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Abstract: During the formation of breast cancer, many genes become altered as cells evolve
progressively from normal to a pre-malignant to a malignant state of growth. How mutations
in genes lead to specific subtypes of human breast cancer is only partially understood. Here we
review how initial genetic or epigenetic alterations within mammary epithelial cells (MECs) can alter
cell fate decisions and put pre-malignant cells on a path towards cancer development with specific
phenotypes. Understanding the early stages of breast cancer initiation and progression and how
normal developmental processes are hijacked during transformation has significant implications for
improving early detection and prevention of breast cancer. In addition, insights gleaned from this
understanding may also be important for developing subtype-specific treatment options.
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1. Introduction

Over the past three decades, enormous strides have been made in understanding the genetic
and biochemical defects in cancer cells that are responsible for deregulated growth and proliferation.
Research has revealed critical mutations in many key cellular genes, specifically oncogenes and tumor
suppressor genes, within the genomes of a wide variety of human breast cancer cells. During the
formation of the majority of breast cancers, these genes become altered as cells evolve progressively
from normal to a pre-malignant to a malignant state of growth.

Although these findings have been most illustrative, they fail to inform us about the details of how
specific subtypes of human breast cancer begin. A significant number of genes have been catalogued
in the genomes of highly advanced breast carcinomas that are detected in the clinic [1]. While this
research has revealed the final steps leading up to the appearance of aggressive breast cancers, we have
only recently begun to uncover the nature of the early steps of breast cancer development. Here we
review how initial genetic or epigenetic alterations in mammary epithelial cells (MECs) can alter
cell fate decisions during the earliest steps of neoplastic transformation. We focus on work that has
identified the cell-of-origin for various breast cancer subtypes and how cell fate changes in different
precursor cells leads to tumors with different phenotypes and behaviors. This new understanding
has significant implications for early detection and prevention of breast cancer, as well as possible
development of improved therapeutics unique for each tumor subtype. However, in order to prevent
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breast cancer formation, much remains to be uncovered regarding how the cell-of-origin responds to
mutation, stress, DNA damage and aging.

2. Breast Cancer and Its Complex Heterogeneity

Breast cancer is a multifaceted disease, consisting of tumors with varying levels of heterogeneity,
which includes differences in clinical characteristics, molecular profiles, metastatic behavior, and
therapeutic responsiveness. Breast tumors are classified based on the tumor’s morphology and
structural organization, with the most common histological type of invasive breast tumor being
invasive ductal carcinoma [2,3]. In addition to morphological profiling, immunohistochemical analyses
for specific markers—including estrogen receptor (ERα), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2/NEU/ERBB2)—have allowed breast tumors to be classified
into different subtypes. These categories include: ERα+ (ERα+/HER2´); HER2+ (ER´/HER2+); triple
negative (TN; ERα´/PR´/HER2´), and triple positive (ERα+/PR+/HER2+) [2]. These subtypes
also have been correlated with trends in overall prognosis and helped identify tumors that may
respond favorably to targeted therapies [2]. These general immunohistochemical subtypes also contain
heterogeneity within their respective groups. For example, TN breast cancers demonstrate diverse
histological patterning and few consistently recurring mutational trends aside from TP53, PTEN, and
PICK3CA, the latter concern being a large obstacle for developing targeted therapies [4]. Recently,
TN breast cancer has been subcategorized into six subtypes; the majority of those subtypes correlate
with a basal-like profile, though some overlap with other molecular subtypes [4]. Though currently less
used in clinical settings, molecular profiling, as determined by high-throughput gene expression and
hierarchical clustering, is another way breast tumor heterogeneity is defined. This method classifies
tumors into several “intrinsic” breast cancer subtypes: luminal-like (also further subdivided into
luminal A and luminal B), basal-like, HER2-enriched, and claudin-low [5–7].

Two models have emerged that attempt to explain the diverse heterogeneity observed in breast
cancer: (1) the “mutation-of-origin” model or (2) the “cell-of-origin” model. The first model posits
that all tumor subtypes are derived from a common precursor cell—a bipotent mammary stem
cell—but that specific genetic and epigenetic alterations acquired during the process of neoplastic
transformation affects that cell’s ability to commit to either the luminal or basal lineage (Figure 1a).
Thus, mutations that lock the stem cell’s progeny towards differentiating down the luminal lineage
would result in luminal-type tumors, while those that trap stem cells into the basal fate would give rise
to basal-like tumors. Based on this assumption, one would expect to observe common and recurring
mutations in specific breast cancer subtypes. Indeed, large-scale sequencing efforts have shown
that luminal- and basal-like breast cancers exhibit specific and generally non-overlapping mutations.
For example, amplification of cyclin D1 and MDM2 or mutations in TBX3 and RUNX1 are preferentially
observed in luminal-like breast cancers, while mutations in p53, pRb, BRCA1 and PTEN are commonly
found among basal-like tumors [1].

In contrast, the “cell-of-origin” model hypothesizes that a cell’s differentiation program is so
tightly encoded it survives the neoplastic transformation process (Figure 1b). Thus, luminal-type
tumors would be derived from luminal progenitor cells while basal-type tumors would be derived
from basal/myoepithelial progenitor cells. This theory is supported by the fact that molecular
profiles of luminal-type tumors share many similarities with that of normal luminal mammary
epithelial cells; they express luminal cluster genes (cytokeratins (CKs) 8, 18, 19, and 7) as well as
luminal differentiation-associated genes (GATA3, EPCAM, MUC1, CD24, and ERα) [3,5]. Likewise,
basal-like tumors closely resemble gene expression programs of their normal basal mammary epithelial
counterparts, with expression of basal cluster genes including CKs 5, 6, and 17, as well as CD49f, CD44,
LAMININ, and p63 [3,5]. In addition, experimental support for this model comes from studies where
transforming different cell types with the same set of oncogenes gives rise to tumors with different
characteristics and phenotypes that are reminiscent of the cell-of-origin [8,9].



J. Dev. Biol. 2016, 4, 4 3 of 13

In reality however, a third hybrid model has emerged: breast cancer heterogeneity and subtype
differences appear to arise from a combination of both the mutation-of-origin and the cell-of-origin
(Figure 1c). How these two categorical drivers of breast tumor identity and diversity interact is still
being investigated, but recent exciting discoveries have begun to tease apart the convergence of cellular
and mutational origins of breast cancer.
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Figure 1. Schematic models of origins of breast cancer heterogeneity (a) Model I posits that
mutations associated with neoplastic transformation determine subtype; (b) Model II posits that
the cell-of-origin identity determines subtype during neoplastic transformation; (c) Model III posits
that both mutation-of-origin and cell-of-origin contribute to the path of disease progression in regards
to subtype development.

3. Cells-of-Origin and Impact on Breast Cancer Subtypes

Several complementary and important advances in the field have occurred to identify the cellular
origin of breast cancer. First, gene signature sets for the various subsets of normal mammary epithelial
cells—including mammary stem cell (MaSC)-enriched, luminal progenitor, mature luminal, and
stromal populations—were derived [3,10,11]. These normal gene signatures were subsequently
compared to gene expression datasets for the breast cancer molecular subtypes. As hypothesized, the
luminal gene signature had the highest degree of overlap with the luminal-like tumor type. Similarly,
the stromal gene signature correlated with claudin-low type tumors, a result consistent with the
mesenchymal features characteristic of this subtype [10]. The claudin-low transcriptional profile is
also similar to the metaplastic CD10+ profiles and expresses markers of the epithelial-to-mesenchymal
transition (EMT) and cancer stem cells [12]. Remarkably however, the expression signature of basal-like
tumors showed a remarkable similarity to the luminal progenitor gene signature [10]. This finding
was further supported by immunophenotypic profiling of human breast cancer tissues that revealed
that basal-like tumors as well as Her2 tumors were comprised of luminal (EpCAM+/CD49f+) cells [13].
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Therefore, not surprisingly, the gene signature of HER2 tumors does not overlap with any normal
mammary epithelial cell type [3,10].

Second, experimental evidence functionally defining the cellular origins of breast cancer was
reported [14,15]. Normal luminal and basal mammary epithelial cells were isolated and sorted from
reduction mammoplasty tissue and infected using various combinations of transforming oncogenes;
these infected cells were immediately implanted into immunocompromised humanized mice to create
spontaneous tumors [14,15]. When luminal cells were infected and implanted into mice, they formed
both ER+ luminal-like tumors and ER´ basal-like tumors. In contrast, when basal cells were infected
and implanted into mice, rare metaplastic tumors formed, which resembled the claudin-lo subtype.
These studies were the first to show that in human breast tissue, cells from the luminal lineage contained
precursors to basal-like breast cancer [14,15]. The finding that the cell of origin to luminal and basal
tumors are within the luminal lineage has also been supported in mouse tumor models. MMTV-PyMT
and MMTV-Neu mice develop tumors of the luminal-like subtype, while Etv6-NTRK3 mice form
basal-like mammary tumors. In all three of these models, tumors were found to originate from CD61+

alveolar progenitor-enriched luminal cells [16]. Using lineage-specific drivers of cancer, targeted loss
of BRCA1 in luminal cells, but not basal cells, produced basal-like tumors [17]. A more recent study
using targeted deletion of Brca2, Pten and p53 in mice also showed that when these genes were lost in
basal MECs, the same tumor phenotype always emerged—one that resembled claudin-low tumors.
In contrast, depending on the initiating genetic lesion in luminal MECs, tumor-initiating cells from
this lineage gave rise to basal-like, luminal-like, and normal-like tumors [18]. This important study
not only demonstrated that multiple mammary tumor subtypes can arise from the same cell-of-origin
pool, but also that molecular subtype cannot be used to infer tumor cell-of-origin identity. This study
also illustrates how both the mutation-of-origin and the order in which the mutations occur influences
the path of neoplastic transformation.

4. Mutations-of-Origin and Impact on Breast Cancer Subtypes

If luminal cells, and most likely luminal progenitor cells, are the precursors to the most common
forms of breast cancer, then it stands to reason that genetic mutations contribute strongly to the
fate of luminal cells during cancer formation. A classic example of this has been shown in women
who inherit mutations in the Breast Cancer Associated 1 gene (BRCA1). Women with mutations
in BRCA1 preferentially develop basal-like tumors, and only recently has exploration into the
underlying mechanism for this correlation begun to yield results. Gene expression analysis of
BRCA1-associated breast cancer strongly correlates with the gene expression signature of luminal
progenitor cells; BRCA1-mutation carriers in this study appeared to contain an expanded luminal
progenitor population [10]. However, a different study also examining cells from BRCA1-mutation
carriers failed to observe this expansion; rather they found an expansion of the basal progenitor
population [14]. Despite the increased number of basal cells in BRCA1-mutation carriers, this study
showed that the luminal cells, and not the basal cells, were the origins of basal-like breast cancer [14].
When probed more deeply, it was found that luminal progenitor cells from BRCA1-mutation carriers
exhibited a defect in differentiation, one in which progenitor cells could not give rise to mature cells.
Instead, progenitor cells gave rise to luminal cells that expressed basal markers [14]. This revealed that
an early genetic mutation, even prior to cancer formation, could alter the fate of the cell-of-origin so
that it was predisposed for forming tumors of a specific subtype.

Mouse tumor models have also supported the notion that the fate of luminal progenitor cells can
be affected by transforming oncogenes. In mice harboring mutations in the PI3K-pathway effector
PIK3CA, mammary tumors arise with various characteristics including those of basal-like breast
cancer. Interestingly, luminal cells in these mice exhibit an altered fate and de-differentiate into
multipotent stem-like cells [19–22]. Viral introduction of tagged oncogenes (ErbB2, PyMT) into
luminal cells in vivo can also influence cell fate during neoplastic transformation [21]. In this model, a
small percentage of luminal cells demonstrated basal marker (K5+) expression following oncogene
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transduction indicating that luminal cells were adopting a basal fate [23]. These findings all support
the concept that gene mutations do affect the fate of the cell-of-origin, directing tumor phenotype
during neoplastic transformation.

5. Mechanisms Affecting Cell Fate Changes

If luminal-committed progenitor cells are the precursors for the most common forms of breast
cancer, including basal-like, how is it that lineage-restricted cells can adopt phenotypes of a different
lineage? Can other precursor sources also undergo similar cell fate switching mechanisms that
contribute to subtype development as well? De-differentiation and trans-differentiation both have
been established as viable options for cell fate switching in the mammary gland, though the exact
mechanisms have only begun to be elucidated.

In the case of BRCA1-mutation carriers, aberrant expression of the transcription factor Slug was
shown to be the culprit for cell fate switching. Mutation in BRCA1 was reported to promote stability of
the Slug protein [14]. Slug in turn could enhance the expression of basal and stem-related genes as
well as associate with and recruit the lysine-specific histone demethylase LSD1 to the promoters of
luminal genes to prevent their expression [24]. This role as a cell fate regulator was confirmed in vivo
using a functional Slug knockout model, which revealed the expression of luminal genes in basal cells,
solidifying the importance of Slug as a determinant of basal cell identity [24].

In other contexts, the mechanisms that induce cell state transitions or promote lineage switching
are less clear. Whether the switch in cell fate occurs though trans-differentiation or de-differentiation
into a more unrestricted primitive state is not known. Examples from other tissues suggest that
both can occur and that the cell fate decision may be cell type- or mutation-specific. In the pancreas,
trans-differentiation of acinar cells into duct-like cells after Notch- and Kras-drive reprogramming
eventually leads to ductal intraepithelial neoplasia [25,26]. However, in basal cell carcinoma,
interfollicular epidermal cells serve as the cells-of-origin, and are reprogrammed back into a more
progenitor-like state before progressing towards carcinoma, possibly by transitioning through an
EMT phase [27–29]. Likewise in the intestine, while LGR5+ or BMI1-expressing stem cells do
give rise to adenomas, villus cells with abnormal Wnt signaling are able to de-differentiate and
exhibit tumor-forming capacity [28–32]. These studies show that identity changes within specific cell
populations can occur through multiple routes during tumor formation and may be dependent on the
cells-of-origin as well as the early oncogenic events during neoplastic transformation.

In the mammary gland, transplantation can promote lineage switching by inducing
de-differentiation of restricted progenitors into bipotent stem cells [33–35]. Interestingly, Slug appears
to control this multipotent fate potential of MECs during transplantation but also during tumorigenesis.
MECs from mice expressing a mutant of Slug that lacks transcriptional activity are unable to unlock
stem cell programs needed to regenerate mammary tissue following transplantation or to form tumors
driven by Myc [24,36].

While it has been shown that lineage switching of MECs can occur through activating
multipotency, there is also evidence demonstrating that luminal cells can directly trans-differentiate
into basal cells without having to transition through a stem cell intermediate. Expression of the
hippo transducer TAZ was sufficient to promote basal cell fate through regulating expression of
basal lineage genes in concert with the SWI/SNF chromatin-remodeling complex [37]. Interestingly,
elevated TAZ expression and gene amplification is associated with a basal-like tumor phenotype and
correlates with poor survival, possibly suggesting that selection for a basal MEC lineage regulator
during tumorigenesis may encourage a shift towards a more basal-like cell state [1,37].

Another regulator of basal cell identity is LBH (limb bud and heart development), which is a
Wnt-controlled transcriptional co-factor expressed in a rare population of stem-like cells that reside
within the mammary basal lineage [38]. It was shown to control basal cell identity by inducing ∆Np63
gene expression while also repressing ERα gene expression. Loss of LBH impeded normal mammary
gland development and consequently its expression is crucial for mammary stem cell maintenance
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and function, as well as lineage specification [38]. As LBH is overexpressed in basal-like breast cancer,
as suggested above for Taz, its selective activation during neoplastic transformation may influence
the path of disease progression in relation to cell fate and thus ultimately affect breast tumor subtype
determination [39,40].

Cell fate switching has also been shown not only to occur in the luminal cell compartment of the
mammary gland, but in the basal cell compartment as well. Mice lacking the transcriptional repressor
Ovol2 exhibit disrupted mammary morphogenesis because loss of Ovol2 in basal cells causes them
to become non-epithelial cell types, including fibroblast and muscle [41]. As Ovol2 is significantly
downregulated in claudin-low-type breast cancers, this suggests that cell identity-related disruptions
within the basal cell compartment may also contribute to subtype specification during breast cancer
development [41]. In addition, this fortifies the notion that basal cells can serve as the precursors to
claudin-low/metaplastic tumors that exhibit non-epithelial features.

While transcription factors are the major orchestrators of directing and maintaining cell identity
programs, epigenetic mechanisms—such as DNA methylation and histone modifications—enable
activation or repression of transcription factors and thus are also master controllers of such
transcriptional programs. In the breast, the relationship between gene expression and DNA
methylation was shown in sorted hMECs [42]. Sorted CD44+ progenitor cells demonstrated
hypomethylation on promoters of genes related to pluripotency and self-renewal functions. Many of
these genes were targets of the polycomb repressive complex 2 (PCR2) component Suz12 and were also
highly expressed in the CD44+ progenitor-enriched cell population. In contrast, more differentiated
CD24+ cell populations exhibited increased DNA methylation at promoters of Suz12 target genes,
suggesting that differentiation may induce epigenetic marks that block activation of stem programs
and contribute to directing cell identity [42]. A more recent study also established a similar but more
comprehensive epigenetic/transcriptional map by comparing the epigenetic landscape of cells with
their transcriptome profiles. Using diverse RNA, DNA, and chromatin integrative analyses, Gascard et
al. identified and defined various unmethylated regions (UMR) in regulatory elements of genes that
direct cell type [43]. When comparing these UMRs in luminal versus basal cells, there were almost
twice as many UMRs present in the proximal regulatory regions of various transcription factor genes
in the luminal cells and that these cell-type specific UMRs correlated with increased gene expression of
these transcription factors [43].

How DNA methylation fate is marked in these different cell populations is beginning to
be elucidated. The DNA methyltransferase DNMT1 was shown to be necessary for MaSC
maintenance; its loss in vivo resulted in decreased basal (CD24+/CD49fhi) and luminal progenitor
(CD24+/CD49floCD61+) populations, lowered their regenerative and repopulating ability, and
hindered tumorigenesis [44]. Uncovering the ability of this epigenetic regulator to impact both
normal mammary function and tumor progression is a first step in beginning to understand the
mechanism behind DNA methylation influences on mammary cell fate and how that may impact
tumorigenic potential.

Histone modifications are another class of epigenetic marks that are critical regulators of MEC
identity and fate switching. Global histone methylation profiles of sorted mouse MEC populations were
shown to correlate with cell type-specific gene expression profiles. For example, genes upregulated
in luminal progenitor (CD24+/CD49flo/CD61+) versus basal/MaSC (CD24´/CD49fhi) cells had
increased H3K4me3 and decreased H3K27me3 marks, and vice versa for downregulated genes. Similar
correlative trends between gene expression and histone methylation patterns were observed when
comparing the luminal progenitor and mature luminal (CD24+/CD49flo/CD61´) populations [45].
There was also an interesting association between H3K27me3 marks during hormone-dependent
changes during pregnancy; H3K27me3 patterns correlated with gene expression patterns. This trend
was linked with EZH2-dependent maintenance of H3K27me3 marks, as loss of EZH2 decreased
the presence of this mark [45]. Another regulator of histone modifications, the histone methylation
sensor Pygo2, was shown to be crucial for proper stem/progenitor maintenance in the mammary
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gland, as knockout of Pygo2 in a mouse model exhibited a decrease in basal/MaSC and luminal
progenitor populations [46]. Additionally, in these mice, the basal/MaSC population showed a
luminal differentiation bias, suggesting that loss of this epigenetic regulator was shifting basal
cell identity towards a more luminal one. Mechanistically, the increase in luminal fate of the
Pygo2-deficient basal/MaSC was reported to occur through Pygo2 normally maintaining a bivalent
(H3K4me3/H3K27me3) mark at the Notch3 gene promoter and thus its absence allowed activation of
Notch signaling and its related luminal differentiation programs [46]. These initial characterizations of
cell type-specific and developmental stage-specific trends in histone methylation further emphasize
the importance of epigenetics and the molecular regulators of those marks in regulating mammary cell
identity and function.

One characteristic of histone modifications that is particularly crucial in cell fate decisions and
how they may be important during malignant transformation are bivalent chromatin marks. Changes
in bivalency may shift cell identity into one lineage or another and may therefore affect tumor
phenotype. Putative bivalent domains are present in various gene subsets in both luminal and
progenitor cell populations, demonstrating that MECs in either lineage may be poised for lineage
switching, highlighting the innate plasticity of epithelial cells in the mammary gland [47]. In cancer,
bivalent chromatin marks were shown to be important in determining cancer stem cell (CSC) fate.
The EMT transcription factor Zeb1 has bivalent chromatin marks at its gene promoter in non-CSCs
of basal breast cancer tissue yet upon appropriate signaling can shift to allow for active transcription
of Zeb1, thereby enhancing cell plasticity and activating CSC programs [48]. Although the plasticity
of bivalency was observed in cancer cells, it is plausible that normal progenitor cells might contain
bivalent marks in key transcription factors making them poised for cell state changes. More work is
needed to fully understand how the epigenetic landscape of normal cells can influence cell fate and
contribute to cancer.

Taken together, regulators of MEC identity are crucial to cell fate determination and switching,
and manipulation of MEC lineage regulators can affect the ability of a progenitor cell to make normal
cell fate decisions. Additionally, abnormal versions or expression of these regulators during cancer
initiation seem to impact tumor phenotype. Identifying additional epigenetic and transcriptional
regulators of mammary epithelial cell fate and linage transitioning will provide deeper insight
into the complex regulation of differentiation and also will define important molecular drivers of
tumor phenotype.

6. Exploiting Cell Fate Changes During Development

As initial genetic mutations can alter the fate of tumor initiating/precursor cells, thereby dictating
tumor phenotype, it is also plausible that naturally occurring cell fate changes during development
might also be co-opted to drive tumor phenotype. For example, pregnancy is associated with acute
expansion of the mammary epithelium, particularly the luminal population. Various stem/progenitor
populations have been identified prior to and after pregnancy, and these primitive bipotent cells
demonstrate varying longevities and contributions to gland restructuring [49–54]. Given that parity,
while protective in the long term, increases short-term breast cancer risk, it is possible that the
pregnancy-related changes to luminal MECs primes the gland to be more receptive to cell state
transitioning and might be exploited and cooperate with early drivers of malignancy that are associated
with pregnancy [3,55].

As another example, the actions of the steroid hormones progesterone and estrogen through the
actions of their receptors might play a role in cell fate decision upon transformation. Progesterone
exhibits different modes of action in luminal and basal compartments during development. In luminal
cells, progesterone increases Rankl expression, which in turn promotes the proliferation of adjacent
luminal epithelial cells [56]. Progesterone also can induce the expression of growth hormone,
resulting in increased progenitor activity when measured in vitro [57]. In basal cells, progesterone
stimulates Wnt signaling to promote expansion of the basal progenitor cells as well as induce basal
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cell proliferation [58–60]. Thus, it is possible that progesterone might increase the number of potential
cancer precursor cells, which might be targets for mutation and subsequent transformation. Consistent
with this, large epidemiological studies have revealed that women who were on hormone replacement
therapy containing estrogen and progesterone, but not estrogen alone, had a significantly higher
incicence of breast cancer [61–63]. The mechanism for this remains unclear, but it is plausible that it
could be due in part, to the effects of progesterone on cell fate changes and progenitor cell biology.

Historically, ERα expression has been thought to be limited to mature luminal cells within the
developing mammary gland as estrogen is hypothesized to function through an indirect proliferative
response [64]. However, rare populations of ERα+ cells have been identified in populations with
progenitor-like characteristics [65]. The independent function of ER signaling has been difficult to
ascertain as ER and PR are commonly co-expressed and estrogen can increase the expression of
PR [64,66]. Regardless, ER is a powerful mediator of a number of transcription factors, which in turn
regular cell fate within the mammary gland. For example, both PR and ER regulate Stat5a, which is
necessary for ductal branching and tumorigenesis [67].

Aging is another naturally occurring stage where cell fate changes may contribute to breast
cancer subtype proclivity. Unlike in young women where basal-like breast cancers are found more
frequently, luminal-like hormone-positive breast cancers are the major tumor subtype observed in
older women [68]. The underlying mechanism behind this tumor subtype bias associated with
aging is unclear; however, evidence has emerged that indicates that luminal cells in breast tissues
of older women exhibit altered phenotypes and behaviors. Firstly, the number of MECs expressing
ERα increase, as well as a concurrent trend towards increased co-expression with the proliferation
marker Ki67, suggesting shifts in differentiation and proliferative potential of luminal cells [69–72].
Second, disease-free breast tissue of older women contains an abnormal luminal progenitor population
with impaired differentiation capacity, as its progeny gives rise to luminal cells expressing basal
markers [73,74]. Third, while luminal progenitor cells contain abnormally short telomeres independent
of age compared to other populations of normal mammary epithelial cells, a decline in telomerase
activity—often associated with activation of differentiation programs—was found with increasing
age [75,76]. Taken together, these findings suggest that aging affects the ability of the luminal lineage
to carry out normal differentiation and stem cell function, thus resulting in defective capacity of these
cells to properly maintain and/or shift identity.

Whether or not these changes contribute to the luminal subtype bias observed during aging has
yet to be established. However, there is some emerging evidence that might support this connection.
Age-related gene expression signatures from disease-free pre- or perimenopausal breast tissue of young
women (40 years) correlated with higher grade and aggressive breast tumors, while gene expression
signatures from disease-free pre- or perimenopausal breast tissue of older women (>40 years) correlated
with lower grade and less aggressive breast tumors [77]. This suggests that aging may alter the
transcriptional landscape of the breast, potentially in a way that influences breast tumor development.
Interestingly, this same study also tested for gene expression changes based on menopausal status alone
and found no significant trends separating gene expression profiles of pre/peri and post-menopausal
tissue. Despite this, the hormonal changes and their downstream effects that occur with menopause
need to be better characterized to truly determine what effects this important age-related shift in
endocrine signaling might have on the breast and its cell populations and how it interacts with other
aging-related processes.

Epigenetic changes have also been reported to contribute to aging-related changes to the breast.
In normal human breast tissue, older women exhibited increased DNA methylation of CpG islands
and polycomb group protein target gene (PCGT) enrichment [78]. Intriguingly, a subset of these
CpG gene loci were also hypermethylated in tumors, with some showing a specificity for ER-positive
tumors—the subtype that is more prevalent in older women—thus, drawing a connection between
epigenetic changes that occur during aging and those that occur during tumor development [78].
Further investigation into the mechanisms by which epigenetic regulation influences cell identity
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within the mammary gland is needed. In particular, understanding how aging induces shifts in the
epigenome and subsequent functional changes that contribute to altered cell fate decisions will be
needed to determine how this can influence the heterogeneity of breast tumors.

Collectively, these observations put forth the possibility that as the breast ages, changes in tumor
initiating/precursor cells might alter their differentiation potential and cell fate thereby priming the
epigenetic landscape to impact tumor phenotype following neoplastic transformation. Additional
studies and experimental evidence using models of aging will be necessary to directly support
this hypothesis.

7. Conclusions

As discussed above, recent work has endeavored to understand the genetic and cellular changes
to mammary epithelial cells that occur during mammary development and how they may be
utilized during neoplastic transformation to promote breast tumor heterogeneity. Understanding
the mechanisms that drive cell fate switching during the transformation process may be the key to
improved therapies, and even disease prevention. It is too early to know whether this understanding
will impact treatment but it may shed insights into how we may be able to prevent breast cancer from
developing or progressing in the future.
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