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Abstract: Intellectual disability (ID) and autism spectrum disorder (ASD) are complex neurodevel-
opmental disorders with high heritability. To search for the genetic deficits in two siblings affected
with ID and ASD in a family, we first performed a genome-wide copy number variation (CNV)
analysis using chromosomal microarray analysis (CMA). We found a 3.7 Mb microdeletion at 22q13.3
in the younger sister. This de novo microdeletion resulted in the haploinsufficiency of SHANK3
and several nearby genes involved in neurodevelopment disorders. Hence, she was diagnosed with
Phelan–McDermid syndrome (PMS, OMIM#606232). We further performed whole-genome sequenc-
ing (WGS) analysis in this family. We did not detect pathogenic mutations with significant impacts
on the phenotypes of the elder brother. Instead, we identified several rare, likely pathogenic variants
in seven genes implicated in neurodevelopmental disorders: KLHL17, TDO2, TRRAP, EIF3F, ATP10A,
DICER1, and CDH15. These variants were transmitted from his unaffected parents, indicating these
variants have only moderate clinical effects. We propose that these variants worked together and
led to the clinical phenotypes in the elder brother. We also suggest that the combination of multiple
genes with moderate effects is part of the genetic mechanism of neurodevelopmental disorders.

Keywords: intellectual disability; autism spectrum disorder; developmental disorder; psychosis;
genetics; molecular diagnosis

1. Introduction

Intellectual disability (ID) and autism spectrum disorder (ASD) are common neurode-
velopmental disorders. The prevalence of ID is around 1–3% in the general population
worldwide [1–3], while the global prevalence of ASD is approximately 1% [4]. ID and ASD
are complex disorders with high clinical heterogeneity and etiological complexity. Approxi-
mately 33% of patients with ASD are comorbid with ID [4], while ID often co-occurs with
behavioral and psychiatric conditions [5–7]. ID and ASD have high genetic components in
their etiology, and the genetic deficits of ID and ASD are highly heterogeneous, ranging
from chromosomal abnormalities and copy number variations of genomic DNA (CNV)
to small insertions and deletions (indel) and single nucleotide variants (SNV) [8,9]. More
than 1000 genes are associated with ASD [10] and intellectual disability [11], and there are
significant overlaps in pathogenic genes between ID and ASD, suggesting shared patho-
genesis mechanisms between ID and ASD. Further, most pathogenic mutations associated
with ID and ASD are individualized and personalized. Each affected patient and family
have different pathogenic mutations. Identifying the genetic deficits in patients with ID
and ASD is essential to understanding their pathophysiology, which could help with the
clinical care and provide helpful information for counseling. However, it is challenging to
establish the personalized molecular diagnosis for affected patients.
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The advent of chromosomal microarray analysis (CMA) and next-generation sequenc-
ing (NGS) technology has significantly improved the diagnostic yield in patients with ID
and ASD. CMA is a molecular genetic tool that can identify the location and the size of
copy number variations of genomic DNA (CNV) with better resolution and accuracy than
conventional karyotyping [12]. Accumulating studies indicate that CMA improves the
genetic diagnostic rate of ID, ASD, and other neurodevelopmental disorders. Hence, the
International Standards for Cytogenomic Array (ISCA) Consortium published a consensus
statement and recommended using chromosome microarray as the first-tier genetic test
for developmental disabilities and congenital abnormalities [13]. The consensus statement
gained support from several studies [14–17], including our study of ASD [18].

Next-generation sequencing (NGS) is a massively parallel sequencing technology
that can efficiently determine the genome sequences from organisms [19,20]. It can detect
small indels and SNVs at a genome-wide level [21]. NGS has helped identify many
genetic mutations associated with ID [22,23], ASD [24,25], and psychiatric disorders [26–28].
Some studies suggested using NGS as a first-tier genetic test for neurodevelopmental
disorders [29,30]. Our group also identified several rare genetic mutations associated
with ID and psychiatric conditions using NGS [31–33]. Our studies support that NGS
helps establish a personalized molecular diagnosis for neurodevelopmental and psychiatric
disorders [34].

In our series of molecular genetic studies of psychiatric disorders, we recruited single-
ton or multiplex families and searched for their genetic underpinnings using systematic
genetic approaches, including conventional cytogenetic analysis, CMA, and NGS. This
study searched for the genetic deficits in a family with two siblings affected with ID and
ASD. Here, we report on our clinical and genetic studies of this family.

2. Materials and Methods
2.1. Subjects

Singleton and multiplex families diagnosed with neurodevelopmental disorders were
recruited into our molecular genetic study series from Chang Gung Memorial Hospital-
Linkou, Taoyuan, Taiwan. The Review Board of Chang Gung Memorial Hospital-Linkou
approved the study with approval number 201801385A3. After we fully explained this
study, each subject or their guardians signed the informed consent. We collected clinical
information through interviews and reviews of medical records. The psychiatric diagnoses
followed the criteria of the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders,
5th edition). Genomic DNAs were prepared from each participant using the Smart Genomic
DNA Extraction kit (Intelligent Biomedicine, Taipei, Taiwan).

2.2. Genome-Wide CNV Analysis

To detect CNV at a genome-wide level, we used the CytoScan HD Array (Affymetrix
Inc., Santa Clara, CA, USA) platform. The experiments were performed at the Genomic
Medicine Core Laboratory of Chang Gung Memorial Hospital-Linkou (Taoyuan, Taiwan).
We used the Chromosomal Analysis Suite Version 3.3.0.139 (r10838) (Affymetrix Inc., Santa
Clara, CA, USA) to analyze the data. Gain and loss of CNVs were detected at the resolution
of 50 probes and 100 kb. The genomic coordinates of CNVs followed the human genome
sequences version GRCh37/hg19. The interpretation of the clinical significance of CNV
followed the “Technical standards for the interpretation and reporting of constitutional
copy-number variants: a joint consensus recommendation of the American College of
Medical Genetics and Genomics (ACMG, Bethesda, MD, USA) and the Clinical Genome
Resource (ClinGen, Bethesda, MD, USA)” [35].

2.3. Real-Time Quantitative PCR (RT-qPCR)

We used real-time quantitative polymerase chain reaction (RT-qPCR) as a complemen-
tary method to verify the authenticity of CNV detected by the CytoScan HD array. In brief,
we designed a primer pair (forward 5′-GGGTGGGGGCATTTTCTCTACCTT-3; reverse: 5′-
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GAGGCAGGAGGGAACCTCAGGA-3′) to obtain an amplicon of the SHANK3 gene as the tar-
get gene. We also used another primer pair (forward 5′-CCGTGAACAGGTGAACAGCATTC-
3′; reverse 5′-GCCTCTGCCTTACCTTTGTGTTT-3′) to obtain an amplicon of the VIPR2 gene
as the endogenous reference. The comparative ddCt method was used for the analysis of the
RT-qPCR data. A dCt was first obtained by subtracting VIPR2 Ct from SHANK3 Ct. Then,
the Ct of the tested subject was normalized to the control subject to obtain ddCt. The relative
fold change to a normal subject was determined as 2−ddCt. The RT-PCR experiments were
performed using the StepOnePlus machine (Applied Biosystems, Foster City, CA, USA) with
the SYBR green method following the manufacturer’s instructions.

2.4. Whole-Genome Sequencing (WGS)

Whole-genome sequencing (WGS) was performed using the Illumina HighSeq2000
platform (Illumina, San Diego, CA, USA). After a quality check, the raw sequencing data
were aligned to the human reference genome build hg19/GRch37. SAMtools and the
Genome Analysis Tool Kit were used to refine the local alignment and generate a variant
calling file (VCF). Variants were further annotated, filtered, and analyzed under different
filtering criteria and inheritance models, including autosomal dominant, autosomal reces-
sive, X-linked, and de novo mutation. The bioinformatics analysis of the NGS data in the
family was performed using SeqLab software (ATgenomics, Taipei, Taiwan).

2.5. Sanger Sequencing

To verify the authenticity of mutations detected from WGS analysis, we first designed
primer pairs to obtain amplicons covering the mutations by PCR. In brief, we performed
30 cycles of PCR in a 20 µL mixture containing 100 ng DNA, 1 µM of each primer, 1X buffer,
0.25 mM of dNTP, and 0.5 U of Power Taq polymerase (Genomics, New Taipei City, Taiwan)
and with the annealing temperature of 63 ◦C. An aliquot of the amplicon was purified and
subjected to Sanger sequencing using the BigDye Terminator kit v3.1 (Applied Biosystems,
Foster City, CA, USA). We used the forward primer for sequencing.

2.6. Bioinformatics Analysis and Literature Review

This study defined a rare mutation with less than 1% minor allele frequency. The
mutations identified in this study were checked in the dbSNP (https://www.ncbi.nlm.
nih.gov/snp/, accessed on 8 June 2022) and the Taiwan Biobank (https://taiwanview.
twbiobank.org.tw/index, accessed on 8 June 2022). The functional impacts of mutations
were assessed using several online computer programs, including Polyphen-2 (http://
genetics.bwh.harvard.edu/pph2/index.shtml, accessed on 8 June 2022), SIFT (https://sift.
bii.a-star.edu.sg/, accessed on 8 June 2022), PROVEAN (http://provean.jcvi.org/index.
php, accessed on 8 June 2022), and Mutation Taster (http://www.mutationtaster.org,
accessed on 8 June 2022). The possible relevance of rare mutations to the pathogenesis of
psychiatric disorders was evaluated by reviewing the literature in PubMed.

3. Results
3.1. Clinical Reports

We recruited a family with two affected siblings; the pedigree of this family is shown
in Figure 1. The father and mother were 65 and 56 years old, respectively. They did not
have a history of psychiatric disorders. The elder son was 30 years old and was born
full-term without remarkable events. He was shy and had poor interpersonal and social
interactions when he was a child. At 10 years old, he was diagnosed with moderate ID
with ASD. He attended a special education program from elementary school to high school.
At 23 years old, he started to manifest psychotic symptoms such as agitation, irritability,
temper tantrums, aggressive behavior, self-talking, and self-laughing. Schizophrenia was
added to his diagnosis. He received treatment with antipsychotics and mood stabilizers, but
he responded poorly. He was admitted to the psychiatric ward several times due to unstable
psychotic symptoms. At the age of 25, he received the Wechsler Adult Intelligent Scale-
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Fourth edition (WAIS-IV) test, which showed that he had a full-scale intelligence quotient
(IQ) of 42, including Verbal Comprehension Index Scale of 50, Perceptual Reasoning
Index Scale of 51, Working Memory Index Scale of 50, and Processing Index Scale of
50. At the age of 29, he received a course of electroconvulsive therapy (ECT) due to his
intractable psychotic symptoms and catatonia, but he did not respond well to ECT. His
mental conditions and social function were deteriorating gradually.
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Figure 1. Pedigree of the family with two siblings affected with ID and ASD.

The younger sister was 26 years old. She was also born full-term without remarkable
events. At the age of 4, she was diagnosed with severe ID and ASD due to global develop-
mental delay, hypotonia, and lack of language development. She did not receive special
education and stayed home with her parents. She had poor social function and self-care
capability. At 21 years old, she manifested an unstable mood with irritability and agitation.
She received antipsychotic treatment but responded poorly to pharmacotherapy. Currently,
she still does not have verbal speech. Her mental condition remains the same. Unlike her
elder brother, her mental symptoms did not worsen. Hence, she was not hospitalized and
is presently under the custody of her parents.

3.2. Identification of a Pathogenic CNV in the Younger Sister

The genome-wide CNV analysis detected a 3753 kb subterminal interstitial deletion at
chromosome 22q13.31 in the younger sister. The deletion started from nucleotide positions
47,445,140 to 51,197,725, which covered 52 genes. The readout of this microdeletion from
the Chromosomal Analysis Suite Version 3.3.0.139 (r10838) (Affymetrix Inc., Santa Clara,
CA, USA) is shown in Figure 2. The deleted genes are listed in Table 1. The CNV was
considered pathogenic according to the “Technical standards for the interpretation and
reporting of constitutional copy-number variants: a joint consensus recommendation of the
American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome
Resource (ClinGen)” [35]. This pathogenic CNV was a de novo mutation that was not
found in her parents or her elder brother. Real-time quantitative PCR verified the presence
and the inheritance of this CNV in this family (Figure 3).
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Table 1. List of genes deleted in the region of this microdeletion.

Cytogenetic location 22q13.31–13.33

Nucleotide Position 47445140-51197725

Size 3753 Kb

TBC1D22A, LOC339685, LINC01644, LINC00898, LOC284930,
MIR3201, FAM19A5, LOC284933, MIR4535, LINC01310, C22orf34,
MIR3667, BRD1 *, ZBED4, ALG12 *, CRELD2, PIM3, MIR6821,
IL17REL, TTLL8, MLC1 *, MOV10L1, PANX2, TRABD, SELENOO,
TUBGCP6 *, HDAC10, MAPK12, MAPK11, PLXNB2 *, DENND6B,
PPP6R2, SBF1 *, ADM2, MIOX, LMF2, NCAPH2, SCO2 *, TYMP *,
ODF3B, KLHDC7B, SYCE3, CPT1B, CHKB-CPT1B *, CHKB,
CHKB-AS1, MAPK8IP2 *, ARSA *, SHANK3, LOC105373100, ACR,
RPL23AP82

* Candidate genes contribute to the patient’s phenotypes in addition to SHANK3.
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Figure 3. Real-time quantitative PCR showed the haploinsufficiency of an amplicon of SHANK3
(exon3) in the younger sister (HCG786) but not in her elder brother (HYS271) or her parents (HYS272
and HYS273).

3.3. Detection of Multiple Rare Inherited Variants in the Elder Brother

WGS analysis did not detect pathogenic mutations associated with the clinical phe-
notypes of the elder brother under the models of dominant de novo mutation, autosomal
recessive, and X-linked inheritance. Nevertheless, we identified seven rare inherited muta-
tions with neuropsychiatric implications in the elder son. The authenticity and the origin of
these rare mutations were verified by Sanger sequencing. The primer sequences, optimal
annealing temperature, and amplicon size are listed in Table 2, and the chromatographs of
the Sanger sequencing are shown in Figure 4. Five genetic variants were transmitted from
his father, while two were inherited from his mother. The genetic information of these rare
inherited mutations is summarized and listed in Table 3.

Table 2. Primer sequences, optimal annealing temperature (Ta, ◦C), and size of PCR products for the
verification of the mutations identified in this study using Sanger sequencing.

Forward (5′-3′) Reverse (5′-3′) Size (bp)

KLHL17 CCCTCTTGCCCTGTGCCTTCTACT CGGAATTAAGCCACTGCAGGTCAA 395

TDO2 CTCTCTCAGGACTATTAATGCC AATCTGGGCATGGAAACCCGTT 338

TRRAP GTGAGGGTGCGCCTCAGTTTGTTA ACCCAAGACCGTCAGTGGTCTGAG 336

EIF3F AGCAGAGCGCACAAATTCCAGAAG AGGGTCTGAGGATGAGGCTGGAG 329

DICER1 GTGGGAGGCCTGAAAGGGTAAATG CACTGGATGAATGAAAAGCCCTGC 262

ATP10A GGAGCCACTTGAAACCCACCTACC GTTCGCTCACACTGCTGTGCATTT 238

CDH15 GGAGACTTAGACCTGCCCTGCTGT TAAGGGTGCCTGGATCTTGCAGTC 399
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Table 3. Genetic information of the seven inherited rare variants identified in this study.

Gene and
SNP Mutation Location Inheritance Taiwan

Biobank ALFA PROVEAN SIFT PolyPhen-2 Mutation
Taster

KLHL17
rs186429850

chr1:898542:A > G
c.1096A > G

p.T366A
Maternal 0.005137 0.000338 Neutral Tolerated Benign Disease

causing

TDO2
rs183229581

chr4:156835551:T > A
c.803T > A

p.F268Y
Paternal 0.01 0 Neutral Damaging Probably

damaging
Disease
causing

TRRAP
rs55755466

chr7:98574585:G > C
c.8250G > C

p.E2750D
Paternal 0.007581 0.000317 Neutral Tolerated Possibly

damaging
Disease
causing

EIF3F
rs367735033

chr11:8008909:C > T
c.10C > T

p.P4S
Paternal 0.003309 0.000066 Neutral Damaging Damaging Disease

causing

DICER1
rs772381832

chr14:95599687:T > A
c.109A > T

p.I37F
Maternal 0.000989 0.000008 Neutral Damaing Probably

damaging
Disease
causing

ATP10A
rs184009994

chr15:25947187:C > T
c.2636G > A

p.R879H
Paternal 0.001648 0.000009 Deleterious Damaging Possibly

damaging
Disease
causing

CDH15
rs149963083

chr16:89246698:G > A
c.292G > A

D98N
Paternal 0.001649 0.000171 Deleterious Tolerated Probably

damaging
Disease
causing

4. Discussion

We first detected a 3.7 Mb de novo interstitial microdeletion at chromosome 22q13.1–
13.3 in the younger sister using CMA. Deletion at 22q13 is associated with Phelan–McDermid
syndrome (PMS, OMIM#606232), a neurodevelopmental disorder characterized by mod-
erate to profound intellectual disability, global developmental delay, delay or absence of
speech development, ASD, and various behavioral problems [36–40]. Dysfunction of the
SHANK3 gene is thought to be the primary cause of PMS [36,38,41,42], as patients with
SHANK3 mutations manifest various neurodevelopmental and psychiatric conditions such
as ID, ASD, and schizophrenia [43]. Several genes other than SHANK3 deleted in the mi-
crodeletion region also contribute to PMS patients’ phenotypes [44,45]. The microdeletion
in the younger sister resulted in the haploinsufficiency of 52 genes, including SHANK3 and
several nearby candidate genes. Hence, the young sister was diagnosed with PMS.

We did not detect any pathogenic CNV associated with the clinical phenotypes in the
elder brother. We further analyzed the WGS data under different modes of inheritance,
including de novo dominant mutation, recessive mutation, and X-linked hemizygous
mutation, and we did not detect any pathogenic mutations fitting these models. The failure
to detect major pathogenic mutations might be due to limitations of the WGS technology
used in this study or mistakes in analyzing the WGS data. Nevertheless, we observed
several rare variants in genes relevant to neuropsychiatric disorders in the patient. These
rare, likely pathogenic variants were inherited from his unaffected parents.

From the father’s side, the patient inherited five missense mutations, including p.F268Y
of TDO2 (rs183229581), p.E2750D of TRRAP (rs55755466), p.P4S of EIF3F (rs367735033).
p.R879H of ATP10A (rs184009994), and D98N of CDH15 (rs149963083). The TDO2 gene
encodes the tryptophan 2,3-dioxygenase, a rate-limiting enzyme for the catabolism of
tryptophan, the precursor of serotonin. Increased expression of TDO2 was observed in
the frontal cortex of patients with schizophrenia compared with that in controls [46], and
in the postmortem of the anterior cingulate cortex, increased expression of mRNA and
protein of TDO2 was also detected in patients with schizophrenia and bipolar disorder [47].
TDO2 gene was reported to be associated with Tourette syndrome [48] and autism [49].
Tdo2-knockout mice showed anxiolytic behaviors, increased adult neurogenesis [50], and
enhanced exploratory behavior and cognitive function [51]. The TDO2 protein was also re-
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ported as a mediator of environmental factors associated with psychosis through epigenetic
mechanisms [52].

The TRRAP gene encodes the transformation and transcription domain associated
protein, belonging to the phosphoinositide 3-kinase-related kinases (PIKK) family. TRRAP
is the standard component of many histone acetyltransferase complexes that are involved
in the chromatin modification during the transcription, duplication, and repair of DNA [53].
TRRAP modulates gene transcription by regulating key transcription factors, such as E2F1,
c-Myc, p53, and Sp1 [54,55]. Trrap-knockout mice were lethal [56]. Deleting Trrap in Purkinje
neurons affected microtubule dynamics, resulting in neurodegeneration in old mice [54].
Notably, rare TRRAP mutations were found in some patients with schizophrenia [57], ID,
and ASD [58–60].

The EIF3F gene encodes the eukaryotic translation initiation factor 3 subunit F, a
component of the eukaryotic translation initiation factor 3 complex. The EIF3F protein is
involved in IRES-dependent viral translational initiation, protein deubiquitination, and
translational initiation. Mutations of the EIF3F gene were associated with recessive de-
velopmental disorders characterized by ID, epilepsy, behavioral problems, and various
physical abnormalities [61,62].

The ATP10A gene encodes a putative ATPase phospholipid transportation protein
10A, which was mapped to 15q12, 200 kb distal to UBE3A [63]. UBE3A is a maternally
expressed gene and is considered the candidate gene for the maternal duplication and
deletion of 15q11–13. ATP10A is adjacent to UBE3A and is involved in the duplication
and deletion of 15q11. Hence, it was also considered a candidate gene for 15q11–13
duplication and deletion syndromes [64]. Maternal duplication of 15q11–13 is associated
with developmental delay, ASD, and seizure, while maternal deletion of 15q11–13 is
associated with Angelman syndrome, a neurodevelopmental disorder characterized by
ID, ASD, seizure, and other dysmorphic features. Several rare missense variants of the
ATP10A gene were reported in patients with ASD, but their functional impacts are yet to be
studied [64,65].

The CDH15 gene encodes the cadherin 15 protein, a classic cadherin gene family member
that belongs to the cadherin superfamily [66]. Mutations of multiple cadherin superfamily
members are associated with neuropsychiatric disorders such as epilepsy, ID, ASD, bipolar
disorder, and schizophrenia [67]. Rare pathogenic mutations of CDH15 in patients with ID
were reported. Bhalla and colleagues studied a translocation t(11; 16) (q24.2; q24) in a female
patient with ID; they found that this translocation disrupted the CDH15 and KIRREL3 genes.
They further screened for mutations of these two genes in a sample of 647 patients with
idiopathic ID. They identified four heterozygous missense mutations of CDH15 and three
heterozygous missense mutations of KIRREL3 in this sample. A functional study of three
missense mutations of CDH15 showed impaired reduction in cell adhesion, suggesting that
they are pathogenic mutations [68].

From the mother’s side, the patient inherited the p.T366A of KLHL17 (rs186429850) and
the p.I37F of DICER1 (rs772381832). The KLHL17 gene is one member of the KLHL gene
family, which encodes proteins that possess a BTB/POZ domain, a BACK domain, and five
to six Kelch motifs [69]. The KLHL17 gene is located at 1p36.33. Monosomy 1p36 deletion
syndrome is the most common terminal deletion syndrome in humans, characterized by ID,
developmental delay, seizures, dysmorphic features, and other physical abnormalities [70,
71]. KLHL17 was considered one of the candidate genes for 1p36 deletion syndrome [72].
The KLHL17 protein interacts with F-actin in the dendritic spines of neurons in the brain.
Knockdown and knockout studies of Klhl17 showed that KLHL17 modulated the remodeling
of F-actin and contributed to the morphogenesis, maturation, and activity of neurons in
the brain [73]. Klhl17-deficient mice (Klhl17+/–) showed hyperactivity and reduced social
interaction, suggesting that dysfunction of KLHL17 is associated with abnormal behaviors [73].

The DICER1 gene encodes the dicer, ribonuclease III, which is responsible for generat-
ing RNA interference (RNAi), including small interference RNA (siRNA) and microRNA
(miRNA) [74]. In addition to cleaving the double-strand RNA in the RNAi biogenesis, DICER1
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is involved in generating small RNAs and has non-endonuclease activities [75]. Mutations
of DICER1 are associated with susceptibility to various cancers, which was named DICER1
syndrome [76,77]. Some patients with DICER1 mutations have additional phenotypes, such
as global developmental delay, macrocephaly, ASD, and other physical abnormalities [78–82].
Notably, the increased expression of DICER1 in the dorsolateral frontal cortex was reported
in patients with schizophrenia [83,84]. An SNP (rs3742330) of DICER1 was reported to be
associated with Chinese schizophrenia [85], and a rare missense mutation of DICER1 was
detected in a Chinese patient with schizophrenia [86]. Hence, DICER1 was considered a
susceptibility gene for schizophrenia. Conditional knockout of Dicer1 in excitatory forebrain
neurons of mice led to microcephaly, reduced dendritic branch elaboration, and increased
dendritic spine length in the brain [87].

Neuropsychiatric disorders are complex genetic disorders. With the progress of CMA
and WGS analysis, accumulating evidence indicates that rare de novo mutations with high
penetrance play an essential role in the genetic deficits of neuropsychiatric disorders. Never-
theless, a large part of neuropsychiatric patients’ genetic landscape is still missing. Several
studies have indicated that oligemic involvement is part of the genetic landscape of neurode-
velopmental disorders [32,88–91]. Notably, in a recent study, John and colleagues reported
the detection of five rare heterozygous variants in a schizophrenia multiplex family. These
likely pathogenic variants were inherited from unaffected parents. Hence, they proposed that
these variants had cumulative and threshold effects on the development of schizophrenia [92].
Similar to this study, we detected seven rare, likely pathogenic variants in the elder brother
in this family. These variants were transmitted from his unaffected parents, indicating that
these variants have only moderate clinical impacts or reduced penetrance, but they may in-
crease the carrier’s likelihood of developing neuropsychiatric disorders. When these variants
happened to be present in the elder son, they might have interacted with each other and
crossed the clinical threshold, resulting in the patient’s clinical phenotypes. We suggest that
the oligogenic model of neuropsychiatric disorders might supplement the genetic architecture
of neuropsychiatric disorders.

5. Conclusions

We discovered two distinct genetic mechanisms in two siblings affected by ASD, ID,
and psychosis in one family. Our findings indicate that the genetic basis of neuropsychiatric
disorders is complex even within a family. We also demonstrated the clinical utility of CMA
and WGS in establishing the personalized molecular diagnosis for these two siblings. We
hope that our findings can help improve the clinical care of these two siblings.
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