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ABSTRACT: We provide a novel exact analytic solution of harmonium with arbitrary Coulomb
interaction strength, for ground as well as all the excited states, using our recently developed
method for solving Schrödinger equations. By comparing three formally exact analytic
representations of the wave function including the one that utilizes biconfluent Heun function,
we find that the best and practically useful representation for the ground state is given by an exact
factorized form involving a noninteger power pre-exponential factor, an exponentially decaying
term and a modulator function. For excited states, additional factors are needed to account for the
nodal information. We show that our method is far more efficient than basis-expansion-based
methods in representing the wave function. With the exact wave functions, we have also analyzed
the evolution trends of the electron density and natural occupation numbers with increasing
interaction strength, which gives insight into the interesting physics in the strong correlation limit.

1. INTRODUCTION
Many-electron Schrödinger equations (SEs) are usually
regarded as too complicated to have exact analytic solutions
expressible in closed forms. The major difficulty is attributed to
the presence of the electron−electron interaction. The quest
for the exact solution of the simplest real-world two-electron
problem, the helium atom, dates back to the early ages of
quantum mechanics until the present day.1−7 In 1962, Kestner
and Sinanog̅lu proposed a modified version of the helium atom
by replacing the one-body nuclear Coulomb attraction terms
by harmonic potentials while keeping the true two-electron
Coulomb interaction.8 This model system has several different
names such as harmonic helium, (two-electron) Hooke’s atom
or harmonium. The Hamiltonian for harmonium in atomic
units is
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Here r1 and r2 are the distance between the nucleus and the
two electrons, respectively, and r12 = |r1 − r2| is the distance
between the electrons. ω and λ are parameters that tune the
interaction strengths of the potentials.
Although the real Coulomb physics of helium atom is

partially lost in harmonium, one can take advantage of the
modified potentials to study the electron correlation more
easily. Applications of such models can be found, for example,
in the simulation of quantum dots.9−13 In particular, the special
feature of harmonic one-body potentials allows one to separate
variables, as was first utilized in ref 8. to simplify the numerical
calculation of the correlation energy. Even more interestingly,
it was found decades later that for specific ratios

2
, the

harmonium problem has simple exact analytic solutions, which
could be ground or excited states;14,15 and Taut proposed a
method to systematically find these special solutions along with
the corresponding parameter ratios.15 For general

2
ratios,

however, such simple solutions were not found. Although
Karwowski and Witek have found that the exact solution of
harmonium can be expressed formally in terms of biconfluent
Heun function, a special function that has an infinite series
expression,16 this special function critically depends on the
unknown energy, and we will show that this representation is
not a practically useful one. In addition to the search for exact
formulas, numerical solutions were obtained through various
approximations including perturbation approaches, variational
methods and wave function expansions.17−20 Besides applica-
tions in wave function theory,21 these solutions have been
useful for studying the exchange-correlation hole in density
functional theory,22 and benchmarking the performance of
various density functional approximations (DFAs),23−27

including the very recent work of studying the violation of
exact conditions of DFAs particularly when the ratio

2

varies.28

It would be desirable to generalize the exact analytic
solutions of harmonium to arbitrary parameters. On the one
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hand, this shall greatly enhance our understanding of the
analytic structure of two-body wave functions, particularly in
the case of Coulombic two-electron potential, for which we
have very limited knowledge and very rare examples of such
exact solutions. On the other hand, the existence of special
solutions imply that this generalization is plausible; and we
have a chance to use a unified analytic formula to encompass
the exact solution for all parameters. In the quest of such
unified formula, we can also uncover the mystery of the special
ratios.
Recently, we have developed a novel method to solve the

SEs and demonstrated through several examples that there
exists simple and elegant forms of the stationary wave
functions for a general one-electron SE. These examples
include the one-dimensional (1D) hydrogen atom29,30 and
hydrogen molecular ion H2+ with soft Coulomb potential,

30,31

and the real-world 3D H2+.
32 In contrast to the conventional

methods, our new method reformulates the ground state wave
function as ψ = Ceβ, and transforms the SE, which is a second-
order linear differential equation with respect to ψ, into the
Riccati equation,33 which is a first-order nonlinear differential
equation with respect to the derivative of β. Then we perform
particular variable transformations and Taylor expansions to
this derivative subsequently, which lead to algebraic equations
for the expansion coefficients. The resulting formula for the
wave functions have unified analytic structures, including a
power prefactor, an exponential decay and a modulator
function on the exponent which is bounded and has a series
expression. The formula for the excited states can be deduced
similarly once we factorize the nodal factors from eβ. Although
these formulas are not in closed forms, in the sense that they
involve infinite series that cannot be truncated, they are useful
analytic formulas because each of the series coefficients is
known as an explicit function of the eigenstate energy, and the
energy can be very efficiently obtained by solving an algebraic
equation, as will be revisited later in the method section.
In this paper, we extend our new method from one-electron

problems to the simplest two-electron problem, the harmo-
nium. In particular, we extend the exact analytic solution from
specific

2
ratios to arbitrary parameters for ground as wells as

excited states. As found in our previous work, here we reiterate
that our method has computational advantage over the basis
expansion method.

2. METHODS
First of all, for two-electron eigenstate problems, the full wave
function can be written as a product of a spatial wave function
Ψ and a spin wave function Φ. The antisymmetry requirement
of the full wave function demands that Ψ and Φ have opposite
permutation symmetry. In particular, for singlet states Φ is
antisymmetric and Ψ is symmetric, while for triplet states it is
the other way round. Then it suffices to discuss only the spatial
wave function Ψ. As will be shown, permutation symmetry is
naturally built in the eigenstate solutions of Ĥ, meaning that
they are always simultaneously eigenstates of the permutation
operator and thus correspond to legitimate solutions once
paired with proper spin wave functions.
Second, we note that eq 1 which parametrically depends on

ω and λ can be transformed into the problem where
ω = 1. In particular, one can show that the spatial wave
function satisfies the fol lowing scal ing relat ion:

( )r r r r( , ; , ) , ; 1,1 2
3/2

1 2= . Therefore,

we will set ω = 1 in the following discussions without loss of
generality. For harmonic one-body potentials, it has been
known that one can separate variables in the centroid
coordinate.8 Let R r r( )1

2 1 2= + and r = r1 − r2, the total
spatial wave function can be rewritten as Ψ(r1, r2) = χ(R)ψ(r),
where χ and ψ satisfy the following SEs, respectively:
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The total energy is given by E = ER + Er. eq 2 is a 3D isotropic
harmonic oscillator problem, whose solution in spherical
coordinates depends on three quantum numbers (nlm),

R RCR L R Y( ) (2 )e ( )nlm
l
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+ +
is the normalization constant;

Ln
l 1/2+ is the generalized Laguerre polynomial; and Yl

m is the
spherical harmonic function that depends on the angular
coordinates, denoted using the radial unit vector R̂ for brevity.
Equation 3 differs from a harmonic problem by the

Coulombic term
r
. But because the potential has spherical

symmetry, one can again separate the angular part from the
radial function, i.e., ψnlm(r) = ϕnl(r) Yl

m(r)̂, and the problem
reduces to solving the following SE for the radial function ϕnl:
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For some particular λ, eq 5 has a closed-form solution. For
example, the ground state solution for 2= is given by

( )r C( ) 1 er r
00 0 2

/42
= + , with C0

2 2
8 5

=
+

and Er
5
2

=
.15 For arbitrary λ, however, such an analytic solution remains
unknown and is the key problem to be addressed in this paper.
We start by considering the ground state problem where l =

0. Because the wave function is nodeless on its domain [0,
∞),34 we can reformulate it in an exponential form: ϕ00(r) =
Ceβ(r). One can deduce the equation for β as the following:
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Equation 6 is a first-order ordinary differential equation
(ODE) of v r( )

r
d
d
. It is preferable to transform r onto a finite

interval [0,1). Here we invoke a fractional linear trans-
formation z r

r c
= + , where c > 0 is a constant. Following our

idea in ref 31, the next step is to expand v as a function of z
into Taylor series. However, because of the presence of the
harmonic term r

4

2
in the potential, one can show that v(z) has a

first-order pole at z = 1. To remove this pole, we introduce
u(z) = (1 − z)v(z) and the resulting ODE for u(z) reads

P z u
z

P z u P z u P z( )
d
d

( ) ( ) ( ) 01 2
2

3 4+ + + =
(7)
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where P1(z) = −z(1 − z)3, P2(z) = −c, P3(z) = −(1 + 2z)(1 −
z)2 and P z c z z z E cz z( ) (1 ) (1 )r4

1
4

3 4 3 2 2= + . Equa-
tion 7 is a Riccati equation that depends on Er as a parameter,
which is completely equivalent to the Schrödinger eq 5 for the
ground state. The fact that the ground state energy has to take
specific value is because the wave function decays to zero at r
→ ∞, and one can show that this boundary condition of SE
translates to the condition that u is finite and has finite
derivative at z = 1. To solve for u, we expand it into the
following Taylor series,

u z u z( )
k

k
k

0

=
= (8)

where u0 ≠ 0. Here we assume that the radius of convergence
can reach 1 and numerical results show that this assumption is
valid. Plugging eq 8 into eq 7 and comparing terms order by
order, we can derive recursive relations for uk as follows,
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Here Pi
j is the jth-order Taylor coefficient of Pi(z). Moreover,

substituting z = 0 and z = 1 into eq 7, we obtain another two
algebraic equations for uk’s:
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From eq 10 we deduce u P
P0

(0)
(0)

3

2
= . Then plugging u0 and uk

into eq 11, we arrive at a series equation that depends on Er. In
practical calculations, we truncate the infinite series to N terms,
leading to a polynomial equation of Er, which can be solved
iteratively using Newton’s method. It is clear that enlarging N
shall lead to increasingly accurate energy; as we will see later,
energy convergence with N is extremely fast.
Next, we derive the formula for β. By the chain rule,
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Therefore, β(z) can be obtained by integration,
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. Here u(k)(1) de-

notes the kth derivative of u(z) evaluated at z = 1. Using the
boundary condition (z = 1) of eq 7 and its derivatives, we can
deduce 1

4
= , 1

2
= and Er

3
2

= . Of particular interest is

the function F(z), which we refer to as the modulator that also
appeared in the exact solution of other SEs.31 In spite of an
infinite series, it is a bounded function that varies mildly on [0,
1]. Finally, rewritten in terms of r, the ground state wave
function simplifies to

r C r
c

r F r
r c

( ) 1 exp
400

2
= + +

+
i
k
jjj y

{
zzz

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

i
k
jjj y

{
zzz

É

Ö
ÑÑÑÑÑÑÑÑÑ (14)

It is governed by a Gaussian decay, with a pre-exponential
factor being a power function of 1 r

c
+ and a modulator on the

exponent. This structure is consistent with the special solution
when 2= , for which γ reduces to an integer 1 and the
modulator F reduces to constant zero upon choosing c 2= .
As an additional remark, although the wave function expression
(14) formally depends on c that can be chosen arbitrarily, this
arbitrariness is exactly canceled out by the c-dependent pre-
exponential term and the modulator, making ϕ00 independent
of c in reality.
The above procedures can be modified to target excited

states. In particular, to account for the nodal positions {ri}i = 1n ,
we formulate excited state wave functions as ϕnl(r) = C∏
i = 1
n (r − ri) eβ(r) and rewrite the SE (5) into a Riccati equation
for v

r
d
d

= . Again we make variable transformation z r
r c

= +
and denote zi

r
r c

i

i
= + . Differing from the case where l = 0, the

presence of l l
r

( 1)
2

+ in the potential leads to an additional first-
order pole of v(z) at z = 0. Therefore, we introduce w(z) = z(1
− z)v(z) to eliminate all the poles, and the resulting Riccati
equation resembles eq 7:
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Here Q1(z) = −cz(1 − z)3S(z), Q2(z) = −c2S(z), Q3(z) =
−c(1 + 2z)(1 − z)2S(z) − 2cz(1 − z)2S′(z) and Q4(z) =

c z cz z(1 )1
4

4 4 3+
Ä
Ç
ÅÅÅÅÅÅ + l(l + 1)(1 − z)4 − Erc2z2(1 − z)2]S(z)
− 2z(1 − z)4S′(z) − 2z2(1 − z)4S′′(z), where S(z) =

z z( )
i

n

i
1=

contains the nodal information.

Expanding w(z) into a Taylor series and plugging into eq 15,
we can derive recursive relations for the Taylor coefficients wk.
The boundary conditions at z = 0 and z = 1 lead to analogous
equations as eqs 10 and 11. Nevertheless, these are insufficient
to determine Er and wk’s because now we have additional n
nodes as unknown variables. The additional conditions can be
obtained by substituting zi’s into eq 15, which lead to algebraic
equations given that Q1(zi) = 0. One can then solve for Er, {wk}
and {zi} together using multidimensional Newton’s iteration
method. Then repeating the steps as in solving for the ground
state, we can obtain the formula for the excited wave functions:
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Here, E n lr
3
2

= , and one has to replace u by w in
the definition of modulator F. eq 16 is similar to eq 14, but has
additional factors of rl and ∏i = 1

n (r − ri). This form suggests
that the asymptotic behavior of ϕnl ∼ rEr−3/2e−rd

2/4. Inspired by
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this analytic structure, here we propose another equivalent
formula by bringing the modulator down the exponent,
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Here γ = γ′ + n = Er − l − 3/2; and the relation between G and
F is given by
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One can verify that G(z) does not have poles in the unit circle
so that it can be expanded into Taylor series, G(z) = ∑k = 0

∞ Gk
zk. In fact, it is as nicely behaved (bounded and slowly varying)
as function F(z); and for this reason we decide to refer to both
functions as modulator rather than give another name for
G(z).
For practical computations, it turns out that formulating

equation in terms of G saves more computational effort. In
particular, G satisfies a second-order ODE:
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where p1(z) = z(1 − z)3, p2(z) = (2γ − 2)z(1 − z)2 + (2l +
2)(1 − z)2 − c2z2 and p3(z) = c2γz − cλ + γ(γ + 2l + 1)z(1 −
z) + 2γ(l + 1)(1 − z)2. eq 19 is linear in G, which is in contrast
to the Riccati eqs 7 and 15 that are nonlinear. By expanding G
in Taylor series and comparing terms in eq 19, the Taylor
coefficients Gk has the following recursive relation:
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Here pij is the jth-order Taylor coefficient of pi(z). One can
readily solve γ and Er using the recursive relation (20) along
with the boundary conditions of eq 19 at z = 0 and z = 1.
The computational advantages of (eq 19) over eq 15 are as

follows. First, the linearity in G induces much simpler recursive
relations of Gk than those for uk or wk. Second, (19) is
applicable to both the ground and excited states so that the
computational complexity does not grow with increasing
nodes. Moreover, these merits are not at the cost of more
terms in the expansion; in fact the formulation using F or G
need similar number of expansion coefficients to represent a
wave function at a given accuracy. For the above reasons, we
recommend eq 17 as the best representation of the wave
function. It follows that the total ground state wave function of
harmonium can be written as

r r R r
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Here we have recast the wave function in terms of the
distances between electrons and the nucleus. The ground state
wave function is invariant to the collective rotation of particles,
which is also true for the real-world helium atom with
Coulombic nuclear attraction.2 The formula for the excited
states has additional factors on the basis of eq 21, including rl,
Y l

m(r)̂ and additional factors involving R that appears in eq 4.

One can readily verify that the permutation symmetry of Ψ(r1,
r2) is governed by l: it is symmetric when l is even and leads to
a singlet state; it is antisymmetric when l is odd and leads to a
triplet state.
Besides eqs 14 and 17 that invoke a modulator function

either on or under the exponent, there is another way of
writing the wave function:

r r h r( ) enl
l r

k
k

k/4

0

2
=

= (22)

where we define a Taylor series H(r) = ∑k = 0
∞ hkrk. The SE for

ϕ is then transformed into a second-order ODE for H similar
to eq 19, so that hk can be solved analogously. This is the
typical textbook method for solving the hydrogen atom, where
the asymptotic factors before H are determined by the analysis
at r → 0 and r → + ∞, respectively. However, a crucial
difference here is that H(r), with an exact formula of

( )( )C G1 r
c

r
r c

+ + on [0, ∞), does not yield a truncated
series of r, in contrast to the hydrogenic radial wave function or
any other well-known textbook example of exact analytic
solutions. In fact, H(r) here coincides with the biconfluent
Heun function. The connection between this special function
and the solution of harmonium problem was found in ref 16. It
is worth noticing that the biconfluent Heun function can be
defined for arbitrary energy and not limited to the eigenstate
energy. For noneigenstate energies, H(r) diverges faster than
er /42

at r → ∞ such that ϕnl as defined in eq 22 diverges at
infinity and becomes a scattering state. For eigenstate energies,
H(r) still diverges but less quickly than er /42

such that ϕnl goes
to zero at r → ∞. In practical calculations, we are interested in
the eigenstates only. With this biconfluent Heun function
representation, we are faced with two challenges: (i) how to
obtain the eigenstate energy; (ii) once given a highly accurate
eigenstate energy, how to obtain a practically useful wave
function by truncating the series of H(r). For (i), a natural idea
is to set ϕnl(r0) = 0 for a large enough r0 upon truncating hk to
hN. Again this leads to an algebraic equation of the energy that
can be solved using Newton’s method. However, we will show
that even with an optimized r0 the energy convergence with N
is much slower than our new method invoking the modulator.
But before that, let us begin with the second challenge, which
reveals a major unexpected trouble associated with H(r).

3. RESULTS AND DISCUSSION
To illustrate challenge (ii), in Figure 1 we compare the plot of
ϕ00N (r), eq 22, using numerically exact hk but truncated to hN,
with increasing N. As shown, for each given N, ϕ00N (r) has an
artificial bump caused by the truncation. With increasing N,
the bump moves away from the main peak of the wave
function but grows larger. For N = 100, the artificial peak
rockets to 108. Because of this reason, eq 22 is not a practically
useful representation even though it is formally elegant without
any parameter c. In comparison, our representation is
numerically much more stable with a more transparent analytic
structure particularly for asymptotic r. With increasing number
of expansion coefficients, the wave function converges
uniformly on [0, ∞) to the true solution, for ground as well
as all the excited states. This means that for arbitrary r, by
keeping sufficiently large number of expansion coefficients, our
formula can become arbitrarily accurate. Truncated to 20
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terms, the largest difference from the exact ground state curve
is already less than 10−8, which is not visible from the plot.
We also extend the plot of the wave function to r < 0

(dashed lines), which is beyond the physical domain. One can
see that ϕ becomes zero at r = r0 ≈ − 1.6598, which we refer
to as a pseudo node and at which point our exponential
assumption ϕ = Ceβ breaks down. However, this observation
does not have conflict with the theorem that the ground state
in 1D is nodeless in the defining domain. For higher excited
states, there exist more pseudo nodes.
In our method, we have the freedom to choose parameter c.

Empirically, we find that choosing c in a rather large positive
interval can always yield reasonable results without harming
the computational efficiency or robustness. As a default choice,
we choose c = c★ such that G(1) = G(0) = 1 for ground state.
This enables the variation of G(z) to be small; for special λ
such as 2= , G(z) reduces to a constant. For excited state
ϕnl, we choose c★ such that the nth derivatives of G(z) at z = 0
and 1 become identical.
In Figure 2, we show the plot of G(z) with c★ for ground

state problems with different λ. As shown in Figure 2(a) and
(b), G is a bounded and slowly varying function for z ∈ [0, 1).
For 0 2 , the greatest variation of G is achieved at λ ≈
0.7, which is on the magnitude of 10−3 (see Figure 2b); for

2> , G becomes increasingly concave for larger λ but
maintains a nearly quadratic shape. The corresponding c★ as a
function of λ is shown in Figure 2c, where we have marked the
special λi’s using red triangles in the region [0, 10] that have
closed-form ground state solutions. The c★ for these special λi
as well as other general λ’s are not tremendously different; in
fact c★ varies as a mild and smooth function of λ by only a few
percentages. The specialness of λi is only manifested in G(z) in
the way that they truncate from infinite series into polynomials,
yet in Figure 2a one can hardly notice any special feature from
the line shape of these curves that distinguish themselves from
other λ’s.

By introducing a modulator function, our method is much
more efficient in representing the wave function than using the
biconfluent Heun function (eq 22). This is shown in Figure 3
where we compare the energy convergence curve of the two
methods for the ground state with λ = 1. In the biconfluent
Heun function representation, the energy solution depends on
r0 where we set the truncated wave function to zero. As shown
in the dot dash curves, for each finite r0, the energy error
saturates at a particular value. As r0 → ∞, the error tends to

Figure 1. Series representation eq 22 for the ground state wave
function truncated to the Nth order, denoted as ϕ00N , with λ = 1. For
small r, ϕ00N (r) overlaps with the exact wave function calculated using
eq 17 (black curve), however, it develops an artificial bump at a
farther region that grows increasingly large for increasing N. We also
extend the plot of the wave function to r < 0 using dashed lines, which
intersect zero at a pseudo node marked by orange ×.

Figure 2. G(z) calculated with c★ described in the text for the ground
state problems for 2 in (a) and 0 2 in (b). (c) c★ as a
function of λ. The special λi’s that have closed-form ground state
solutions are marked by red triangles. In particular, 21 = ,

102 = . Other λi’s do not have simple elementary forms: λ3 ≈
5.2316, λ4 ≈ 7.5927.

Figure 3. Ground state energy error as a function of the series
truncation number N for our method with modulator G with different
choices of c in comparison with the biconfluent Heun function
method (labeled “H”) with different choices of r0 (in unit of Bohr).
Here λ = 1. The periodically emerging spikes in our method are due
to sign changes of the energy errors.
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zero and the energy converges to the exact value. This is
reasonable because the exact wave function becomes zero only
at infinity; setting the wave function to be zero at larger r0 shall
bring the converged energy closer to the true value. However,
achieving a more accurate energy is at the price of slow
convergence at the beginning part of the curve. For example,
for r0 = 10, the energy drops to 10−10 at N ≈ 250, while one
needs N ≈ 400 to achieve the same accuracy for r0 = 15. This
can be explained by the bump behavior in Figure 1: when the
energy is accurate enough, the presence of the huge artificial
bump due to the truncated series hinders us from imposing the
condition ϕ00(r0) = 0. For example, imposing this condition
with r0 = 10, one can expect to achieve reasonable energy
solution using 250 terms in the truncated series, where the
bump moves to the right side of this r0; however, with these
many terms one cannot achieve reasonable energy by imposing
the condition at r0 = 15, because this r0 falls in the bump region
of ϕ00N with N = 250.
By contrast, our method (eq 17) is free from such trouble.

As shown by the solid lines, with reasonable choice of c (such
as c★), our method converges faster than the best performance
of the biconfluent Heun function method. This is guaranteed
by design through the key step of fractional linear trans-
formation z r

r c
= + . By imposing the condition at z = 1 as in eq

11, we have essentially utilized the r → ∞ condition in an
indirect way, which is not achievable by any finite r0 in the
biconfluent Heun function method. As a side remark, although
any c can fulfill our need and larger c appears to have faster
convergence, it cannot be chosen too large. Otherwise, one will
encounter similar behavior as the dot dash curves at the
beginning part of the curve (not shown). As an additional
remark, the energy convergence rates using modulator G (eq
17) and F (eq 14) are almost identical; with the same c, their
curves essentially overlap each other.
Our method also greatly outperforms conventional basis

expansion method, as illustrated in Figure 4a, where we
compare the ground state energy convergence curve between
the two methods. Here for the basis expansion method, we use
as basis functions the radial eigen functions of a 3D isotropic
harmonic oscillator with potential r1

2
2 2 (α is a tunable

parameter). Apparently, the numerical advantage of our
method becomes even more pronounced than in Figure 3:
the energy error drops to below 10−30 with 200 Taylor
coefficients, while basis expansion method gives a much slower
convergence even if one tries to optimize the basis, as shown
by the performance with different α’s. Such conclusions remain
valid for excited states, as examplified by the excited state ϕ10
shown in Figure 4b, which is consistent with the observations
in our previous work.30

The extremely accurate energies are largely due to the
efficient representation of the wave function of our method.
This is illustrated in Figure 5 where we compare the wave
function residue defined by Δϕ = (Ĥ − Er) ϕ for the
normalized ground state ϕ00 with λ = 1. By definition, Δ ϕ is a
function of r which measures how well ϕ satisfies the SE. As
shown, choosing c = 2 and truncating the Taylor series to 10
terms, the maximum absolute residue is on the order of 10−7

for all r ∈ [0, ∞), and this error drops to 10−14 when using N
= 30 terms. Varying c can affect the size of the residue, but is of
minor importance as our method performs way better than the
basis expansion method which diverges as r → 0. We note that
this is because the wave function represented by the basis

expansion using Gaussian functions fails to capture the cusp
condition at r = 0, leading to a divergent residue once
subtracting the Coulomb potential. Even if we neglect the

Figure 4. Energy error as a function of N for our method in
comparison with the basis expansion method in the case of (a)
ground state ϕ00 and (b) excited state ϕ10. Here N is the number of
terms used in G for our method and the number of radial eigen
functions of a 3D isotropic harmonic oscillator that depends on
parameter α used in the basis expansion method.

Figure 5. Residue of the ground state wave function, Δ ϕ, as a
function of r of the present work (PW) in comparison with the basis
expansion method (BE) with α = 0.5. Here λ = 1 and subscript N
denotes the truncation number or the number of basis functions. In
the rightmost panel, the black lines obtained by BE diverge as r → 0.
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divergent region and focus on farther places, say r ∈ [3, 10]
Bohr, we see that basis expansion relies on increasingly rapid
oscillations to bring down the maximum amplitude of the
error, which can hardly drop below 10−4 with N = 30 and is far
less efficient than our method. Importantly, the very simple
residue pattern and the pointwise convergence behavior in our
method is also a manifestation that it captures the most
essential analytic structure of ϕ.
As λ grows large, the system becomes strongly correlated, as

is manifested in Figure 6. In Figure 6a, we show the evolution

of the ground state density with λ. For small λ the density
peaks at the origin, while for larger λ the peak flattens into a
plateau and then develops a shoulder at a finite r. This is
consistent with the plot of the radial density distribution in
Figure 6b, which shows that the place with the largest
probability of finding electrons keeps displacing to farther
regions as λ grows, which is reasonable because the stronger
Coulomb interaction tends to push the two electrons apart.
The most direct evidence of strong correlation comes from

the natural occupation distributions and its evolution with
increasing λ, as plotted in Figure 7. Because harmonium has
spherical symmetry, the natural orbitals can be labeled in a way
analogous to the hydrogenic atomic orbitals (ns, np, nd, nf and
etc.) irrespective of the specific value of λ. We note that here
one can have such orbitals as 1p, 1d, 1f and etc. attributable to
the property of harmonic potential, which forms a distinction
from the case of Coulomb potential where orbitals with high
angular momentum can only arise for sufficiently large
principle quantum numbers.
For the ground state as shown in Figure 7a, in the

noninteracting case λ = 0, the 1s orbital is doubly occupied
while the rest of the orbitals are unoccupied. As λ increases,
contributions from other orbitals start to emerge. For example,
although 1s orbital still dominates for small λ, the proportion
of 3 1p orbitals quickly grows until they dominate over 1s
orbital for λ > 26. Orbitals with higher angular momentum also
have regions of dominance, which tend to occur at stronger

interaction. Interestingly, in the limit λ → ∞, all natural
orbitals tend to be equally occupied and no single natural
orbital dominates over the others. Similar situations also occur
in excited states, as exemplified by the low-lying excited state
χ0(R)ψ10(r) in Figure 7b. Again, orbitals with high angular
momentum emerge at large λ, although their evolution
becomes more sophisticated; and occupation numbers tend
to be uniformly distributed among different natural orbitals in
the strong correlation limit. Our findings are consistent with
the literature,19,35−42 where extensive research has been
conducted regarding the complex evolution of natural
occupations of harmonium with λ, with particular emphasis
on the limiting behavior as λ → 0 and λ → ∞. However, here
we highlight the unusual situation at λ → ∞ where infinitely
many small occupations add up to a finite electron number
(two), which differs from the commonly encountered strongly
correlated chemical systems that are usually governed by only a
few fractional occupations such as stretched N2. Consequence
of these special features of this toy model deserves further
investigation, particularly for studying various approximation
schemes in the case of this special type of strong correlation.
The harmonium problem is the simplest many-electron

problem with the true two-body Coulomb interaction. For a
general many-body problem, the standard way of solving for
the wave function is through the configuration interaction (CI)
method, i.e., representing the wave function through the
expansion of determinants. It is well-known that the energy
convergence with such expansions is slow. Here we use this
simple exactly solvable problem to quantify its convergence
rate. Our calculations were performed by modifying the PySCF
code.43−45 For the ease of code modification, here we fix λ = 1
and vary ω, for which the highly accurate energy can be
converted from our exact solution for ω = 1 through the

Figure 6. (a) Ground-state density ρ and (b) its radial distribution 4π
r2ρ as a function of r for increasing λ.

Figure 7. Evolution of the occupation number distribution over
selected natural orbitals (multiplied by their respective degeneracy)
with λ for (a) the ground state wave function and (b) the excited state
χ0(R)ψ10(r). The horizontal axis is shown in logarithmic scale. Here
we only show orbitals with significant occupations (>0.01) in the λ-
region considered.
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scaling relation. Besides, a modified version of the correlation
consistent polarized n-tuple zeta (cc-pVnZ) basis set adapting
to the harmonic one-body potentials was used. In particular,
for each basis set, the number and symmetry of the basis
functions remain unchanged from those conventionally used
for the Coulombic helium atom, however, the parameters in
the primitive Gaussians are reoptimized to capture the
Gaussian decay of harmonic potentials instead of the
exponential decay characteristic of the Coulomb potentials.
As shown in Table 1, the convergence with increasing

number of determinants is indeed slow; with almost a million

determinants the energy error only drops to 10−4. The energy
errors are approximately inversely proportional to the numbers
of the basis function, which is consistent with the literature.46

Moreover, the convergence rate does not seem to vary
significantly with the interaction strength. By tuning ω from
0.5 to 1, the system becomes less strongly correlated, yet
convergence is still slow. To bring the error down to 10−8, one
shall expect astronomical number of determinants.

4. CONCLUSIONS
In this work, we extend our previously developed approach for
finding the exact analytic form of stationary wave functions of
one-electron Schrödinger equations to a two-electron harmo-
nium problem with real-world two-electron Coulomb inter-
action of arbitrary strength λ. We show that the general
solution for the ground state has a clear and unified analytic
structure: a power pre-exponential factor, a Gaussian decay and
a modulator function that be expressed as a Taylor series
expansion of the interelectron distance r. This new
representation refreshes our conventional thinking that the
wave function has to be formulated as a summation in the
Hilbert space, ψ = ∑ Ciϕi. The modulator can be written
either on or off the exponent. For particular choice of λ, the
series function of the modulator is truncated to a polynomial,
in line with the special solutions in the literature. Contrast
between eq 21 and special solutions elucidates the general
form of the solution that was previously unknown and
conventionally regarded as too elusive to be accessible. For
excited states, the analytic form involves additional factors
accounting for the nodal information and spherical harmonic
functions accounting for the angular information.
To the best of our knowledge, this is the first and simplest

system with true two-electron Coulomb potential whose exact
analytic structure of the wave function is completely

deciphered. The relatively simple form particularly for the
ground state gives us a hint of the analytic structure of a
general two-electron and even many-electron system, and we
believe it might not be as difficult as is generally believed. We
admit that we have taken advantage of the harmonic one-body
potential of this system such that we can separate variables,
which is not achievable in the case of general one-body
potentials. Nevertheless, we have recently found model two-
electron systems for which one cannot achieve variable
separation but we manage to write down the exact analytic
solution. Amazingly, the resulting solution maintains the
analytic structure that appeared again and again in our
addressed problems, i.e., an exact factorized product of a pre-
exponential power factor, and an exponential term with some
leading decay and a modulator. This will be published in the
near future.47

Our analytic solutions are not only formally exact, but also
practically useful in computations. We have shown that our
method has computational advantage over the biconfluent
Heun function representation, and leads to much faster energy
convergence than basis expansion methods in solving the SE
after variable separation. For many-electron problems, this
might suggest that there exists far more efficient ways of
representing the wave function than the determinantal
expansion as is performed by the CI method. This is
reasonable because the CI wave function does not impose
the correct asymptotic condition as in our formula, which
greatly affects the efficiency of representation. Yet the validity
and transferability of our proposition remains to be
investigated, which we leave for future exploration.
As a final remark, we note that the harmonium problem has

real-world Coulomb electron−electron interaction, from which
we can gain insights into the development of density functional
approximations. The critical universal functional defined by
F[ρ] = minΦ→ρ⟨Φ|T̂ + V̂ee|Φ⟩ and the exchange-correlation
energy functional Exc[ρ] do not depend on the one-body
potential, but critically depend on the two-body potential. Now
with the exact wave function analytically accessible for any

r12
,

we can study the exact constraints of Exc particularly in the
strong correlation limit. We have ongoing research along this
line that will be published soon.48
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Table 1. Error of the Ground-State Energy ΔE Calculated
by the Full-CI Method with cc-pVnZ Basisa

basis n N |ΔE| (ω = 1) |ΔE| (ω = 0.5)

cc-pVDZ 5 45 5.5 × 10−3 4.0 × 10−3

cc-pVTZ 14 378 1.7 × 10−3 1.2 × 10−3

cc-pVQZ 30 1770 7.8 × 10−4 5.6 × 10−4

cc-pV5Z 55 5995 4.8 × 10−4 2.9 × 10−4

cc-pV6Z 91 16,471 3.8 × 10−4 1.9 × 10−4

cc-pV7Zb 140 39,060 2.2 × 10−4 1.5 × 10−4

cc-pV8Zb 204 83,028 2.0 × 10−4 1.3 × 10−4

aHere, n is the number of basis functions in each basis set and N =
n(2n − 1) is the number of determinants involved. We fix λ = 1 and
show the results for different ω. bThe parameters in the primitive
Gaussians are obtained through extrapolation from cc-pVnZ basis set
with smaller n rather than a full optimization.
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