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Abstract: Bariatric surgery (BS) results in metabolic pathway recalibration. We have identified
potential biomarkers in plasma of people achieving type 2 diabetes mellitus (T2DM) remission
after BS. Longitudinal analysis was performed on plasma from 10 individuals following Roux-en-Y
gastric bypass (n = 7) or sleeve gastrectomy (n = 3). Sequential window acquisition of all theoretical
fragment ion spectra mass spectrometry (SWATH-MS) was done on samples taken at 4 months
before (baseline) and 6 and 12 months after BS. Four hundred sixty-seven proteins were quantified by
SWATH-MS. Principal component analysis resolved samples from distinct time points after selection
of key discriminatory proteins: 25 proteins were differentially expressed between baseline and
6 months post-surgery; 39 proteins between baseline and 12 months. Eight proteins (SHBG, TF,
PRG4, APOA4, LRG1, HSPA4, EPHX2 and PGLYRP) were significantly different to baseline at both
6 and 12 months post-surgery. The panel of proteins identified as consistently different included
peptides related to insulin sensitivity (SHBG increase), systemic inflammation (TF and HSPA4—both
decreased) and lipid metabolism (APOA4 decreased). We found significant changes in the proteome
for eight proteins at 6- and 12-months post-BS, and several of these are key components in metabolic
and inflammatory pathways. These may represent potential biomarkers of remission of T2DM.

Keywords: bariatric surgery; SWATH-MS; proteomics; diabetes; remission

1. Introduction

Obesity is a chronic disease which in many cases requires complex management, while
being recognized as the fastest growing problem affecting public health worldwide [1–3].

Obesity often has multiple predisposing and precipitating factors and is itself asso-
ciated with a high mortality rate and with comorbid conditions such as type 2 diabetes
mellitus (T2DM), metabolic syndrome, hypertension, dyslipidemia, several cancers [4],
premature cell ageing [5], sleep apnea and osteoarthritis [6,7]. Furthermore, obesity is a
risk factor for dementia and mild cognitive impairment [8].

Bariatric surgery (BS) has been shown not only to be an effective therapy for weight
loss, but also improves a variety of metabolic parameters conferring protection from cardio-
vascular (CVD) and other diseases [9,10]. Immediate post-operative weight-independent
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effects combined with weight loss can result in remission of T2DM in up to 80% of pa-
tients [10]. Remission is observed also in patients undergoing gastrointestinal surgery
similar in design to BS for other reasons such as gastric cancer, which reportedly has
better T2DM remission rates [11]. Normalization of glucose metabolism occurs through
mechanisms that have not yet been fully determined [11,12]. However, different studies
have shown that reductions in waist circumference after BS are associated with a greater
probability of T2DM remission [13–15].

The study of proteins and their functions has been important in helping investigators
to decipher the cellular mechanisms that relate to particular phenotypes [16,17], in addition
to accelerating the search for biomarkers for predicting disease pathogenesis and outcomes.

Sequential window acquisition of all theoretical fragment ion spectra mass spectrome-
try (SWATH-MS) is a data independent acquisition method, which aims to enable larger
clinical studies by offering relative quantification across multiple samples [18]. It allows a
complete and permanent recording of all fragment ions of the detectable peptide precursors
present in a biological sample [19].

In order to have a wider view of the changes that occur after weight loss induced by
BS as they relate to remission of T2DM and begin to understand if there are potential early
biomarkers for T2DM remission, we set out to identify the changes in the plasma proteome
of T2DM patients following BS.

2. Materials and Methods

Ten individuals (2 males and 8 females) were selected from the subset of those who
had achieved remission of T2DM following Roux-en-Y gastric bypass (n = 7) or sleeve
gastrectomy (n = 3) BS as participants in a larger prospective study (please see Adam
et al. for further details of methodology [20]). All were of Caucasian ethnicity. Patients
were selected on the basis they had achieved remission of T2DM at 12 months. Remission
was defined as reduction of glycosylated haemoglobin (HbA1c) below 42 mmol/mol with
cessation of all anti-diabetic therapy at 12 months [21]. SWATH-MS proteomics was carried
out on 29 plasma samples with the following sample sub-groups: baseline samples, pre-
bariatric surgery (taken at 4 months prior to BS (n = 10); post-bariatric surgery samples,
6 months follow up (n = 10); post-bariatric surgery samples, 12 months follow up (n = 9).

2.1. Sample Preparation for SWATH-MS

Plasma samples (10 µL) were immunodepleted using top 12 abundant protein deple-
tion spin columns from Pierce Biotechnology, UK. Depleted plasma was buffer exchanged
and concentrated using Amicon centrifugal filters. Total protein concentration was de-
termined by microplate format (bicinchoninic acid assay). Each sample was reduced,
alkylated and digested prior to lyophilisation. More details available in McGurk et al.,
2020 [22].

2.2. Liquid Chromatography Mass Spectrometry (LC-MS) Instrument Analyses

Samples were analysed by SWATH-MS with a micro-flow LC-MS system comprising
an Eksigent nanoLC 400 autosampler and an Eksigent nanoLC 425 pump coupled to
a SCIEX 6600 Triple-TOF mass spectrometer with a DuoSpray Ion Source. The system
was configured for a trap-elute elute analysis in which sample was injected from the
autosampler (8 ◦C) onto a trap column (YMC- Triart C18; length: 5 mm; ID: 0.5 mm;
particle size: 3 µm; pore size: 120 Å) with loading buffer mobile phase (10 µL min-1, 3 min,
2% acetonitrile, 0.1% formic acid) then eluted through an analytical column (YMC-Triart
C18; length: 150 mm; ID: 0.3 mm; particle size: 3 µm; pore size: 120 Å; 30 ◦C) with the
required analytical gradient into the mass spectrometer source. The system was controlled
by Analyst software v1.7.1 and Eksigent control software v4.2 (SCIEX, Nieuwerkerk aan
den IJssel, The Netherlands).

Peptides were eluted with an analytical gradient (pick-up 10 µL, 5 µL/min, 68 min)
and analysed using a mass spectrometer method with a total duty cycle of 2.59 s comprising
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a TOF MS1 scan (m/z 400–1250, 250 ms) followed by 100 SWATH-MS scans (m/z 100–1500,
20 ms) with variable m/z isolation widths, collision energy and collision energy spread.
SWATH maps generated via microflow LC on line to mass spectrometry for 68 min (as
described in reference [23]). SWATH-MS data were searched using openSWATH (Version
2.0.0) against the Stoller human serum spectral library. Peptide matches were scored using
pyProphet (Version 0.18.3) and search results were aligned using the feature alignment
script from MSproteomicstools. Downstream analysis was performed in R using the
bioconductor (release 3.5) packages SWATH2Stats and MSstats.

2.3. Determination of Glycosylated Haemoglobin, Glucose and Insulin

HbA1c was measured on an Hb9210 Premier autoanalyser (boranate affinity and high-
performance liquid chromatography (Menarini Diagnostics, Wokingham, Berkshire, UK).
Glucose and insulin were measured using Abcam ELISA kits (Abcam, Cambridge, UK) and
using the HOMA2 calculator (https://www.dtu.ox.ac.uk/homacalculator/ accessed on 2
May 2020) were used to calculate the homeostatic model assessment of insulin resistance
(HOMA-IR) and beta cell function (HOMA-B) [24].

2.4. Ethics

Informed consent was obtained from each participant before recruitment. This re-
search adhered to the tenets of the Declaration of Helsinki. All participants provided
written informed consent. The study was approved by the Greater Manchester Research
Ethics Committee (REC No:11/NW/0731, IRAS ID: 85208)

3. Statistical Analysis

Statistical analysis of anthropometric and biochemical measurements was carried out
on SPSS for Mac (Version 23.0, IBM Corporation, New York, NY, USA). Normality was
determined by using the Shapiro-Wilk test and by visualising the histogram and normal
Q-Q plot. To assess within and between group differences we used one-way analysis
of variance for parametric variables and Friedman’s test for non-parametric variables.
A significant p value was considered to be <0.05 (post hoc—Tukey). Statistical analysis
was performed using all proteins quantified at both time points in 3 or more individuals;
6 months vs. baseline = 314 proteins; 12 months vs. baseline = 317 proteins; 6 months vs.
12 months = 309 proteins.

Principal component analysis (PCA) and heatmaps with hierarchical clustering (Eu-
clidean distance) were plotted to assess separation between time points. Differential
expression analysis was performed using the LIMMA package in R (version 3.46.0) on pro-
tein fold changes calculated for each of the 10 individuals at 6- or 12-months post-surgery
relative to pre-surgery samples, taking a p-value ≤ 0.05 as significant.

4. Results

Longitudinal sampling is of value in biomarker analyses. Thus, the anthropometric
and biochemical measurements were taken at baseline, 6- and 12-months as shown in
Table 1 and SWATH-MS data described below. Two men and 8 women with a mean age of
53 years were included in the analysis. Seven individuals underwent Roux-en-Y gastric
bypass and three underwent sleeve gastrectomy.

BS resulted in a significant reduction in body mass index (BMI) after 6- and 12-months
(p < 0.0001), systolic and diastolic blood pressure after 12 months (p < 0.05) but not 6 months,
HbA1c after 6- and 12-months (p < 0.0001). Fasting plasma glucose declined significantly
at both 6 and 12 months (p < 0.05). HOMA2-IR declined at 6 and 12 months but did not
reach significance (p = 0.57) and HOMA2-B (%) increased at 6 and 12 months (p = 0.10) but
this also did not reach significance (p = 0.14) (Table 1).

https://www.dtu.ox.ac.uk/homacalculator/


J. Clin. Med. 2021, 10, 3659 4 of 20

Table 1. Anthropometric and clinical measurements taken from patients before and after bariatric surgery.

Baseline 6 Months 12 Months p-Value

Number of samples 10 10 10
Age (years) 53 CI (46–60)

Sex 2 Males, 8 Females
Anthropometric and Clinical *

Height (cm) Male: 177 Female: 163 cm
BMI (kg/m2) 54.9 (10.3) 41.8 (6.96) * 38.6 (5.08) * † p < 0.0001
Systolic BP 135 (22.6) 123 (16.7) 116 (14.4) * p < 0.05
Diastolic BP 79.2 (17.3) 67.9 (14.1) 67.9 (11) * p < 0.05
Biochemical

HbA1c (mmol/mol) 56.0 (14.1) 40.0 (5.4) * 38.2 (6.25) * † p < 0.0001
Fasting plasma glucose 7.9 (3.5) 5.8 (2.0) 4.8 (0.70) p < 0.05

HOMA2-IR 0.57 (0.52) 0.489 (0.6) 0.34 (0.24) p = 0.57
HOMA2-B (%) 28.9 (18.2) 45.5 (32.7) 48.9 (16.7) p = 0.14

* Significant compares to baseline; † significant compared to 6 months; data are presented as mean (standard deviation); CI:
confidence interval.

All 10 individuals underwent remission of T2DM achieving HbA1c less than 42
off all diabetes medications after 12 months. Following SWATH-MS analysis, principal
component analysis (PCA) revealed very little separation between the different time points
when including all 467 quantified proteins (Figure 1). Using differential expression analysis,
25 proteins were significantly different between pre-surgery and 6 months post-surgery
samples (Table 2, Figure 2A). These include three apolipoproteins (APOC3, APOM and
APOA4), sex hormone binding globulin (SHBG), serotransferrin (TF) and angiotensinogen
(AGT). Hierarchal clustering with log2 protein abundances scaled across all pre-surgery
and 6 months post-surgery samples shows that, with just the 25 significant proteins, it
is possible to discriminate 6 months post-surgery from pre-surgery samples (Figure 2B).
PCA using log2 protein abundance ratios for each of the 25 discriminatory proteins across
all 10 individuals, again shows that the significant proteins largely separate pre-surgery
from 6-month post-surgery samples, with the 12-month post-surgery samples appearing
more similar to the 6-month post-surgery samples (Figure 2C). Gene ontology (GO) term
enrichment analysis of the 25 discriminatory proteins showed significant enrichment for
proteins involved in 55 main biological processes, among them and most important to
this context: response to stimulus, leukocyte mediated immunity, plasma lipoprotein
remodelling and protein-lipid complex remodelling pathways. All pathways displayed
had a Benjamini adjusted p-value ≤ 0.05 and a minimum of 3 proteins contributing to the
enrichment. The discriminatory proteins with the biggest fold enrichment (FE) changes
were APOA4, APOC3, APOM and AGT (FE = 96.35; p = 0.002).
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Pigment epithelium-derived factor (SERPINF1) −0.391 0.032 
C4b-binding protein alpha chain (C4BPA)  −0.393 0.032 

Figure 1. Principal component analysis of all identified proteins. Pre-surgery samples are coloured in blue, 6-month
post-surgery samples in green and 12-month post-surgery samples in red.

Table 2. Proteins showing a significant difference in expression between baseline and six months post-surgery.

Protein Names (Gene Symbol) Fold Change (Log2) p Value

Serotransferrin (TF) −1.068 <0.0001
Beta-Ala-His dipeptidase (CNDP1) −0.952 0.006

Complement C3 (C3) −0.555 0.008
Proteoglycan 4 (PRG4) −0.898 0.011
Cholinesterase (BCHE) −0.581 0.012

Sex hormone-binding globulin (SHBG) 1.485 0.013
Apolipoprotein M (APOM) 0.689 0.018

Protein disulfide-isomerase A3 (PDIA3) 1.527 0.021
Bifunctional epoxide hydrolase 2 (EPHX2) −0.412 0.022

Apolipoprotein A-IV (APOA4) −0.713 0.023
N-acetylmuramoyl-L-alanine amidase (PGLYRP) 0.391 0.024

Angiotensinogen (AGT) −1.036 0.025
T-complex protein 1 subunit theta (CCT8) −1.235 0.026

Heat shock 70 kDa protein 4 (HSPA4) −0.497 0.026
Leucine-rich alpha-2-glycoprotein (LRG1) 0.532 0.032

Pigment epithelium-derived factor (SERPINF1) −0.391 0.032
C4b-binding protein alpha chain (C4BPA) −0.393 0.032

Exportin-1 (XPO1) −0.746 0.033
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Table 2. Cont.

Protein Names (Gene Symbol) Fold Change (Log2) p Value

Immunoglobulin heavy constant mu (IGHM) −0.978 0.034
Alpha-1-acid glycoprotein 2 (ORM2) −0.742 0.036

Sulfhydryl oxidase 1 (QSOX1) −0.775 0.037
Apolipoprotein C-III (APOC3) −1.171 0.039

Basement membrane-specific heparan sulfate proteoglycan core protein (HSPG2) −0.435 0.041
Heparin cofactor 2 (SERPIND1) −0.415 0.042

Aminopeptidase (ANPEP) −0.395 0.048

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 6 of 20 
 

 

Exportin-1 (XPO1) −0.746 0.033 
Immunoglobulin heavy constant mu (IGHM) −0.978 0.034 

Alpha-1-acid glycoprotein 2 (ORM2)  −0.742 0.036 
Sulfhydryl oxidase 1 (QSOX1)  −0.775 0.037 
Apolipoprotein C-III (APOC3) −1.171 0.039 

Basement membrane-specific heparan sulfate proteoglycan 
core protein (HSPG2) −0.435 0.041 

Heparin cofactor 2 (SERPIND1) −0.415 0.042 
Aminopeptidase (ANPEP) −0.395 0.048 

 

(A) 

P01019

P02656

P02787

P04278

P30101
P50990

0

1

2

3

−1 0 1
Fold Change (log2)

p
 v

al
ue

 (−
lo

g1
0)

Figure 2. Cont.



J. Clin. Med. 2021, 10, 3659 7 of 20
J. Clin. Med. 2021, 10, x FOR PEER REVIEW 7 of 20 
 

 

 

(B) 

 

(C) 

Figure 2. Protein abundance changes 6 months post-surgery. (A) Volcano plot: green points are significant and have a fold 
change > 1, red points are significant but have a fold change < 1 and black points are not significant. Protein abundance 
changes 6 months post-surgery. (B) Hierarchical clustering and heatmap of all 25 proteins significantly different 6 months 
post-surgery relative to pre-surgery samples. Hierarchical clustering was performed using the Euclidean distance. Row 
scaling was performed on the log2 abundance for each protein by the subtraction of the mean from each feature and then 

Figure 2. Protein abundance changes 6 months post-surgery. (A) Volcano plot: green points are significant and have a fold change
>1, red points are significant but have a fold change <1 and black points are not significant. Protein abundance changes 6 months
post-surgery. (B) Hierarchical clustering and heatmap of all 25 proteins significantly different 6 months post-surgery relative to
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When comparing pre-surgery samples to those collected 12 months post-surgery
there was a greater degree of difference, with 39 proteins significantly different (Table 3,
Figure 3A). These include two apolipoproteins (APOA1 and APOA4), SHBG, fibronectin
(FN1) and haptoglobulin (HP). With those 39 significant proteins, hierarchical cluster-
ing of scaled log2 protein abundances showed discrimination between pre-surgery and
12 months post-surgery samples (Figure 3B). PCA with log2 protein abundance ratios for
the 39 discriminatory proteins shows that a greater degree of separation was achieved at
12 months post-surgery, with samples taken 6 months post-surgery falling in between the
pre-surgery and 12-month samples based on these 39 discriminatory proteins (Figure 3C).
GO term enrichment analysis of the 39 discriminatory proteins showed enrichment for pro-
teins involved in 86 significant biological processes, most of them involving healing, blood
coagulation and immune activation pathways. All pathways displayed had a Benjamini
adjusted p-value ≤ 0.05 and a minimum of 3 proteins contributing to the enrichment. The
proteins showing the biggest FE were: Antithrombin-III (SERPINC1), Plasma protease C1
inhibitor (SERPING1), Alpha-2-macroglobulin (A2M) and FN1 (FE = 69.34; p = 0.0003).

Table 3. Proteins showing a significant difference in expression between baseline and 12 months post-surgery.

Protein Names (Gene Symbol) Fold Change (log2) p Value

Serum amyloid p-component (SAP) −0.936 0.001
Apolipoprotein A-I (APOA1) 1.104 0.001

Serotransferrin (TF) −0.776 0.002
Inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3) 0.799 0.002

Fibronectin (FN1) −1.724 0.003
Sex hormone-binding globulin (SHBG) 1.951 0.003

Neural cell adhesion molecule L1-like protein (L1CAM) 0.663 0.007
Haptoglobin (HP) −1.383 0.007

Apolipoprotein A-IV (APOA4) −1.381 0.008
Antithrombin-III (SERPINC1) 0.541 0.008
Peptidase inhibitor 16 (PI16) 0.742 0.009

Galectin-3-binding protein (LGALS3BP) −0.590 0.009
Laminin subunit gamma-1 (LAMC1) −1.506 0.012

Proteoglycan 4 (PRG4) −0.779 0.015
Hemoglobin subunit delta (HBD) −1.088 0.020

N-acetylmuramoyl-L-alanine amidase (PGLYRP2) 0.438 0.021
Dermcidin (DCD) 0.905 0.021

Heat shock 70 kDa protein 4 (HSPA4) −0.389 0.022
Actin-related protein 2/3 complex subunit 1B (ARPC1B) −0.403 0.023

Bifunctional epoxide hydrolase 2 (EPHX2) −0.473 0.025
Hyaluronan-binding protein 2 (HABP2) 0.358 0.025

Galactokinase (GALK1) 0.899 0.027
Alpha-2-macroglobulin (A2M) 0.801 0.027

Leucine-rich alpha-2-glycoprotein (LRG1) 0.591 0.027
Peroxiredoxin-6 (PRDX6) 0.627 0.028

Thyroxine-binding globulin (SERPINA7) 0.365 0.030
Mitogen-activated protein 3 kinase 5 (MAP3K5) 0.632 0.031

Alpha-1B-glycoprotein (A1BG) 0.462 0.033
Complement factor H (CFH) −0.415 0.036

Protein AMBP (AMBP) 0.352 0.037
L-lactate dehydrogenase A chain (LDHA) −1.538 0.037

Endoplasmin (HSP90B1) −0.417 0.038
Angiotensin-converting enzyme (ACE) −0.405 0.039

Plasma protease C1 inhibitor (SERPING1) 0.939 0.039
Desmin (DES) −0.952 0.043

Vitamin D-binding protein (GC) 0.381 0.046
Secreted phosphoprotein 24 (SPP2) 0.475 0.048

T-complex protein 1 subunit gamma (CCT3) −0.722 0.049
Haemoglobin subunit beta (HBB) −1.128 0.049
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The relative quantification information acquired using SWATH-MS for 467 proteins
in a longitudinal fashion has a degree of power as temporal analyses in humans pro-
vide greater surety of biomarker status. Relative to pre-surgery samples, eight proteins
were significantly different at both 6- and 12-months post-surgery (Figure 4). Of those
eight proteins, three showed increased expression after BS (FC: fold change baseline vs.
12 months), p value); sex hormone binding globulin (SHBG) (1.95, p < 0.01), leucine-rich
alpha-2-glycoprotein (LRG1) (0.59, p < 0.05) and N-acetylmuramoyl-L-alanine amidase
(PGLYRP2) (0.43, p < 0.05), whilst the remaining five showed decreased expression; sero-
tranferrin (TF) (−0.78, p < 0.01), proteoglycan 4 (PRG4) (−0.78, p < 0.05), Apolipoprotein
A4 (APOA4) (−1.38, p < 0.05), heat shock protein 4 (HSPA4) (−0.38, p < 0.05), bifunctional
epoxide hydrolase 2 (EPHX2) (Table 4). The greatest fold change was seen for SHBG
approaching a two-fold elevation after BS. The correspondent protein names and gene
symbol for each code used to build the figures (volcano plots and heatmaps) can be found
in the supplementary material.
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pre-surgery samples. Hierarchical clustering was performed using the Euclidean distance. Row scaling was performed on the log2
abundance for each protein by the subtraction of the mean from each feature and then dividing by the standard deviation. Protein
abundance changes 12 months post-surgery. (C) Principal component analysis with all 39 proteins significantly different 12 months
post-surgery relative to pre-surgery samples.
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Table 4. Proteins showing a significant difference in expression at both 6- and 12-months post-surgery. Log fold changes are
shown between baseline and 12 months.

Protein Names (Gene Symbol) Fold Change (log2) p Value

Serotransferrin (TF) −0.776 0.002
Apolipoprotein A-IV (APOA4) −1.381 0.008

Heat shock 70 kDa protein 4 (HSPA4) −0.389 0.022
Leucine-rich alpha-2-glycoprotein (LRG1) 0.591 0.027

N-acetylmuramoyl-L-alanine amidase (PGLYRP2) 0.438 0.021
Sex hormone-binding globulin (SHBG) 1.951 0.003

Bifunctional epoxide hydrolase 2 (EPHX2) −0.473 0.025
Proteoglycan 4 (PRG4) −0.779 0.015

5. Discussion

Using the technique of SWATH-MS to generate proteomic maps, we have shown it is
possible to separate samples collected pre- and post bariatric surgery on the basis of the
plasma proteome with data from a relatively small sample size. We found a significant
change in plasma protein levels for a number of metabolically relevant proteins from
pre-BS to 6- and 12-months post-surgery with eight proteins showing change at both 6-
and 12-months vs. pre-surgery levels. The relevant proteins common to both post-surgery
periods analysed are TF, APOA4, HSPA4, LRG1, PGLYRP2, SHBG, EPHX2 and PRG4.

Greater resolution between baseline and post-bariatric surgery samples was noted
when proteins with significant fold changes were solely included in the analysis, as a means
of discovering potential biomarkers; Figure 2 shows the PCA of the significant proteins
between baseline and 12 months and Figure 3 shows the same between baseline and
6 months. The clearest separation occurs between baseline and 12 months which coincides
with the onset of the time period at which often the greatest weight loss is observed
with BS [25]. We previously described proteomic changes in relation to a lifestyle change
intervention in non-diabetic hyperglycaemia and also showed that the baseline levels of
certain proteins such as insulin-like growth factor (IGF)-II and vitamin D binding protein
were predictive of more or less weight loss with that lifestyle change intervention [26].

Previous work employing SWATH-MS to study biomarkers in patients with impaired
glucose tolerance who lost weight in response to a diet and exercise programme and in
whom HbA1c resolved identified the following major differentiating proteins: Insulin-
like growth factor 2 (IGF-II), Retinol binding protein 4 (RBP4), Fetuin-A (FetA) -Zinc-α2-
glycoprotein (ZA2G), Visfatin (NAMPT), fatty acid synthase (FAS) and vitamin D binding
protein (VDR) [26]. The disparity between this study and ours suggests a differential
process and a potentially specific set of biomarkers for remission of T2DM in patients
undergoing BS compared to those achieving weight loss through other structured means.
No difference in circulating IGF binding proteins was picked up by the SWATH-MS analysis
in the present study. HOMA2-IR as a measure of insulin resistance decreased and HOMA2-
B as measure of pancreatic beta cell function increased numerically; this did not reach
statistical significance.

Previously Varela-Rodríguez et al. showed, using proteomic analysis, that BS remodels
subcutaneous adipose tissue function to influence specific molecular mechanisms with
lower inflammation, increased uptake of glucose, higher insulin sensitivity, higher de
novo lipogenesis, increased mitochondrial function and decreased adipocyte size [27].
Our results support these findings as the cluster of relevant proteins showing a change
after 6 months of BS are involved in biological process such as protein-lipid remodelling,
leukocyte mediate immunity and response to stimulus pathways; and after 12 months,
proteins involved in healing, blood coagulation and immune activation.

The panel of eight proteins identified as discriminating between the groups, and
common at both 6- and 12-months post-surgery, included proteins known to be related
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to insulin sensitivity and glucose intolerance (TF, SHBG and PRG4) [28–30], relate to
systemic inflammation (HSPA4 and APOA4) [31,32] ,also those involved in the immune
response (LRG1 and PGLYRP2) [33–36] and cholesterol function (EPHX2) [37,38]. We have
highlighted the importance of each protein in the context of obesity, BS and T2DM below.

LRG1 is a circulating protein first discovered in 1977 [39] whose function has remained
elusive for many years. Some evidence has suggested that it may function, in part, as an
angiogenesis factor [40]. It has been observed as a marker of inflammation in the sputum of
asthmatic patients [41], in the serum of patients with ulcerative colitis [42] and autoimmune
disease respectively [43]. Shirai et al. showed that it is often up-regulated during the acute
phase response [44]. Studies have also found LRG1 to be higher in patients with T2DM and
peripheral arterial disease [45]. Notwithstanding previous studies, our results demonstrate
a clear increase in LRG1 expression both 6- and 12-months after surgery. This is a similar
finding to that of Roriguez-Rivera et al. [46] one year after surgery and Pek et al. who
prospectively studied 231 morbidly obese patients undergoing BS and found LRG1 levels
to significantly increase just 1.5 months after surgery [47]. These results suggest that
inflammation is probably not the sole inducer of LRG1 expression and further research into
the role of this glycoprotein is required.

TF levels declined after BS surgery in our cohort, which may reflect the reduced in-
flammatory state manifested in tandem with weight loss after BS. TF is a part of the innate
immune system and acts as a marker of inflammation in patients with T2DM [48]. Further-
more, pre-operative deficiencies of iron and other trace elements are prevalent amongst
individuals with obesity undergoing surgery and are often replaced post-surgery [49],
which offers an explanation as to the maintained significant decline in this protein.

HSPA4 is largely thought to function as a cytosolic chaperone involved in facilitating
protein folding, degradation, complex assembly and translocation. Significantly higher
levels of HSPA4 have been reported in T2DM of longer duration compared to newly
diagnosed [50]. Nakhiayani et al. showed that HSPA4 was associated with the inhibition
of nitric oxide production in individuals with T2DM [51], confirmed that it correlated with
CRP [51] whilst Morteza et al. found that the odds ratio for its predictive value for micro-
albuminuria in T2DM was highly significant [52]. Garamyolgyi et al. showed that HSPA4
levels correlated well with HbA1c in gestational diabetes [53]. Our work demonstrates a
significant reduction in HSPA4 which correlated with percentage change in IL6 between
baseline and 12 months (r = 0.87, p < 0.001), this is in keeping with previous work by Styger
et al. who demonstrated reduction in both serum and liver HSPA4 in a murine model
after BS [54] and also is in agreement with the narrative that HSPA4 appears to be induced
by states of chronic inflammation [55]. Some have suggested targeting these proteins as
therapy for T2DM [56].

In our cohort, APOA4 was noted to significantly and consistently reduce at both time
points after BS which may appear intuitive since this lipid-binding protein is primarily
synthesized in the small intestine, which is bypassed during this type of surgery [57]. In
animal models circulating Apoa4 appear to confer some protection against diabetes [58,59]
and atherosclerosis. However, its role in humans has not fully been delineated. Previous
studies conflict in their results surrounding this lipoprotein with some reporting no change
after BS [60] whilst others have increases in APOA4 levels post-surgery [46,61]. Rao
et al. reported that BS resulted in a decrease in HOMA-IR in patients after RYGB and
higher baseline APOA4 levels correlated with the decrease in HOMA-IR. Another recent
study, utilizing proteomic methods, analysed a large number of obese individuals who
were subject to low calorie diet finding that, amongst others, APO A4 levels declined
after the eight week intervention [62]. We speculate that APOA4 may be a physiologic
compensation to insulin resistance that resolves after BS. In the circulation, APOA4 is
present on chylomicron remnants, high-density lipoproteins, and in lipid-free form. APOA4
is involved in a myriad of physiological processes such as lipid absorption and metabolism,
anti-atherosclerosis, platelet aggregation and thrombosis, glucose homeostasis and food
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intake. APOA4 deficiency is associated with atherosclerosis and diabetes, which renders it
as a potential therapeutic target for treatment of these diseases [63].

PGLRYP2 [64] is an enzyme that breaks down glycopeptides and can break down
the cell walls of bacteria [65] giving it a principal role in fighting bacterial infection. It
is expressed constitutively from hepatocytes [66] and proteomic studies have previously
suggested a possible utility in diagnosing sepsis in critically ill patients [67]. Expression
can be induced in skin keratinocytes after exposure to certain bacteria [68] as well as in
intestinal and oral epithelial cells [69]. Our study demonstrates a significant increase in
fold change of this protein at both 6- and 12-months post-surgery with correlations with
percentage change in BMI at 6 months (p < 0.05) but not 12 months. We speculate that
this change may result from the resolution of non-alcoholic hepatic steatosis (NAHS) in
our patients. Previous work has shown that the PGLRYP2 gene is hypermethylated in
patients with NAHS [70] and immune-competent mice who overexpress PGLRYP2 display
significantly enhanced anti-cancer immune responses against hepatocellular carcinoma
(HCC) [35]. Indeed, resolution of both NAHS and lower incidence of HCC are recorded as
one of the beneficial effects of BS [71,72].

SHBG is produced and secreted by the liver and acts to regulate the bioavailability
of sex steroids. [73]. Low serum SHBG concentrations are associated with metabolic syn-
drome [74], T2DM [75] and increased risk for cardiovascular problems. [76] In obesity,
SHBG levels are low and associated with pro-inflammatory cytokines and hepatic steato-
sis [74]. Our results showed an increase in SHBG levels after BS consistent with results
found previously in men and women after BS [77,78].

EPHX2 is a soluble enzyme that hydrolyses epoxyeicoasatrienoic acids (EETs) to their
inactive diols [79] EETS play important roles in vasodilation [80], lipid metabolism [81]
improve insulin sensitivity [82] and have both anti-inflammatory [83] and analgesic prop-
erties [84]. Gene deletion and pharmacological inhibition of EPHX2 exhibit an increase in
insulin sensitivity in a T2DM rodent model [85]. Furthermore, its variants are likely to be
associated with neuropathy in T2DM patients [86]. EPHX2 circulating levels are elevated
in obese individuals and its expression is attenuated after physical activity in both adipose
tissue and peripheral blood mononuclear cells [87]. Higher EPHX2 levels are significantly
associated with risk of incident CVD [88]. We observed a consistent reduction of EPHX2 at
both 6- and 12- months post-BS. The inhibition of EPHX2 has been suggested as previous
therapeutic target to tackle CVD and this requires further study [89].

PRG4 was first identified as a component of the extracellular matrix in synovial fluid
implicated in shear force reduction in cartilage [90]. However, recent evidence suggests
that it can act as a “buffer” by effecting downstream signalling during an inflammatory
response [91]. Furthermore, chronic inflammatory states cause post-transcriptional modifi-
cations resulting in dysfunctional PRG4 upsetting homeostasis [92]. PRG4 levels declined
significantly at both time points which is a consistent finding by previous groups studying
the effect of weight loss on the proteome [93,94] and has previously been found to correlate
with insulin sensitivity [94]. Knockout PRG4 mice exhibit better glucose handling when
fed a high-fat diet and are protected from hepatic steatosis and white adipose tissue inflam-
mation [30]. The regulation and roles of PRG4 in obesity are largely unknown and require
further work to be delineated.

6. Strengths and Limitations

We are showing here preliminary data from a hypothesis-driven study. Our study
utilises data on only 10 people, mostly female, which is a limitation. Nevertheless, we
have described significant changes in the proteome in relation to remission of T2DM. We
have identified significant differences in the plasma levels of a number of metabolically
relevant proteins after BS in relation to remission of T2DM using a technique that has
high reproducibility and sensitivity, in three time points (baseline, 6- and 12-months post-
surgery). In this respect, it offers a potential set of biomarkers for remission that require
further investigation, which is now planned. An additional limitation is that we have
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only here described changes in protein levels in plasma rather than in adipose or other
tissues. However, biomarkers are generally measured in biofluids. Finally, our study did
not compare remitters with non-remitters, which would add further value in identifying
biomarkers relevant to T2DM remission. Further analysis using different and larger cohorts
are necessary to replicate our findings.

7. Conclusions

Using SWATH-MS we found significant changes in the proteome for eight proteins
from pre-BS to 6/12 and 12/12 post-BS. This panel of proteins identified as consistently
different, included peptides related to insulin sensitivity (SHBG increase), systemic in-
flammation (TF and HSPA4—both decreased) and lipid metabolism (APOA4 decreased).
Several of these are key components in metabolic, immune system and inflammatory
pathways. Therefore, these protein changes merit further exploration as potential marker
signatures in patients who undergo remission of T2DM.
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FN1 Fibronectin
GO Gene Ontology
HbA1c glycosylated haemoglobin
HCC Hepatocellular carcinoma
HOMA-B Homeostatic model assessment of beta cell function
HOMA-IR Homeostatic model assessment of insulin resistance
HP Haptoglobulin
HSPA4 Heat shock 70 kDa protein 4
IGF-II Insulin-like growth factor II
LC-MS Liquid Chromatography Mass spectrometry
LRG1 Leucine-rich alpha-2-glycoprotein
NAHS Non-Alcoholic Hepatic Steatosis
PCA Principal component analysis
PGLYRP2 N-acetylmuramoyl-L-alanine amidase
PRG4 Proteoglycan 4
SERPINC1 Antithrombin-III
SERPING1 Plasma protease C1 inhibitor
SHBG Sex Hormone Binding Globulin
SWATH-MS Sequential window acquisition of all theoretical fragment ion spectra
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T2DM Type 2 Diabetes Mellitus
TF Serotransferrin
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