incompletely
understood. It is questionable whether all neural activity that
contributes to spatially distributed patterns, with their specific
geometry, reflects a neural code used to perform specific cognitive
operations (9, 11, 13), i.e., assigning a speech sound to a category,
or multiple/redundant codes that are differentially used depend-
ing on specific tasks and cognitive operations. In other words,
although multivariate pattern analyses and model-based decoding
techniques are promising in translational applications, for instance
to decode inner speech in aphasic patients (26), their interpreta-
tion in cognitive neuroscience depends on the neurophysiological
relevance of the models applied for decoding (27). For instance,
demonstrating that a particular stimulus attribute or category can
be decoded from regional neuronal activity does not imply that
the region is performing categorical processing. In summary, there
is a conceptual discontinuity between machine and brain decoding
of neuronal activity. As an extreme example, demonstrating that
phonemes could be classified using a multivariate machine-
learning scheme applied to primary sensory afferents from the
ear would not mean that the brain has yet decoded these signals
but only that there is, by definition, sufficient information in this
auditory input to support subsequent hierarchical decoding.
Using a combination of behavioral, fMRI, magnetoence-

phalography (MEG), and ECoG data, we attempted to clarify this
issue by assessing the ability of a classifier to decode the stimulus
category from neuronal responses at various levels in the auditory
hierarchy and the ability of a linear model to estimate from neural
responses the perceptual processes in a paradigm for assigning
speech sounds to categories. We found that the assignment of
speech sounds to categories relied on focal neural activity pre-
sent in a circumscribed part of the auditory hierarchy, at specific
peristimulus times, which was supported by the observation that
the task could not be performed in a patient with a selective lesion
of this circumscribed region. Nevertheless, multivariate machine
decoding returned positive results from a large brain network
including regions where no stimulus-related evoked activity could
be detected, a finding that, in isolation, could suggest that category
assignment involved a distributed pattern of activity.

Results
We first explored explicit phoneme recognition using a simple
syllable-categorization task and measured global neural activity
with fMRI and MEG in 16 and 31 healthy volunteers, re-
spectively (Methods and SI Text). The subjects had to decide
which syllable they heard in a /ba/ /da/ continuum in which the
onset value of the second formant (F2) and the F2 slope linearly
covaried in six steps (Fig. 1A). These two first experiments served
to delineate at the whole-brain level those brain regions that
were sensitive to (i) linear variations of F2 and (ii) perceptual
decisional effort as assessed using behavior-based negative d′
values (Figs. 1B and 2A) (Methods and SI Text). Critically, be-
cause the slope of the second formant is steeper for the /da/ than
for the /ba/ phoneme, we expected the /da/ stimulus to activate a
larger cortical surface than the /ba/ stimulus and hence to be
associated with a stronger blood oxygenation level-dependent
(BOLD) effect (SI Text). Both experiments converged to show
that F2 variation was specifically tracked by neural activity in the
right posterior superior temporal gyrus (pSTG), while perceptual
decisional effort involved several regions of the bilateral inferior
prefrontal and posterior temporo/parietal cortex and the right

anterior temporal pole (Figs. 1C and 2B and Fig. S2D). These
activations, in particular the acoustic encoding of F2 variations,
remained focal even at a lenient statistical threshold (Fig. S1).
The spatial selectivity of the acoustic tracking of F2 was con-
firmed by a second fMRI study in which participants had to
decide whether they heard /da/ or /ta/. In this case the morphed
acoustic cue was no longer spectral (F2) but temporal (voice-
onset time, VOT). We found that this acoustic cue was encoded
in a restricted region of the left superior temporal gyrus (STG)
and superior temporal sulcus (STS) (SI Text and Fig. S2). In
short, the right pSTG was recruited for encoding the slope of the
second formant in the ba–da continuum, and the left STG/STS
was recruited for encoding the duration of the consonant part in
the da–ta continuum, reflecting the hemispheric dominance for
temporal vs. spectral acoustic processing (28).
We used dynamic source modeling of the MEG data to ex-

plore the dynamics of acoustic encoding and perceptual decision.
We found neural correlates of F2 parameters encoding 120 ms
post stimulus onset in the right pSTG. Auditory perceptual
decision-related activity appeared in this region at 165 ms and
co-occurred with a second peak of F2 encoding activity at 175 ms
(Fig. 2B). In addition to the spectral response profile within the
right pSTG and left prefrontal cortex, a Granger causality (GC)
analysis across the two areas showed that neural activity related
to F2 and negative d′ (−d′) corresponded to bottom-up encoding
and top-down decoding activity, respectively. Both analyses were
associated with neural activity in the high-gamma band for
F2 variation and in the beta band for −d′, confirming the generic
implication of these two frequency ranges in bottom-up and top-
down processes (Fig. 2C) (29–31). Here, we related decisional
effort with the top-down process, in line with a predictive coding

Fig. 1. fMRI results. (A) Spectrograms of the stimulus continuum between
syllables /ba/ and /da/, synthesized with a linear increase in F2-parameters
(1,650:100:2,150 Hz). Full spectrograms at the extremes of the continuum
represent /ba/ (Left) and /da/ (Right) prototype syllables. Spectrograms in the
middle are centered on the F2 parameters. (B) Values for F2 parameters
(iblue; Left), average d′ (red; Center), and percent of syllables identified as
/ba/ (gray; Right). Data are shown as mean ± SEM. (C) Results of the re-
gression analysis. (Left) Percent signal change in the right pSTG. (Center,
right hemisphere) Spatial localization of F2 parameters for neural encoding
(blue) and d′ (red) in the fMRI BOLD signal, expressed as beta coefficients.
Significant clusters were found in the right pSTG (peak MNI coordinates, x, y,
z = 42, −34, 7, T = 3.21) for the F2 tracking and in left posterior temporo-
parietal (x, y, z = −51, −28, 16, T = 4.41) and bilateral inferior prefrontal (x, y,
z = 45, 17, −5, T = 5.26; x, y, z = −48, 8, 22, T = 5.29) cortices for auditory
perceptual decision, d′). Images are presented at a whole-brain threshold of
P < 0.001. (Right) Percent signal change in the left inferior prefrontal cortex.
The BOLD signal increases with F2 parameters in the right pSTG and with
auditory perceptual decision load in the left inferior prefrontal region.
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view of speech processing (32, 33), whereby the more ambiguous
the acoustic input, the stronger are the top-down predictions.
As top-down and bottom-up signals are thought to be predomi-
nantly associated with neural activity in the beta and gamma band,
respectively, we probed the dominant frequency of informa-
tion transfer between the inferior frontal gyrus (IFG) and pSTG
using GC. Our results confirmed that beta activity dominated from
the IFG to the STG and that gamma activity dominated in the
other direction (29, 31, 34, 35). The MEG findings thus support the
straightforward scenario in which phoneme categorical decisions
could arise from a rather focal readout of the region that encodes
the critical sensory cue (F2) by prefrontal regions (36–38).
Having established the global representational validity of the

regions encoding the sensory features of interest (F2 variations),
we then sought to examine the responses of these regions at a
finer-grained scale using invasive electrophysiology. To maximize
signal-to-noise ratio and spatial specificity in the exploration of
coincident neural responses to F2 and to auditory perceptual
decision, we acquired intracortical EEG (i-EEG) data in three
epileptic patients who together had 14 electrode shafts through-

out the right temporal lobe (70 contacts). Among the electrode
shafts, one penetrated the right temporal cortex through
Heschl’s gyrus (Fig. 3B). The deepest contacts of this auditory
shaft strictly colocalized with the region that fMRI detected for
F2 variation tracking. The patients performed the same syllable-
categorization experiment on a ba/da/ga continuum in which the
only changing acoustic cue was the F2 parameter (Fig. 3A).
Behavioral results show a good detection of ba and da and a
slightly less frequent detection of ga (Fig. 3C). Strong evoked
responses to syllables were present only in the auditory shaft and
were more marked/consistent in its two deepest contacts (Fig.
3D, Top Row); the responses were weak to nonexistent elsewhere
(Fig. 4A, colored plots). Significant F2 tracking was consistently
detected in all auditory contacts (Methods), with strong and
structured effects in the two deepest ones (Fig. 3D, Middle Row).
Fully consistent with the MEG results, F2 values were encoded
by broadband gamma activity (40–110 Hz) from about 150 ms
poststimulus onset onward, i.e., 50 ms after F2 appeared in the
acoustic signal. Structured and strong neural activity related to
F2 tracking was not observed in any of the other contacts of the
same patient (patient 1) (Fig. S5). These data suggest that the

Fig. 2. MEG results. (A) Values for F2 parameters (blue, Left), average d′
(red, Center), and percent of syllables identified as/ba/ (gray, Right); data are
shown as mean ± SEM. (B, right-hemisphere) Dynamic spatial localization of
the neural encoding of F2 (blue) and d′ (red) in MEG signals, expressed as
beta coefficients. Only the bootstrapped P = 0.05 significance threshold
(Bonferroni-corrected) activations are represented. The right pSTG (in-
dicated by black arrows) is first activated at 95–120 ms for encoding
F2 parameters and then is reactivated for phonemic decision at ∼165 ms.
(C, Upper) Spectral profile of beta coefficients from regressions between
F2 values and neural response in the right pSTG (Left), and between −d′
values and neural response in the left inferior prefrontal area (Right). F2 was
dominantly tracked by gamma and high-gamma activity, whereas decisional
activity was expressed in the low beta band. Thick black lines indicate signif-
icant beta coefficients at P < 0.05 (Bonferroni-corrected). (Lower) GC results
between the right pSTG and the left IFG. Thick black lines indicate significant
Granger coefficients at P < 0.05 (Bonferroni-corrected). Shaded gray areas
highlight the correspondence between beta coefficients and GC peaks: high-
gamma band for bottom-up activity from the right pSTG to the left IFG (Left);
beta band for top-down activity from the left IFG to the right pSTG (Right).

Fig. 3. i-EEG results in patient 1. (A) Spectrograms of /ba/, /da/, and /ga/
prototype stimuli synthesized with linear parametric F2 parameters. (B) Lo-
cations of i-EEG contacts in patient 1. The auditory shaft labeled shaft
1 penetrated the right pSTG and Heschl’s gyrus. The patient had five other
shafts distributed in the right temporal lobe. Bipolar montages from adja-
cent contacts are shown in the Bottom Right figure. (C) Percentage of syl-
lable identification for each category for the three patients. The shaded
zone indicates the SEM. The first 20 stimuli are categorized as /ba/, the next
13 stimuli are categorized as /da/, and the last 11 stimuli are categorized
as /ga/. (D, Top) Evoked activity, averaged across stimuli, on each bipolar
montage from the deepest contact (number 1) to the most external contact
(number 5) in the auditory shaft (shaft 1). (Middle) Time–frequency repre-
sentations of beta coefficients from the regression of F2 values against evoked
activity on each contact of the auditory shaft. Significant F2 tracking was
found in all contacts of the auditory shaft, with stronger effects in the two
deepest contacts. (Bottom) Time–frequency representations of beta coeffi-
cients from regression of d′ values against evoked activity on each contact of
the auditory shaft. Decisional effects were significant on the third auditory
contact about 200 ms poststimulus onset in the beta band. The vertical dashed
lines indicate stimulus onset. The horizontal dashed lines indicate a change in
the scaling of the oscillatory power for each time point and each frequency,
with a 0.5-Hz resolution below 20 Hz and a 1-Hz resolution above 20 Hz. Black
contours indicate significant t tests at q < 0.05 (FDR correction).
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encoding parameters of the discriminant acoustic cue are avail-
able in the right pSTG for syllable recognition, confirming the
spatial selectivity for F2 parameters encoding in this region.
Decisional effects were globally weak in i-EEG signals but

were significant in the third auditory contact about 200 ms
poststimulus onset in the beta band, in agreement with the MEG
results, and in the deepest auditory contact about 350 ms post-
stimulus onset in the gamma band (Fig. 3D, Bottom Row). Be-
cause both fMRI and MEG showed correlates of decisional
effort at several other locations in the frontal and temporal lobe,
we broadened the analysis in this patient to all contacts of each
shaft (Fig. S6). Perceptual decision-related effects were weak,
sporadic, and inconsistent. They were significant before 500 ms
poststimulus at only two other locations outside Heschl’s gyrus:
in the right inferior prefrontal cortex (shaft 6, contact 1; con-
sistent with fMRI) (Fig. 1C) and in the anterior temporal lobe
(shaft 4, contact 4; consistent with MEG) (Fig. 2B).
We then sought to address whether focal neural activity could

afford syllable categorization. In line with previous findings
based on ECoG signals (1, 2), local evoked activity from one
contact was sufficiently discriminable to permit syllable catego-
rization using a machine-learning algorithm (maximum correla-
tion coefficient classifier; see Methods). Decoding was possible
from all individual auditory contacts but worked best from the
deepest one (Fig. 4A and Fig. S9A). Within the other electrode
shafts, univariate decoding based on single-contact information
was never possible. However, significant multivariate decoding
from pooling all contacts in each shaft was significant for shafts
1, 2, 3, 4, and 6, even though it included nonresponsive contacts.
Reciprocally, multivariate decoding was not possible in the
temporal pole shaft (shaft 5), even though we detected signifi-
cant perceptual decision-related neural activity in this region
with fMRI and MEG.

We subsequently addressed the key question whether the in-
formation used by the classifier corresponded to that used in the
human decisional process. We examined whether there was a
temporal correspondence between the dynamics of decoding, as
assessed by time-resolved classification (39, 40), and the presence
of time–frequency neural cues that informed the subject’s per-
ceptual decision. For this analysis, to ensure the independence of
the analyzed dataset (SI Text), we no longer probed the decisional
effort (the search for information, −d′) but the decisional out-
come. We approximated the neural cues that were critical to the
decisional outcome by the difference in the time–frequency re-
sponses of correctly and incorrectly recognized prototype syllables.
The correct-minus-incorrect contrast indicates the parts of the
neural signal that, if missing, are associated with an erroneous
perceptual decision. Note that this contrast matches, as closely as
possible, the output of the maximum-correlation coefficient clas-
sifier, which tests the extent to which a linear association can
correctly predict syllables from neural activity.
Significant time–frequency correlates of correct classification

were found only in the three deepest contacts of the auditory
cortical shaft (Fig. S7); they were sporadic and inconsistent
elsewhere (red frames in Fig. S7 show significant activity for t <
500 ms). In the deepest auditory contact (contact 1 on shaft 1),
where both F2 tracking and univariate classification were maxi-
mal (Fig. 3 and Fig. S8), cues associated with correct perceptual
decisions were present as early as 150 ms, i.e., before the first
significant decoding peak at 200 ms (Fig. 4B and Figs. S6 and
S9B). This important finding shows that within 150 ms the right
pSTG had encoded enough information about F2 onset fre-
quency and slope to inform correct syllable recognition by the
subject and that this information could be exploited by the
classifier to distinguish across syllables (Discussion).

Fig. 4. Decoding in patient 1. (A, right hemisphere) Colored panels show time–frequency representation of evoked activity on each shaft. A strong evoked
response to syllables is present only in the auditory shaft. Bar graphs show neural decoding through univariate and multivariate classifiers. Histogram bars
numbered from 1–5 show the univariate classifier results based on the activity from each contact of each shaft. The bar at the far right (“all”) shows the mul-
tivariate classifier results based on multidimensional information from all contacts of each shaft. Stars above the black bars signal significant classification accuracy
for specific contacts within each electrode shaft (q < 0.05, FDR-corrected). Univariate classification was possible from all auditory contacts of shaft 1 overlapping
fMRI F2 parameters activation (blue-shaded area) but worked best in the deepest one. Univariate classification failed everywhere except for these auditory
contacts, whereas syllable decoding worked above chance using the multivariate approach in shafts 1, 2, 3, 4, and 6. (B, Bottom) Time–frequency differences
between correct-minus-incorrect classification computed on contact 1 of shaft 1. Black borders indicate significant differences in neural activity between correct
and incorrect classification scores, in comparison with a zero-mean normal distribution at q < 0.05, FDR-corrected. (Top to Bottom) Temporal relationship between
the time course of machine decoding from the deepest auditory contact (Top, black line), mean univariate classification from all auditory contacts (Top, gray line),
and the time–frequency cues used by the subject to make a correct perceptual decision (difference in the time–frequency response between correctly and in-
correctly recognized syllables, Bottom). The thick gray lines show significant results for each time point (significant decoding accuracy, q < 0.05, FDR-corrected).
(Middle) Cross-correlation coefficients between univariate decoding accuracy and significant correct-minus-incorrect time–frequency clusters. Significant effects
were found in the 60- to 80-Hz high-gamma band. The horizontal black line indicates significant cross-correlation coefficients at P < 0.05 (Bonferroni-corrected).
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Critically, the temporal coincidence between neural correlates
of response correctness and machine decoding (Fig. 4B) was only
partial. It was fairly good for the first two significant decoding
peaks (<200 ms) of both single auditory contact decoding and
mean univariate decoding across all auditory contacts but was
poor for the latest (and strongest) peak. The first two decoding
peaks coincided precisely with transient high-gamma activity in
the 60- to 80-Hz range (significant zero-lag cross-correlation)
(Fig. 4B), in line with the observation made with MEG (Fig. 2)
that F2 was specifically encoded by neural activity in this fre-
quency range and that 60- to 80-Hz activity preceded decisional
activity in the left IFG. However, the third decoding peak had no
matching time–frequency event in the correct vs. incorrect activity
profile (Fig. 4B). These observations indicate that the classifier did
not systematically capture those neural cues that informed the
subject’s decision. Thus, machine classification and human sub-
jects did not exploit the same cues locally. Presumably, the out-
come of the mean univariate classifier reflected distributed
information that was no longer relevant for or assimilated into
neuronal decision variables. The strongest local decoding peak
occurred at 370 ms, i.e., more than 250 ms later than the first
correctness effect and about 100 ms after the last one and likely
reflected postdecisional choice-correlated neural activity.
So far, the results indicate that the phonemic decision was

informed by focal early neural activity (<200 ms) that encodes
F2 in sustained multifrequency oscillatory activity (Fig. 2).
However, distributed subthreshold neural activity not detected
by conventional (univariate) analyses of fMRI, MEG, and
intracortical EEG data also might contribute to syllable-identity
encoding. We therefore addressed whether decoding was possi-
ble even from contacts where there was no detectable F2 and
from perceptual decision-related activity (Figs. S5 and S6). We
broadened the analysis to the 14 shafts of the three patients,
including two additional patients who had electrode shafts over
the right temporal lobes (n = 14), and performed time-resolved
multivariate decoding from all cortical contacts (n = 36). Sig-
nificant decoding was found at 250, 300, and 600 ms, showing
that syllables could be decoded from broadly distributed activity
(Fig. 5). To address whether the distributed pattern of activity
was driven by local auditory activity, we performed the same

analysis without the contribution of the auditory shaft of patient
1. Early classification (<300 ms) dropped below statistical sig-
nificance, but the latest classification peak at 600 ms remained
unaffected (Fig. 5). This result demonstrates that decoding
remained possible from cortical contacts that showed neither F2-
nor auditory perceptual decision-related activity. We even
obtained significant late decoding when deep structures, such as
the amygdala and the hippocampus, were included in the mul-
tivariate analysis (n = 70 contacts). As each penetrating shaft,
except the auditory one, spanned functionally different territo-
ries, from the cortex to deeper structures, these findings show
that the possibility of decoding neural activity in a multivariate
approach does not allow one to conclude that the regions sam-
pled for decoding amount to a meaningful neuronal represen-
tation, defined operationally in terms of a correct perceptual
categorization. Overall, classification analyses from the i-EEG
data confirmed the spatial selectivity of the early critical in-
formation involved in ba/da/ga syllable categorization. They also
showed that syllable classification was possible from distributed
activity (Figs. 4 and 5) that occurred later than the perceptual
decision-related effects, as detected with both MEG and i-EEG.
Since the decoding of i-EEG returned positive results when

contacts in which no significant neural activity could be detected
were pooled together, we sought to explore the spatial distribution
of /ba/ and /da/ category decoding using the MEG dataset. The
idea was to determine whether whole-brain decoding would be
restricted to regions that showed statistically significant activa-
tion with all three approaches, MEG (Fig. 2), fMRI (Fig. 1), and
i-EEG (Figs. S5 and S6), or would also be possible in regions that
did not critically participate in the task. This analysis was expected
to provide time-resolved information to appraise whether decoding
reflects noncritical processes downstream of sensory encoding and
early decisional steps. Such a finding would concur with the i-EEG
results suggesting that decoding is possible from brain regions that
are only collaterally involved in the cognitive process at stake.
Using whole-brain MEG sensor data and a time-resolved

multivariate learning algorithm (maximum correlation coeffi-
cient classifier) (Methods) (41), we found that speech sound
categories could be decoded from very early brain responses in a
focal region of the right pSTG (Fig. 6). When we focused our

Fig. 5. Decoding in all patients. Time course of the decoding accuracy from multivariate pattern classification with all shafts (Top) and without the auditory
shaft of patient 1 (Middle). Early classification dropped below statistical significance, while the latest classification peak at 600 ms remained unaffected.
(Bottom, right hemisphere) Location of shafts (n = 14) from which neural activity was recorded during syllable identification (three patients, fixed-effects
model). Colored dots show cluster-level significance from q > 0.10 to q < 0.01 (q-FDR corrected) multivariate classification performed on all shafts. Dot size is
proportional to q. Significant classification was observed at 250, 300, and 600 ms, showing that syllables could be decoded from broadly distributed activity.
At 300 ms, P1 refers to patient 1, and P2 refers to patient 2.
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analysis on those sensors that contained significant information
about syllable identity (Methods), we found that the activity
recorded by the sensor MAG 1331 could be categorized as early
as 100 ms, with up to 78% accuracy (t = 13.01, q < 0.001, Cohen’s
d = 4.7). Critically, syllable identity could also be decoded at
later time points, first at 220 ms on the sensor MAG 2011 and
then at 350 ms on the sensor MAG 0211, with scores reaching
63% accuracy (t = 7.17, q < 0.001, Cohen’s d = 2.5) and 58%
accuracy (t = 6.37, P < 0.001, Cohen’s d = 2.2), respectively.
Corresponding source analyses then revealed that the decoding
at 220 ms poststimulus onset arose from the left STG and STS,
two regions that were not primarily responsive to acoustic cue
tracking and perceptual decision (Fig. 2). Source analysis further
showed that the decoding at 350 ms arose from the left IFG and
thus corresponded to late decisional effects. Together, these
results show that, while decoding is most accurate in the region
that critically encodes the acoustic information (the right pSTG),
it is also subsequently possible from noisier activity in a broad
left-lateralized network that contains associative information
about the selected syllable. Interestingly, significant decoding
was seen again in the right pSTG at 500 ms poststimulus onset
with very high accuracy (89%, t = 15.10, q < 0.001, Cohen’s d =
5.5). This suggests that information propagation occurring across
the whole language network between 100 and 500 ms contributed
to improve the quality of the categorical representations at a
postdecisional stage.

Discussion
In this series of studies, we addressed whether human listeners’
perceptual decisions about the identity of speech sounds arose
from distributed representations (42) or whether, following more
closely the principles of hierarchical processing, syllable cate-
gorization was informed by the efficient readout of a restricted
cortical region that contains limited but key neural information,
as recently shown in monkeys (24). Our data converge to show
that correct decisions about speech-sound identity were in-
formed by local and time-limited information (<300 ms) present

in the right pSTG. Even though phonemic contrasts are most
often associated with activations of the left STG (43), the right
STG performs low-level spectral-based acoustic processing that is
relevant for speech decoding (44, 45) and categorization (46, 47).
Note that the right specificity of speech-related operations can
easily be missed when acoustic processing is not explicitly or-
thogonalized from decision-related neural activity (48). Moreover,
hemispheric dominance in speech processing depends heavily on
the task. Here, subjects were forced to process a single cue
(spectral or temporal) to categorize ambiguous signals, which does
not happen under natural listening conditions in which contextual
information and redundant acoustic cues are available. Our find-
ings confirm that spectral- and time-based analyses of speech
sounds involve the right and left STG, respectively (Fig. 1 and Fig.
S8). That we observed tonotopic encoding of F2 in a region
contiguous to, rather than within, right Heschl’s gyrus presumably
reflects that the frequency range spanned by F2 is rather limited
and more extensively processed in a region specialized for vocalic
formants (49). Our findings also confirm that in acoustically
challenging situations such as those used in the current experi-
mental design, the left IFG is mobilized (50) and interacts with the
temporal cortex in sequential loops of bottom-up and top-down
processes (48, 51–53). Importantly, our fMRI and MEG results
conjointly show that the focal readout of sensory encoding regions
by prefrontal regions accounts for the decision variability relative
to the perceptual state and that the magnitude of neural activity
associated with sensory processes depends on the discrepancy
between heard and expected signals (Figs. 1C and 2C) (54, 55).
Whether stimulus identity is retrieved from focal neural ac-

tivity or from distributed activity patterns is a fundamental issue
in neural coding theory. Our MEG and i-EEG decoding results
both show that the right pSTG is critical for perceptual decisions,
while distributed activations across the frontal and temporal
cortices reflect the reuse of sensory information for higher-level
operations, such as extraction of meaning, audiovisual integra-
tion, and so forth. It has repeatedly been observed that behavior
is explained as well by taking the activity of one or a limited set of
neurons as it is by considering a large-scale population (56, 57).
This puzzling observation is backed up by computational models
showing that pooling together information from more neurons
does not improve behavioral sensitivity. This could reflect the
fact that neuronal responses are strongly correlated both in-
trinsically by neural noise and by stimuli, so that the information
contained in a neural population saturates as the number of
neurons increases (58, 59). Recently, a combination of experi-
mental and theoretical data suggests that in most cases behavior
is best explained by optimal readout of a limited set of neurons
(60). The authors then conclude that the neural code is re-
dundant and that some areas are decoded nearly optimally while
others are not read out efficiently. They propose that deacti-
vating these regions should not affect behavior.
Reciprocally, as we tested in a brain-damaged patient that was

carefully selected with respect to lesion extent and localization (SI
Text and Fig. S10), deactivating regions that are optimally decoded
would be expected to impair behavior. The lesion of one of the
two focal regions that we identified as key for F2-based syllable
categorization dramatically disrupted performance. The impair-
ment was selective to the type of stimulus but not to the type of
task, as categorization of similar syllables (da/ta) based on tem-
poral cues, i.e., VOT, was spared. This also was expected, as syl-
lable categorization based on VOT specifically involved the left
middle temporal cortex (Fig. S2). The selectivity of the impair-
ment with respect to the acoustic material shows that for this type
of task there was no distributed rescue system. These behavioral
data in a single patient remain, of course, nongeneralizable, and
further lesion data will be necessary to confirm our results.
Moreover, a full demonstration that, even though phoneme cat-
egories are represented in a distributed fashion, focal/early sensory
information is predominantly used to categorize speech sounds
would, strictly speaking require showing that distributed lesions
do not impair task performance. This demonstration, however,

Fig. 6. Decoding of MEG data reveals bilateral temporo-frontal cortex in-
volvement in speech-sound categorization. (A) Percentage of correct
decoding over time for each of the magnetometers (MAG 1331, MAG 2011,
and MAG 0211) showing significant decoding activity. On the x axis, zero
corresponds to stimulus onset; on the y axis, 50% indicates chance perfor-
mance. Horizontal dark and light gray lines indicate significant decoding
(q < 0.05, FDR-corrected). (B) Sensor topographies depicting the average
decoding response in magnetometers averaged within each of the five
windows of interest. Black dots indicate the position of the three magne-
tometers showing significant decoding activity. (C) Source localization at key
decoding times. Source localization for MEG signals are displayed on a
standard cortex at 100, 220, 300, 360, and 500 ms poststimulus onset. Color
bars at the right in B and C indicate Student t-test values.

E1304 | www.pnas.org/cgi/doi/10.1073/pnas.1714279115 Bouton et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714279115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714279115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714279115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714279115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714279115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714279115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1714279115


cannot be performed, because at the extreme, if the whole lan-
guage system is injured, no linguistic operation can be achieved at
all. Although, using a variety of approaches, we tried to collect as
many arguments as possible to address how information is used to
make perceptual decisions about speech sounds, we acknowledge
that the present study can be only partly conclusive.
Critically, however, our results show that a distinction should

be made between the classification of syllable-induced neuronal
activity by machine learning and the neuronal decoding made
by the brain to achieve syllable categorization. We found that
distributed noise-level neural information, which did not carry
reproducible and statistically detectable information about the
sensory cue (F2 parameters) or about the categorical decision
process (61), was nonetheless sufficient to inform a classifier.
While this confirms previous observations that phonemic in-
formation is present in a distributed manner (1, 2), the fact that
classification was possible only on late responses once the re-
gion encoding the critical acoustic cue (F2 slope) was removed
from the multivariate analysis suggests that distributed pho-
nemic representations reflect the diffusion of the information
throughout the language system. While distributed information
might be useful for late association-type linguistic processes, it
did not appear necessary for the categorization task, as cor-
rectness effects occurred focally and early in time. These findings
show that neuronal activity containing information about speech
sound categories is not uniformly useful for categorizing these
sounds. More generally, our findings highlight the fact that
decoding algorithms, even if they can make use of distributed
information that might reflect a brain state context (57) or
mental association, do not indicate which regions are necessary
or causal for the cognitive process at stake—here a categorical
choice. These results hence suggest that distributed information
about categories might reflect the redundancy of noise-level in-
formation in the brain, i.e., associative neural activity, rather
than a spatial neural code that is accessed in parallel when
making a speech-category perceptual decision.
Categorizing auditory syllables is a relatively low-level process,

which in theory could be underpinned by distributed represen-
tations, but in our data this appears not to be the case. What then
might be denoted by previously observed broadly distributed
representation maps (8) and, in particular, by phonemic maps
organized along articulatory features (62)? Most of these im-
portant findings (1, 52, 63) were obtained in natural listening
conditions. In the work by Mesgarani et al. (1), for instance,
maps were drawn from cortical surface neural activity measured
150 ms after each phoneme in connected speech, implying that
activity at each time point integrated the distributed activity of
several preceding phonemes and reflected coarticulation and
contextual associations from the preceding words. When pas-
sively listening to connected speech, there was likely no explicit
serial phoneme decoding but rather a global readout of senten-
ces, which likely required superficially accessing many phonemic
representations at once. In the same way as a computer keyboard
spaces letters to minimize interference when typing them, our
brain might organize the phonemic space as a function of how we
need to retrieve them for production (54), i.e., following a feature-
based logic. That such organizations exist does not imply that they
are used as such for explicit syllable recognition, just as reading
words through a keyboard spatial organization would largely be
suboptimal. While the present findings do confirm the existence of
distributed phonemic representations, they also question the use
our brain makes of them in an explicit speech-perception context,
as phoneme recognition does not seem to rely on distributed
patterns of activity. Importantly however, it might be the case that,
during natural speech perception, cross-hierarchical readout of
redundant/correlated neural activity is genuinely exploited as a
form of trade-off between accuracy of single phoneme identifi-
cation (focal) and joint access to multiple representations (dis-
tributed). It will be essential in the future to address whether
suboptimal decoding of large neuronal populations could be an
optimal way to handle access to multiple representations.

Methods
Subjects. Twenty-eight healthy subjects participated in the MEG study (16 fe-
males; age range: 22–31 y), and 16 participated in the fMRI study (nine fe-
males; age range: 22–29 y). i-EEG was recorded in three epileptic patients (one
female; ages: 44, 25, and 65 y) who underwent surgery for clinical monitoring
and in one patient (female; age: 77 y) who was tested behaviorally 8 mo after
an ischemic stroke. All participants were right-handed, native French speakers
and had no history of auditory or language disorders. The experimental
protocols for the participation in the MEG and fMRI experiments were
approved by the Inserm ethics committee in France (biomedical protocol C07-
28), and the protocol for studies in epileptic and stroke patients was approved
by the University of Geneva Hospital in Switzerland (13–224). All participants
provided written informed consent before the experiment.

Stimulus Synthesis and Behavioral Testing. High-quality speech stimuli were
synthesized using an original morphing method based on a modified linear
predictive coding (LPC) analysis synthesis scheme (64). Using an exponential
pole-morphing approach, the second formant transition was morphed to build
a linear speech sound continuum between /ba/, /da/, and /ga/ (65, 66). The
initial (prototypical) /ba/, /da/, and /ga/ syllables were natural voice signals,
down-sampled to 16 kHz, aligned on their burst starting time, and cut to the
same length (360 ms). From the LPC analysis of natural voice sounds, the
formant structure was extracted for each prototypical syllable. For resynthesis,
the excitation signal from the LPC analysis was discarded, and an artificial
excitation signal was used. The excitation signal consisted of a low-pass-
filtered pulse train for the voiced part, additional white noise for the burst,
and a small amount of white noise throughout the entire stimulus. The time
dependency of the fundamental frequency, f0 = f(t), was a piecewise constant
and simplified version of that extracted from the original /ba/ natural voice
signal. Throughout the continuum, the excitation signal, the global amplitude
of the stimulus, and the first and third formant transitions were kept constant.

A six-item /ba/ /da/ continuumwas presented to healthy subjects and to the
stroke patient. A longer 48-item continuum, /ba/ /da/ /ga/, was used for testing
epileptic patients to obtain more responses around syllable boundaries to
compare correct and incorrect categorization. Note that /ba/ and /da/ cate-
gories differed only on the F2 dimensions, and hence processing this single
cue was sufficient for correct perception. Another six-stimuli /da/ /ta/ con-
tinuum was used for both the behavioral and second fMRI control experi-
ments. In that continuum, we varied the length of the VOT by deleting or
adding one or several voiced periods in the signal, before or after the burst,
using audio editor software.

Tasks Design. Auditory stimuli were presented using Psychophysics-3 Toolbox
and additional custom scripts written for Matlab version 8.2.0.701 (MathWorks).
Sounds were presented binaurally at a sampling rate of 44,100 Hz and at a
comfortable hearing level individually set before the experiment via earphones.
Before the experiment, each participant undertook a short session during which
the minimum amplitude level leading to 100% categorization accuracy was
estimated using an adaptive staircase procedure. This threshold was used to
transmit the stimuli (mean 30 dB sensation level). Each continuumwas delivered
to participants in two independent sessions of 240 trials each for fMRI recording
and 270 trials each for MEG recording. The experiment used for epileptic pa-
tients comprised 144 trials.

Participants were asked to perform an identification task. Each trial com-
prised one sound (randomly chosen among the 6 or 48 stimuli of the contin-
uum), followed by 1 s of silence; then, a response screen with the written
syllables “ba” and “da” (in MEG, fMRI, and behavioral sessions) or “ba,” “da,”
and “ga” (in i-EEG sessions) was displayed. Syllables were randomly displayed
from right to left on the screen to prevent motor preparation and persever-
ative responses. During fMRI recording, the appearance of the response screen
was randomly jittered 100, 300, or 500 ms after the silence gap. Participants
indicated their response on the syllable by pressing the corresponding left or
right response button as quickly as possible. Subjects’ responses were pur-
posely delayed to avoid temporal overlap between perceptual processes and
motor effects due to button press. Response times hence do not constitute
relevant data. To limit eye movements, subjects were asked to fixate the
central cross and to blink only after giving their motor response. After the
response, a jittered delay varying from 3 to 5 s led to the next trial.

MEG Recording and Preprocessing. Continuous cerebral activity was recorded
using an Elekta Systems MEG device, with 102 triple-sensor elements, each
composedof twoplanargradiometers andonemagnetometer.MEG signalswere
recorded at a sampling rate of 1 kHz and were online band-pass filtered be-
tween 0.1 and 300 Hz. A vertical electro-oculogramwas recorded simultaneously.
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BeforeMEG recording, theheadshape for eachparticipantwas acquiredusing a
Polhemus system. After the MEG session, an individual anatomical MRI was
recorded [Tim-Trio; Siemens; 9-min anatomical T1-weighted magnetization-
prepared rapid gradient-echo (MP-RAGE), 176 slices, field of view = 256,
voxel size = 1 × 1 × 1 mm3]. MEG data were preprocessed, analyzed, and vi-
sualized using dataHandler software (wiki.cenir.org/doku.php), the Brainstorm
toolbox (67), and custom Matlab scripts. A principal component analysis (PCA)
was performed through singular-value decomposition function of numerical
recipes to correct artifacts (low derivation). The first two components from the
PCA were zeroed, and the signal matrix was recomputed. PCA rotated the
original data to new coordinates, making the data as flat as possible. The data
were then epoched from 1 s before syllable onset to 1 s after syllable offset.
Another PCA was then performed on the epoched data when blinks oc-
curred. PCA components were visually inspected to reject the one capturing
blink artifacts. On average, 2.1 ± 0.7% of trials per participant (mean ± SEM)
were contaminated by eye-movement artifacts and were corrected before
further analyses.

fMRI Recording and Preprocessing. Images were collected using a Verio 3.0 T
(Siemens) whole-body and radio-frequency coil scanner. The fMRI BOLD
signal was measured using a T2*-weighted echoplanar sequence (repetition
time = 2,110 ms; echo time = 26 ms; flip angle = 90°). Forty contiguous slices
(thickness = 3 mm; gap = 15%; matrix size = 64 × 64; voxel size = 3 × 3 ×
3 mm) were acquired per volume. A high-resolution T1-weighted anatomical
image (repetition time = 2,300 ms; echo time = 4.18 ms; T1 = 900 ms; image
matrix = 256 × 256; slab thickness = 176 mm; spatial resolution = 1 × 1 ×
1 mm) was collected for each participant after functional acquisition. Image
preprocessing was performed using SPM8 (The Wellcome Trust Centre for
Neuroimaging, University College London, London, www.fil.ion.ucl.ac.uk/
spm/). Each of the four scanning sessions contained 400 functional volumes.
All functional volumes were realigned to the first one to correct for inter-
scan movement. Functional and structural images were spatially pre-
processed (realignment, normalization, smoothed with an 8-mm FWHM
isotropic Gaussian kernel) and temporally processed using a high-pass filter
with a cutoff frequency of 60 Hz. We then checked data for electronic
and rapid-movement artifacts using the ArtRepair toolbox (cibsr.stanford.edu/
tools/human-brain-project/artrepair-software.html). Artifacted volumes were
substituted by linear interpolation between contiguous volumes and were ex-
plicitly modeled in the following statistical analyses. Estimated headmovements
were small compared with voxel size (<1 mm); 3.2 ± 0.3% of the volumes were
excluded due to rapid head movements (>1.5 mm/s).

i-EEG Recording and Preprocessing. Electrophysiological activity was recorded
over arrays of depth electrodes surgically implanted to identify epilepsy
focus. i-EEG was recorded (Ceegraph XL; Biologic System Corps.) using
electrode arrays with eight stainless contacts each (electrode diameter =
3 mm, intercontact spacing = 10 mm; AD-Tech) implanted in several brain
regions in the right hemisphere (Figs. 3–5). We determined the precise
electrode shaft locations by coregistering a postoperative computed to-
mography scan with a high-resolution anatomical MRI template. For the
i-EEG recordings, we used a bipolar montage in which each channel was
referenced to its adjacent neighbor. We sampled the i-EEG signal at 1,024 Hz
for patient 2 and at 2,048 Hz for patients 1 and 3.

Steady-state frequency spectra were estimated using a standard Fourier
transform from 1 s before to 1 s after the offset of the stimulus. Time–fre-
quency power was defined as the single-trial square amplitude estimates of
complex Fourier components. Time–frequency analyses were carried out
using the Fieldtrip toolbox for MATLAB (68). The spectral power of MEG
oscillations was estimated using a family of complex Morlet wavelets,
resulting in an estimate of power at each time point and each frequency. We
restricted the analysis to frequencies between 2 and 150 Hz, spanning the
whole range of relevant brain rhythms. Note that the time–frequency
transform uses frequency-dependent wavelets (from three to seven cycles
per window), with decreasing time-windows with increasing frequency.

Neural Encoding of Parametric Information. We regressed out single trials of
MEG, fMRI, and i-EEG signals against (i) the acoustic dimension, corresponding
to F2 parameters [the onset value of the second formant (F2) and the F2 slope
linearly covaried in six steps] or to the VOT (the voicing length before and after
the consonant burst varied in six steps)], and (ii) the categorization difficulty
dimension corresponding to the inverse of the discriminability index from signal
detection theory (−d′). These two dimensions are naturally orthogonal (r = 0.02,
P > 0.20). A general linear regression model was carried out separately for each
dimension (sensory encoding and decisional effort) along the stimuli and was
finally averaged across participants to produce a group-level grand average.

That approach was adopted to disentangle the neural correlates of basic
bottom-up perceptual processing indexing the tracking of the acoustic cue from
the neural correlates of the categorization difficulty reflecting the distance of
each stimulus from the phoneme identity criterion (48, 69).

fMRI: Neural Encoding of Parametric Information. Statistical parametric t scores
were obtained from local fMRI signals using a linear multiple regression model
with sensory encoding (F2 parameters or VOT value for each condition) and
decisional effort (−d′ value reported by each subject for each trial) as cova-
riates. Regression parameters were estimated in every voxel for each subject,
and parameter estimates then were entered in a between-subject random-
effects analysis to obtain statistical parametric maps. We identified brain ac-
tivation showing significant contrasts of parameter estimates with a voxelwise
(T = 3.21, P < 0.005, uncorrected) and clusterwise (P < 0.05, uncorrected) sig-
nificance threshold. All reported activations survived false discovery rate (FDR)
correction for multiple comparisons (P < 0.05) (70). Anatomical locations were
determined based on automated anatomical labeling. Regressors of interest
were constructed by convolving functions representing the events with the
canonical hemodynamic response function. For each continuum, a categorical
regressor modeled the “sound” event using a Dirac function time locked to
syllable onset. Two hierarchically orthogonalized parametric regressors (re-
ferred to as “sensory encoding” and “decisional effort” regressors) were
added to the sound regressor to capture the modulation of BOLD activity as a
function of F2 variation tracking and categorization difficulty. For illustrative
purposes (Fig. 1C and Fig. S2C), we used the rfx_plot toolbox (71) to split
F2 and d′ parametric regressors into six new onset regressors (simple onset
regressor without a parametric modulation), each containing all events for a
particular level of the stimulus continuum. Beta weights were reestimated for
each of these six onset regressors and were averaged across all subjects to get
the corresponding percent of signal change.

MEG: Neural Encoding of Parametric Information. We first used single-trial
signals on each sensor to perform parametric regressions at successive
times from −0.2 to 1 s following stimulus onset. For each participant and
each sensor, we calculated the time course of beta coefficients and then
computed cortical current maps with Brainstorm using the weighted
minimum-norm estimation approach, meaning that the time series for each
source is a linear combination of all time series recorded by the sensors (72).
Sources were estimated for each subject on the basis of individual MRI im-
ages. After realignment and deformation of each subject’s cortical surface,
sources were projected onto the standard Montreal Neurological Institute
(MNI)/Colin27 brain to perform grand mean averages. We then performed
within-group statistics to show the sensitivity to sensory encoding and de-
cisional effort dimensions. Note that both of the two transformations ap-
plied to the data (regression and source-projection) capture a linear
relationship between the observed and the expected data and can thus be
implemented in either order. This method was used to localize the sources of
sensory and perceptual decision components and to demonstrate that sen-
sory and decisional processing are hierarchically organized in time.

Single-trial–evoked signals on each sensor were also used to compute
source current maps for each trial. The inverse operators were generated
with the default MNE parameters and were applied at the single-trial level.
The estimated sources were morphed to the MNI brain. We then extracted
single-trial neural activity from regions of interest defined according to
Destrieux’s atlas (73) (G_temp_sup-Plan_tempo, G_temp_sup-G_T_transv,
G_front_inf-Opercular, G_front_inf-Triangul). Single-trial–evoked responses
projected on these selected sources were used in two ways:

i) For each participant, we regressed out single-trial neural activity to es-
timate spectral power of the beta coefficients via a standard Fourier
transform. Time–frequency analyses were carried out according to ex-
actly the same parameters defined in the previous paragraph, i-EEG Re-
cording and Preprocessing.We thus estimated the trial-to-trial variability
in neural signal from regions of interest at a given frequency that de-
scribe sensory encoding or decisional effort (t test against zero, P <
0.05, Bonferroni-corrected).

ii) For each participant, source activity in the pSTG and in the left IFG was
used to measure GC. While GC is classically used to assess causal influence
between two time series, we here computed GC for nonstationary time
series, such as oscillating neural signals (74, 75). We used a nonparamet-
ric test by computing a spectral density matrix factorization technique
on complex cross-spectra, obtained from the continuous wavelet trans-
form of source-reconstructed MEG time series. We then assessed the
linear directional influence between two brain areas, the pSTG and
the left IFG.
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GC was computed twice:

• From right pSTG to left IFG to determine whether activity in the IFG could
be predicted at trial t by including past activity from both the pSTG and
the IFG. Here we assume the information flow to be bottom-up.

• From left IFG to right pSTG to determine whether activity in the pSTG
could be predicted at trial t by including past activity from both the pSTG
and the IFG. Here we assume the information flow to be top-down.

Because we computed GC on nonstationary neural signals (i.e., evoked
activity from reconstructed sources), GC spectra were obtained in a non-
parametric manner by using wavelet transform, without going through the
multivariate autoregressive model fitting (74), and spectral GC was intended
to reveal a frequency-resolved GC. To do so, we used a spectral matrix fac-
torization technique on complex cross-spectra obtained directly from
wavelet transforms of the data. Wavelet transforms were computed at any
instant (1-ms resolution) of the syllable duration (360 ms) on a trial-by-trial
basis for each subject. For each subject, we then computed the mean GC
across trials and the corresponding SD. The original GC spectra were stan-
dardized to obtain a vector of z-values, one for each frequency.

We tested for significant frequency peaks separately for bottom-up and top-
down GC direction, directly comparing the z-transformed vectors obtained from
GC spectra to a zero-mean normal distribution, and corrected for multiple
comparisons with the Bonferroni method at P < 0.05. Our decision to focus on
the left IFG was empirically motivated. Previous papers (e.g., refs. 76–78) have
shown that the left IFG is consistently involved in articulatory processing during
speech perception and also in lexical information retrieval, both skills that are
engaged when categorizing ambiguous speech sounds, i.e., when the internal
perceptual decision criterion is difficult to reach, as in the current study.

MEG: Decoding Analyses. Decoding analyses were performed with the Neural
Decoding Toolbox (79), using a maximum correlation coefficient classifier on
single-trial–induced responses across all MEG sensors. Data from both
magnetometers and gradiometers were used. The pattern classifier was
trained on the response given by the participant and computed the corre-
lation between MEG data and the syllable identified (/ba/ or /da/) on each
trial. More specifically, the classifier was trained on 80% of the data, and its
performance was evaluated on the withheld 20% of the test data. The
splitting procedure between training and testing data was performed
50 times to reduce the variance of the performance estimate. The reported
final decoding accuracy is the average accuracy across the 50 decoding re-
sults. Classification accuracy is reported as the percentage of correct trials
classified in the test set averaged over all cross-validation splits.

Additionally, an ANOVA based on the second-level test across subjects was
applied to the test data to select those sensors that were significantly sensitive
to syllable identity at each time point. We then assessed statistical significance
using a permutation test. To perform this test, we generated a null distribution
by running the decoding procedure 200 times using data with randomly
shuffled labels for each subject. Decoding performance above all points in the
null distribution for the corresponding time pointwas deemed significant with
P < 0.005 (1/200). The first time decoding reaching significantly above chance
was defined when accuracy was significant for five consecutive time points.
Source localization associated with the decoding results was computed from
evoked trials using the MNE source-modeling method (see above).

i-EEG: Neural Encoding of Parametric Information. We performed the same
parametric regressions on i-EEG recordings from patient 1. These analyses were
done only on that patient, as he was the only patient for whom one shaft
showed a significant induced response to syllable perception. Shaft 1 colo-
calized to the site (the right pSTG) where spectral cue tracking was found with
fMRI and MEG. We selected the five deepest contacts on each shaft; those
contacts were located between the Heschl’s gyrus and the STG on shaft 1.
Parametric regressions were carried out at successive times, t, from −0.2 to 1 s
poststimulus onset, on each selected bipolar derivation, i.e., from the deepest
(1) to the most external (5) contact. We computed the power in each fre-
quency band at each time point of each beta coefficient, with a millisecond
resolution, similar to the induced power (between 2 and 150 Hz, with a 0.5-Hz

resolution below 20 Hz and with a 1-Hz resolution above 20 Hz) by applying a
TF wavelet transform, using a family of complex Morlet wavelets (m = 3–7).
For each contact, a null distribution was computed by repeating the identical
regression procedure 1,000 times with shuffled regressors. We used standard
parametric tests (t test against zero) to assess the statistical significance of each
parametric regression. The type 1 error rate (FDR) arising from multiple
comparisons was controlled for using nonparametric cluster-level statistics (80)
computed across contacts, time samples, and frequencies. We did not need to
correct for multiple comparisons across electrode shafts, as statistical tests
were run independently for each contact of each electrode shaft.

i-EEG: Decoding Analyses. We used a maximum correlation coefficient clas-
sifier [Neural Decoding Toolbox (79)] on single-trial–induced responses. The
classifier was trained to classify the i-EEG data into three categories that
corresponded to the three syllables identified by the patient (/ba/, /da/,
or /ga/). We applied the decoding procedure on time series using a cross-
validation procedure in which the classifier was trained on 90% of the trials
and was tested on the remaining 10%. Our recordings consisted of three
repetitions of each stimulus condition (48 stimuli from /ba/ to /ga/) for patient
1 (144 trials to be categorized) and six repetitions of each condition (288 trials
to be categorized) for patients 2 and 3. The cross-validation procedure was
repeated 1,000 times with a different split between training and testing
datasets on each iteration, and the results were averaged across all iterations.

We estimated single-trial decoding of the neuronal response induced by
different syllables using both uni- and multivariate classification. The univariate
classification was applied to each bipolar derivation (i.e., to each of the five
contacts of each shaft),whereas themultivariate classificationwasperformedon
neural activity from every bipolar derivation of one shaft (i.e., on the five
contacts of each shaft, pooled together) and then on all bipolar derivations of
patient 1 (on all contacts of the six shafts, pooled together), and finally on all
three patients (on all contacts of the 14 shafts, pooled together). Single-shaft
multivariate decoding was compared with mean univariate decoding com-
puted first fromeach contact and thenaveraged. Decoding accuracy is expressed
as the percent of correctly classified trials in the test set. A null distribution was
computed by repeating the identical classification procedure 1,000 times with
shuffled labels. We defined the number of classification repetitions with respect
to the number of multiple comparisons done from each contact (FDR-corrected
for univariate decoding performed on each of the five contacts, time samples,
and frequencies, FDR-corrected formultivariate decoding performed on each of
the six shafts, time samples, and frequencies, and FDR-corrected formultivariate
decoding performed on all shafts together, time samples, and frequencies).
Decoding accuracy was considered significant at q < 0.05 if accuracy exceeded
the randomized classification at two consecutive time points.

i-EEG: Correct-Minus-Incorrect Differences. The psychometric identification func-
tion with percentage reporting /ba/, /da/, or /ga/ was defined along the cor-
responding continuum. Boundary separations determine the accuracy of
categorical choice: The steeper the slope, the more accurate was the perceptual
decision. Patient’s ratings along the continuumwere used to split responses into
correct and incorrect trials. We subsequently computed the difference in neural
activity from selected bipolar derivations between correct and incorrect con-
ditions and then compared it with the zero-mean normal distribution thresh-
olding at q < 0.05 [FDR-corrected for multiple comparisons on shafts (30 shafts
tested for patient 1), time, and frequency dimensions]. This procedure was re-
peated 1,000 times with shuffled labels for correct and incorrect conditions.
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