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Abstract: Over the last decades, the incidence of diabetes has increased in developed countries
and beyond the genetic impact, environmental factors, which can trigger the activation of the gut
immune system, seem to affect the induction of the disease process. Since the composition of the gut
microbiome might disturb the normal interaction with the immune system and contribute to altered
immune responses, the restoration of normal microbiota composition constitutes a new target for the
prevention and treatment of diabetes. Thus, the interaction of gut microbiome and diabetes, focusing
on mechanisms connecting gut microbiota with the occurrence of the disorder, is discussed in the
present review. Finally, the challenge of functional food diet on maintaining intestinal health and
microbial flora diversity and functionality, as a potential tool for the onset inhibition and management
of the disease, is highlighted by reporting key animal studies and clinical trials. Early onset of the
disease in the oral cavity is an important factor for the incorporation of a functional food diet in
daily routine.

Keywords: diabetes; fermented foods; functional foods; gut microbiome; digestive health; nutrition;
probiotics; prebiotics

1. Introduction-Diabetes as a Disease

The purpose of this non-systematic review is to discuss diabetes and see how the gut
microbiome interacts with diabetes, describing the main mechanisms. The incorporation
of fermented foods in order to maintain digestive health is very critical and we will
demonstrate how this is achieved by description of animal and health models. This
tool will aid in the prevention and management of this disease that so many people
suffer nowadays.
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According to the World Health Organization (WHO) and the International Diabetes
Federation (IDF), the prevalence of diabetes has risen continuously over time from 108 mil-
lion in 1980 [1] to approximately 463 million adults (20–79 years) living with diabetes in
2019; by 2045 this will rise to 700 million [2]. Furthermore, 4.2 million deaths were caused
by diabetes and it costed at least 760 billion dollars (USD) in health expenditure in 2019.
The global disease prevalence in adult population has risen from 4.7% to 8.5% during the
years from 1980 to 2014 [1].

T2DM is described as a heterogeneous group of disorders. Most diabetic patients
suffer from type 2 diabetes mellitus (T2DM) as a result of excess body weight and sedentary
lifestyle. It is characterized by decline in insulin-producing β-cells, progressive peripheral
insulin resistance and increased hepatic glucose production [3,4]. Without any doubt,
diabetes etiology is strictly related to environmental and hereditary factors [5,6]. Women
developing gestational diabetes mellitus (GDM) following pregnancy have high risk of
developing T2DM [7,8]. In pregnant women, GDM is closely associated with phenotypes
of metabolic disorders and more specifically obesity, insulin resistance and low-grade in-
flammation [7]. Chronic and low-grade inflammation is the hallmark of metabolic diseases,
along with lipotoxicity-mediated production of cytokines, recruitment and phenotype
changes of B and T cells, which promote macrophages infiltration into adipose tissue [9,10].

In T1DM, there is destruction of β-cells and little or no insulin is produced [11,12].
Viruses also seem to induce type 1 diabetes mellitus (T1DM) via molecular mimicry mecha-
nism [13–15].

Symptoms may be almost identical in all types of disease including high blood glucose
rates, polydipsia, polyuria, neuropathy, kidney failure, blindness, stroke, heart attack and
limb amputation [16]. Oral manifestations are among the first to be seen in the human body
and need to be early related to DM. Periodontal disease, periapical lesions, xerostomia and
taste disturbance were more prevalent among diabetic patients as authors stated in a recent
meta-analysis [17].

Heredity, ethnicity and feeding habits seem to increase diabetes burden. Asiatic popu-
lations for example, showed a lower prevalence of disease when compared with European
populations [16]. Socio-economic status is another factor related to the disease prevalence.
The increased rate of T2DM in urban Western societies has been linked to food selection,
obesity, physical inactivity and lifestyle [18]. In this vein, urbanism in India favors the
increasing rates of diabetes from 2.1% in 1970 at 11.6% in 1996 in adults [19]. Accordingly,
a recent cross-sectional study showed variations in the diabetes picture between India’s dif-
ferent states [20] ranging from 4.3% to 11.8% [20]. Low socio-economic status groups living
in disadvantaged urban areas showed a higher prevalence of diabetes [20]. Surprisingly,
Germany had the highest prevalence rates in Europe in 2019 (15.3%) followed by Portugal
(14.2%) and Malta (2.2%), while at the other end Ireland showed 4.4% [21]. However, most
European countries showed a rate ranging from 6.3% to 10% [21]. Agglomeration index
was positively associated to the diabetes prevalence while urban percentage was negatively
associated. It seems that the model of urban development and not the urbanization as such
determine disease prevalence [21].

DM as a ‘’flame within” causes different complications mainly through two mech-
anisms. Firstly, the polyol pathway converts glucose into sorbitol, by aldose reductase
enzyme, that causes tissue damage and numerous diabetic complications. Secondly, the
formation of advanced glycosylation end products (AGEs), due to binding of glucose to
proteins, lipids and nucleic acids, results in the alteration of structures and functions, in
addition to its deposition in specific organs that causes various complications. Atheroma
deposits are formed in cells, which accumulate in the basal membrane and lumen causing
decreased cellular defense capacity and impaired polymorphonuclear leukocyte response.
This makes diabetic patients more susceptible to infections especially by anaerobic bacteria
due to the reduction of oxygen diffusion through the capillary wall [17] (Figure 1).
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Figure 1. Mechanisms of formation of diabetic complications.

2. Microbiome and Diabetes
2.1. Microbiome at a Glance

The human newborn starts life with a likely colonized gut [22–24]. Bacteria coming
from the environment, hospital staff in case of caesarian section [25], or from the maternal
vaginal flora [26] colonize the newborn. However, personal habits, infections, stress,
hormonal status, antibiotics and vaccination seem to be crucial factors for the establishment
of the bacterial microflora [27], which is coined the term “microbiome” as genomes of
the microbes are also involved. This term was firstly proposed by the Nobel Laureate
Joshua Lederberg [27]. The microbiome includes bacteria-bacteriome, viruses-virome and
fungus-mycobiome with various interactions among these -biomes and the host [15].

Microbial communities are characterized by complex microbial inter-dialogue and
network patterns of unique microbiomes. This fact gained attention by many scientists,
who proceeded to the characterization of the microbial communities profile in health and
disease by the aid of new technologies, and specifically the 16S rRNA sequencing, in order
to identify their complexity [28]. Metagenomics Whole Genome Shotgun (WGS) sequencing
substantially conferred towards this aim. The Human Microbiome Project (USA) [28], as well
as the metaHIT Consortium (Europe) [29] were dedicated to the characterization of major
body sites microbiota in health as a hallmark stamp to compare with shifts occurring in
disease states [30]. As a result, the intestinal flora is currently considered the largest and
most complex organ composed of more than 1000 bacterial species and moreover many
studies have pointed out the relation of various metabolic and immune disorders with
intestinal microbial dysbiosis [31].

The importance of diet in shaping the human gut microbiome is stated since the
very early age. The role of the healthy microbiota is crucial on the different metabolic
processes, such as the breakdown of dietary fibers to short-chain fatty acids, breakdown of
mucins, biosynthesis of amino acids and vitamins, and production of neurotransmitters
and hormones [32]. The effect of feeding modes in the shape of gut microbiota is extensively
discussed in multiple studies since the newborn birth to the adult age [33–36]. Important
differences in microbial populations seem to be associated with dietary habits. There is
also information derived from observational studies between globally distinct populations,
such as children in rural Africa (Burkina Faso; BF) versus urban Europe children [37]. BF
children developed a microbiota rich of bacteria belonging to the phylum Bacteroidetes and
depletion of Firmicutes, while European recipients hosted more Firmicutes and Proteobacteria.

Gut microbiota own an essential role in maintaining host physiology, as they are
involved in the digestion of several nutrients, development of the immune system and
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stimulation of immune responses against pathogens [9,38]. The ‘hygiene hypothesis’ im-
plicating smaller families and lower exposure to child infections as an explanation for
atopic disorders has been debated over numerous studies [39,40] In this vein, microbiota
co-evolves with the human immune system and promotes a normal immune develop-
ment [41]. A body of evidence for the key role of intestinal microbiota came into view
after comparing host genes expression involved in immune responses, barrier function
and energy homeostasis in germ-free and conventionally raised mice [42]. In most cases,
enhancement of conditional pathogenic bacteria population, like Bacteroides, Enterococcus,
Ruminococcus and Desulfovibrio over beneficial flora has been linked with lower levels of
short chain fatty acids (SCFAs) and bile acids, as well as disruption of normal intestinal
barrier function and endotoxemia. Thus, the mechanisms underlying the crucial role of
commensal bacteria in human homeostasis maintenance are highlighted [43].

2.2. Mechanisms Connecting Gut Microbiota with Occurrence of T2DM
2.2.1. Short-Chain Fatty Acid Contribution

Short-chain fatty acids (SCFAs) are abundant in the intestine (mainly in the colon), and
are produced by bacteria of the genus Bacteroides, Clostridium, Bifidobacterium, Eubacterium
and Streptococcus, during fermentation of polysaccharides. Apart from maintaining low
pH in the lumen and inhibit the growth of harmful bacteria, SCFAs act as an energy source
for intestinal epithelial cells [38]. Additionally, they have a major role in the physiological
intestinal anti-inflammatory response and the activation of multiple pathways signaling
for fat and glucose metabolism, through G-protein coupled SCFAs receptors [9]. Especially,
SCFAs inhibit histone deacetylase action and repress the activity of nuclear transcription
factor NF-κB, thus affecting the production and release of pro-inflammatory molecules
from neutrophils and macrophages [44]. Decreased levels of SCFAs, because of intestinal
microbial imbalance, are associated with extended release of IL-2, IL-8 and TNF-a, which
promote intestinal inflammation. Additionally, the anti-inflammatory cytokine IL-10 is
capable of inhibiting synthesis of pro-inflammatory cytokines, such as IFN-γ, IL-2, IL-3, and
TNFα released by macrophages and Th1 cells, while low levels of IL-10 have been reported
in patients with T2DM and metabolic syndrome [45]. Similarly, fewer regulatory T cells,
which produce IL-10, have been associated with chronic inflammation and it is well known
that SCFAs promote T-cell differentiation through inhibition of histone deacetylase in
T-cells and regulation of phosphorylation of the ribosomal protein S6 [44,46]. The junction
between decreased levels of SCFAs and occurrence of T2DM is confirmed by abnormalities
in lipid and glucose metabolism, which are regulated by GPR41 and GPR43 receptors.
Acetic, propionic and butyric acids are ligands of the receptors and binding on the GPR41
receptor triggers the regulation of pancreatic β-cells and insulin secretion. Moreover, the
peptide tyrosine-tyrosine (PYY) is normally released from differentiated gastrointestinal
epithelial L-cells, in response to feeding and regulates appetite [47]. Partial activation of
GPR41 receptors, due to low production of SCFAs, results in insufficient secretion of PYY
and increased food intake. In combination with decreased insulin secretion by islet β-cells,
the pathological condition of insulin resistance is established [9,47]. Furthermore, reduced
appetite can be mediated by butyrate and propionate via induction of leptin expression
from adipocytes [47]. Among SCFAs, butyric acid is considered as an important molecule
for triggering pancreatic secretion. Reduced counts of butyric acid-producing bacteria
result in decrease of glucagon and insulin levels, but increased blood glucose levels. In line
with GPR41 receptors, SCFAs are ligands to GPR43 receptors, which stimulate signaling
pathways regulating energy intake and fat metabolism [9].

2.2.2. Lipid Metabolism

Intestinal microbial dysbiosis has also a negative impact on bile acids circuit and down
activation of bile acid receptors is claimed to induce insulin sensitivity, increased appetite
and body weight [48,49]. Specifically, liver cells produce primary bile acids via cytochrome
P450-mediated oxidation of cholesterol and once secreted into the lumen, intestinal bacteria
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metabolize them into secondary bile acids without glycine and taurine groups. Bile acids
act as micelle-forming surfactants and have major contribution to lipid and fat-soluble vita-
mins absorption and digestion [47]. Regarding unconjugated bile acids as signal molecules,
their action resembles that of hormones and activate many nuclear receptors, particularly
farnesol X-receptor (FXR) and G-protein-coupled bile acid receptor 5 (TGR5). In general,
active FXR receptors suppress bile acids synthesis from cholesterol and lipogenesis, thus
regulating hepatic triglyceride levels. Low levels of bile acids cut down signaling through
FXR receptors and high levels of blood cholesterol and glucose have been reported [50–52].
Many TGR5 receptors are expressed in small intestine, liver or stomach, also in mono-
cytes and macrophages cells, as they have an important role in energy homeostasis and
glucose metabolism, and may possess an anti-inflammatory effect [10,53]. Activation of
TGR5 receptors on L-cells promotes secretion of glucagon-like peptide-1 (GLP-1), a key
insulin sensitizing and trophic hormone. In pancreatic β-cells, insulin secretion pathway
initiates when active TGR5 receptors induce cAMP production and high levels of cAMP
subsequently stimulate Epac (Exchange protein directly activated by cAMP), which in
turn results in phosphoinositide hydrolysis and insulin release [54]. In a recent study [49],
it was pointed out that TGR5 can induce GLP-1 secretion from pancreatic α-cells via an
Epac-mediated protein kinase A-independent signaling pathway. GLP-1 is thought to be
an important regulating hormone of glucose homeostasis, as it triggers insulin release,
inhibits glucagon release and as a result low blood glucose has been reported [49,53].
Interestingly, Perino et al. [53] suggested that TGR5 signaling is involved in adipose tissue
protection from inflammation, through inhibition of macrophages migration and decreased
lipopolysaccharides-induced chemokine expression. Using Tgr5-knockout obese mice,
they also revealed that chemokine reduction was mediated by AKT-dependent activation
of mTOR complex 1 axis and differential translation of the liver inhibitory protein (LIP) in
macrophages [53]. Many studies have also investigated the implications of TGR5 in obe-
sity [48,55]. Bile acids mediated activation of TGR5 receptors promotes energy expenditure
in brown adipose tissue and has a major contribution in balancing energy intake and lipid
metabolism. The potential role of TGR5 in modulating inflammation was confirmed in
TGR5 knockout mice. Bensalem et al. [48] investigated the inflammatory status in TGR5-/-
obese mice. Noticeably, they observed higher circulating levels of lipopolysaccharides
and increased IL-6, IL-1β, as well as TNFα mRNA expression in intestine, white adipose
tissues and liver of TGR5-/- obese mice compare to WT obese mice. Obviously, intestinal
dysbacteriosis and reduced levels of bile acids attenuate signal cascades transduction via
FXR and TGR5 receptors and have an important role in occurrence and progression of
metabolism diseases.

2.2.3. Disruption of Intestinal Barrier Function and Endotoxemia

As previously mentioned, intestinal microbiota plays a pivotal role in the devel-
opment and maintenance of the mucosal immune system, but on the other hand, can
trigger chronic and low-grade inflammatory responses at metabolic disorders. Specifically,
bacterial lipopolysaccharides (LPS) are the major components of the outer membrane
of Gram-negative bacteria, such as Proteobacteria, normally secreted during membrane
vesicle trafficking activity, although they serve as an endotoxin. Increased level of Pro-
teobacteria is a well-established intestinal microbial shift in obesity and T2DM caused by
high fat diet [38,56]. Dissociated endotoxins can be found in the bloodstream, a situation
defined as metabolic endotoxemia, a contributory factor to the occurrence and progression
of metabolic diseases [57]. Released LPS molecules can infiltrate adipose tissues, initiating
many signal cascades, which involve innate immune responses, dysregulation of glucose
and lipid metabolism [9,57,58]. Briefly, LPS bind to CD14 receptor expressing macrophages
and via Toll-like receptor 4 (TLR4) signaling, a local secretion of pro-inflammatory key
cytokines including TNF-α, IL-12, IL-6, IL-1β, INFβ and INFγ occur [58,59]. Active TLR4
stimulate the mitogen-activated protein kinase (MAPK) pathway and in particular, extra-
cellular signal-regulated protein kinases 1 and 2 (ERK1/2), c-Jun-N-terminal kinases (JNK)
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and p38 signals transduction, which are involved in the activation of insulin signaling path-
ways [59]. Shi and colleagues [60] investigated the connection of metabolic endotoxemia
and obesity-associated insulin resistance. Mice consuming a high-fat diet and lacking TLR4
were protected from insulin resistance and lipid infusion did not activate NF-κB signaling
in adipose tissue [60].

It is worth mentioning that increased systemic levels of LPS, or other metabolic
products, are directly related with disruption of gut barrier function and permeability. LPS
can cross intestinal mucosa via infiltrating chylomicrons which are lipoproteins responsible
for the absorption of dietary triglycerides and cholesterol [61]. Intestinal barrier function
refers to the ability to absorb dietary nutrients, while restricting undesirable luminal
contents within the gut and is a heterogeneous entity composed by physical, chemical,
microbial and immune elements [9]. Concerning microbial barriers, dietary habits play an
important role in the modulation of intestinal microflora and excess consumption of fat
causes destruction of microbial barrier, which in turn favors the microbial translocation
and colonization of intestinal mucosa by pathogenic bacteria [61]. Commensal microflora
influence barrier function by stimulating epithelial cell proliferation and by producing
SCFAs, which serve as energy source [62]. The epithelial layer (physical barrier) of intestinal
barrier is bound by tight junctions composed of many proteins, named occludins, claudins,
junctional adhesion molecule and zozula occludens. Lower levels of junction proteins
occluding and tricellulin and higher levels of LPS and zonulin were observed in obese
people compare to lean controls [63].

2.2.4. Inflammation and the Immune System

As previously discussed, diabetic recipients developed a constant systematic inflam-
mation with high levels of pro-inflammatory cytokines [TNF-a, IL-6, b kinase inhibitor
(IKKb) and Jun N-terminal kinase (JNK)], having negative impact on insulin [64]. Lactic
acid bacteria have antioxidant capacity and can target the inflammatory status in diabetes
mellitus, improve prevention and alleviate diabetes disease symptoms in animal mod-
els [65,66]. However, this effect is strain-dependent. L. rhamnosus strains showed enhanced
effect compared to Bifidobacterium strains in the regulation of the glycolipid metabolism, as
well as on gut microbiota improvement [66]. It is worth noting that lactic acid strains which
presented hypoglycemic effects displayed a positive role in reducing insulin resistance by
producing SCFAs and thus alleviation of inflammation status [66].

As analyzed above, the gut microbiota plays an important role in the balance of
our health status with its metabolic profile. T2DM is linked to important alterations of
the gut microbiota, due to the occurring dysbiosis. Particularly, T2DM is linked to a
chronic inflammation status in fat tissue and maladjusted metabolism [67]. Yet, obesity
enhances the problem, as it is associated to a pro-inflammatory cytokine production
due to the inflammation. Immunological obesity is linked to pro-inflammatory cytokine
secretion, immune cell infiltration and disrupted function of tissues involved in glucose
homeostasis [67]. Specifically, lipid metabolism disorder parallel obesity and can impede
insulin signaling.

In addition, pattern recognition receptors (PRRs) activate the inflammation status
and the presence of nutritional free fatty acids (FFAs), which display a negative impact on
insulin target tissues in obesity [60,68]. Those circulating FFAs are increased in obesity and
induce TLR4 signaling in macrophages and adipocytes and tissues inflammation [60,68].
Yet, it is believed that accumulation of lipids such as, diacylglycerol (DAG) and ceramides
impede insulin action [69].

The expression of pattern recognition receptors (PRRs) is stimulated in the human
cells during inflammation processes [70]. The most known PRRs are TLRs, which are
membrane glycoproteins. TLR4 signaling in cells is critical for the inflammation process
and probiotics reduce inflammation by limiting the expression of TLR4 [71] and thus
modulating beneficially the microbiota. TLRs are found on cellular surfaces in increased
amounts in individuals with diabetes, obesity and metabolic syndrome [72].
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The gut microbiome seems to regulate TLR-mediated insulin resistance as experimen-
tal studies in mice deficient-TLR5 developed metabolic syndrome and insulin resistance
due to dysregulation of IL-1β signaling [73]. More studies on animal models TLR2-deficient
showed similar results as mice developed obesity, insulin resistance and glucose intoler-
ance. The gut microbiome of these mice showed abundance of Firmicutes and reduced
levels of Actinobacteria of the genus Bifidobacterium [74]. Moreover, low amounts of the
beneficial Bifidobacterium confer on increasing gut permeability and thus can lead a leaky
gut status with high endotoxins levels as LPS. In this vein, the immune system recognizes
LPS and triggers TLR signaling and inflammation followed by insulin resistance and
glucose intolerance. Accordingly, healthy mice assigned fecal microbiota transfer from
animals having metabolic syndrome, they underwent the same progression of diseases
states reversible by antibiotics administration [73].

As stated, the gut microbiome regulates TLR, hence the loss of TLR2 in mice shifts
considerably the microbial flora profile. In contrast, enhanced expression of TLR2 is
observed in patients with metabolic syndrome and diabetes [75].

2.2.5. Microbiota Traits in DM

The key role of the gut microbiota is underpinned in multiple studies of T1DM and
includes an increased ratio of duodenal Bacteroidetes/Firmicutes [76], an overgrowth of
opportunistic pathogens [77] and decreased microbial diversity [78].

By the use of novel technologies, such as the deep tag-encoded sequencing, increased
amounts of Firmicutes and Clostridia were reported in diabetic patients [79]. Moreover, the
ratios of Bacteroidetes to Firmicutes and Bacteroides–Prevotella to C. coccoides–Eubacterium
rectale groups were found to parallel FBG levels [79]. Interestingly, the Betaproteobacteria
amounts were increased in diabetic individuals [79].

As mentioned previously, TLR signaling in cells is crucial for the inflammation process
and the maintenance of tissue integrity [80]. TLR signaling is expressed through the
adapter protein MyD88 and the lack of MyD88 prevents from vascular complications and
atherosclerosis [80]. In this vein, mice models of T1DM fed with L. johnsonii and L. reuteri
seems to impede diabetes development, due to the oxidative stress response and thus,
lower pro-inflammatory cytokines amounts, such as interferon-γ are produced [81].

Arising out of the analysis of 30 billion nucleotide bases by the novel Illumina shotgun
metagenome methodology, data investigation showed increased carbohydrate metabolism
and stress responses [82]. Additionally, owing to the use of 16SrRNA shifts in the diversity
of the microbiota, several microorganisms were revealed. Specifically, increased numbers
of the phyla Actinobacteria, Bacteroidetes and Proteobacteria and the genus Bacteroides were
found in diabetic, in contrast to the increased amounts of Firmicutes, Fusobacteria, Tenericutes,
and Verrucomicrobia and low Prevotella levels were found in control individuals. Finally,
lactate- and butyrate-producing bacteria were higher in healthy controls underlining their
beneficial effect on the gut [82].

The human body disposes endogenous antioxidant mechanisms to keep the homeosta-
sis. However, oxidation of the human cell occurs following exposure to physico-chemical
and pathological conditions with the production of free radicals (reactive oxygen species,
ROS) as a final result. Oxidative stress is installed when there is imbalance between
ROS and antioxidant mechanisms. Disorders in lipid peroxidation, impaired glutathione
metabolism and enzymatic function are taking place in diabetic patients. As people with
T1DM showed increased levels of oxidative stress, development of major complications are
occurring, such as cardiovascular disease, which remains the leading cause of morbidity
and mortality in T1DM and T2DM [83]. It is also of note that the oxidative stress appears
early in T1DM before autoimmunity development and β-cells damage [84]. Oxidative
stress-related genes GPX1 and MPO in T2DM seem to be associated with the vascular
complications by genetic predisposition [84]. Increased levels of ROS are involved in
diabetic pathogenesis and oxidative stress through a dynamic correlation between nutrient
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excess and diabetes [85]. Evidence showed that obese individuals with insulin resistance
have an elevated phylum Firmicutes/Bacteroidetes ratio compared to healthy people [86,87].

3. Functional Foods and Diabetes
3.1. The Challenge of Functional Foods

Functional foods are foods that surpass classic nutrition and exert beneficial effects
connected to their consumption [88] with optimization of markers related to the disease.

Undoubtedly, economic, political and social trends, together with technological ad-
vantages, lead people to migrate to towns [89]. As humans become more urban, the society
meets the negative impact of urbanization due to the changing lifestyle. Living-conditions,
restricted green space, scant sanitation, fat-food eating habits affect human health. Efforts
have been made to prevent human disease development. Education and increased informa-
tion on health issues make people shift their habits to more sustainable healthy solutions.
In this vein, during the last decades, functional foods have gained particular attention, due
to their relationship to nutrition and health [90].

Without any doubt, healthy nutrition preserves the intestinal ecosystem and bene-
ficially affects metabolic regulation [91]. From another aspect, this interest in functional
foods has played a significant role in the adoption of healthy habits, due to the increasing
consumer health concerns [90,92].

Fermented foods were known since ancient times. Fermentation seems to be firstly
used in the fertile crescent area of the Middle East in 6000 B.C. [92]. The term ‘acid milk’
was also mentioned in the Bible [90]. For centuries, the fermentation process was prag-
matically used for food preservation and production in every culture. People foremost
understood that fermentation enhance food shelf-life and improve organoleptic charac-
teristics of foods [93]. As known, fermented foods contain edible microorganisms whose
enzymes hydrolyze food polysaccharides, proteins and lipids to non-toxic products. As a
result, a food transformation is taking place and ingredients beneficial for human health,
such as SCFAs, are produced [94]. During the last years, higher throughput biotechnologies
serve to promote the fermented food industrial production in a large scale and genome
sequencing provided a global picture on the biodiversity of microorganisms in food fermen-
tation processes [93]. New technologies tailor food with important characteristics through
overexpression or disruption of respective metabolic genes [93]. Moreover, microbial inter-
play in the fermented food matrix affects food quality and safety, organoleptic properties
and finally food digestibility and beneficial modulation of the host immune system [95].

A plethora of fermented products was developed, ranging from drinks to foods
in every culture; kimchi in Asia, cassava in West Africa, kombucha tea in China, kefir
yoghurt in Caucasian and Balkan countries, sauerkraut, pickles, apple vinegar in most
Western countries.

Nevertheless it is notable that most research focuses on the development of fermented
dairy products. Metchnikoff was enrolled in a precursory research in the field of dairy
fermentation in 1908. In his thesis under the title “The Prolongation of Life” evaluated the
properties of lactic bacteria, specifically Lactobacillus delbrueckii subsp. bulgaricus and the
longevity of Bulgarian farmers attributed to the consumption of fermented dairy products.
Probiotics seem to prevent and reduce symptoms of multiple diseases, such as infections,
autoimmune and allergic diseases and many others [96,97]. Even they are used as an
adjunct therapy they maintain the balance of the intestinal microbiota [98].

Nevertheless, the country supporting vigorously the use of labeling in functional food
products is Japan [99]. Since 1991, under the Foods for Specialized Health Use (FOSHU)
label the Ministry of Health, Labor and Welfare in Japan issued a functional food regulation
and launched their use in the market [99]. More than 200 functional products were branded
under FOSHU legislation. In this vein, USA issued a regulation called “Foods with Function
Claims” based on the Dietary Supplement Health and Education Act system (DSHEA) in
2015 [100]. This system seems to be more flexible in terms of health claims and in use
of clinical protocols and thus launched functional foods market all over the world [100].
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Registration of clinical studies must be under a University Hospital Medical Information
Network (UMIN) protocol in both systems. While the FOSHU requires evidence that
shows the reason for the minimum dosage from a dose-dependent study, as well as
striking evidence based on the ways of action of the active compounds and the analytical
methodology used, the American regulation system embeds on clinical studies proving a
significant effect of functional foods when compared with a placebo intake group [100].

Functional food ingredients, such as probiotics, prebiotics, synbiotics and fermented as
well, could amend the good condition of oral cavity and the activity of the gastrointestinal
tract in a beneficial way. It is actually more than an axiom that their healthful effects are
attributed to probiotic lactic acid bacteria (LAB) and Bifidobacterium [91].

The major effect of their intake is associated with the improvement of the host intesti-
nal immune system through the ‘barrier effect’ and alleviation of the gut inflammatory
response [97] through the production of immunoglobulin A (IgA) and balance between
pro-inflammatory and anti-inflammatory cytokines [101]. It seems that diabetes is a disease
related to the modern nutritional habits and lifestyle. Consumer’s interest in functional
foods has increased due to their connection to health issues, such as the balance of gut
microbiota and stimulation of the immune system [102].

As stated before, PRRs are of accrue importance for the deployment of the innate
immune response [103]. Considering the above, therapeutic modulation of the gut micro-
biome via functional foods with probiotic properties may slow down the development of
diabetes disease and its complications through a beneficial balance of the microbiota [104].
Knowledge gathered from animal models and human studies have shown that foods
enriched with probiotics may impede postprandial hyperglycemia and adipose tissue and
lipid metabolism occurring during diabetes inflammatory processes [104]. Furthermore,
they seem to regulate dyslipidemia and insulin resistance status and reduce oxidative
stress and inflammation [104]. In addition, they modify and regulate in a beneficial way
the development of long-term diabetes complications, such as cardiovascular disease,
neuropathy, nephropathy and retinopathy and oral manifestations [17,105]

Many studies have examined the influence of specific eating patterns to the gut
microbiome [106–108]. Animal studies stated that several Lactobacillus and Bifidobacterium
species could prevent or even impede the severity of T2DM [109]. Additionally, studies
in humans aimed to clarify metabolic shifts, oxidative stress and inflammation linked to
diabetes [109].

Meta-analysis studies of multiple control trials stated that probiotics improved the
fasting plasma glucose (FPG) and the glycosylated hemoglobin (HbA1c) in T2DM [110].
Similarly, probiotics given in people developing T2DM improve glycemic control [65].

Without any doubt, unraveling and exploring the involved microbial patterns and
getting a better knowledge of the microbiota profile should clarify their role in health
and disease and should lead to the development of more effective or even alternative
therapeutic strategies and nutritional habits.

3.2. Animal Studies

A great amount of work has been dedicated in unveiling the health benefits of func-
tional food ingredients, such as prebiotic fibers and probiotics on mechanisms regulating
immunity system via modulation of the intestinal microbiota in diabetic animal models.
There is an increasing number of studies concerning how functional foods can improve
or be supplemented as an auxiliary treatment in metabolic disorders, such as obesity,
atherosclerosis or diabetes. Functional foods seem to have additional physiological benefits
and contribute to the reduction of the risk of chronic diseases beyond their basic nutritional
functions [111,112].

The use of animal models in the study of diabetes, especially in the last decade, is
a common practice [113]. The most widespread animals that are equipped in a variety
of experimental protocols belong to the family of rodents, mainly mice and rats because
they have a very similar genetic background to that of humans, as well as a short lifespan.
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Furthermore, they are highly productive, less expensive and easily treated by scientists and
researchers than other animal models [114]. Literature findings are summarized in Table 1,
concerning in vivo dietary supplementations in diabetic rodents and their outcomes on
microbiome modulation and immunity regulation, all published in the last 10 years.

Xue et al. [115] employed T2DM rats and investigated the potential health effects of
propolis. Interestingly, propolis led to lower fasting blood glucose (FBG), reduced insulin
resistance and improved intestinal mucosal injury in ileum tissue. Microbiota of diabetic
rats were normalized with predominant being the Lactobacillus genera that consists mainly
of probiotic bacteria, whereas Enterococcus, Clostridium, Turicibacter and Arthrobacter were
lower compared to the control group [115].

Another interesting study underlined the effects of pistachio nuts supplementation on
amelioration of inflammation by lower inflammatory foci, IL-1β, CCL-2 gene expression
and inflammatory markers (TNF-α and IL-1β) in Wistar rats under high fat diet (HFD).
These obese pistachio-supplemented rats exhibited lower Firmicutes/Bacteroidetes ratio
and increased health-related bacteria, such as Parabacteroides, Dorea, Allobaculum, Turicibac-
ter, Lactobacillus and Anaeroplasma, while inflammation-associated genera like Oscillospira,
Desulfovibrio, Coprobacillus and Biophila were decreased [116]. The health benefit of pis-
tachios on the microbiome of T1DM rats has also been studied by our group [117]. In
healthy animals receiving pistachios lactobacilli and bifidobacteria were found in increased
numbers, as well as increased populations of the Firmicutes phylum were reported, but
decreased amounts of Bacteroidetes phylum were recorded.

Dietary supplementation on rats in HFD with barley or malt revealed decreased ratio
of colonic Firmicutes/Bacteroidetes and increased numbers of Actinobacteria and Verrucomicro-
bia after barley supplementation. Furthermore, Akkermansia, Ruminococcus, Blautia, Biophila,
Turicibacter and Roseburia genera were elevated after barley malt intake and shed some
light in the manner of optimizing the health benefits of whole-brain barley products [118].
Cornstarch diet has been also associated with benefits in alleviating the adversity of dia-
betes mellitus. Studies that were performed in STZ-induced diabetic rats showed increased
diversity of gut microbiota. It was observed a decrease of Actinobacteria and Bacteriodetes
with increased abundance of Firmicutes [119,120]. In another similar study, the RA of these
6 OTUs, Christensenellaceae R-7 group, Prevotella 9, an unknown species of the Prevotellaceae
family, Prevotellaceae UCG-001 and Ruminococcaceae UCG-005, and Ruminococcus 1, were all
increased after starch feeding. Starch feeding also led to a reduction in RA of an uncultured
species of the Erysipelotrichaceae family, Escherichia-Shigella, Klebsiella, an unknown species
of the Peptostreptococcaceae family and Turicibacter [121].

Sane et al. [122] tested the effects of lone human milk administration in nod mice
and underlined the prevention of diabetes onset and progression with elevated fecal
Bifidobacterium and Akkermansia abundances and lower cecal B. fragilis and E. coli. Cecal
and colonic B. vulgatus were enhanced by human milk intake [122].

Shikano et al. [123] used Green loofah L. cylindrica homogenate (LH) and fermented
LH (FL) with L. lactis subsp. lactis Uruma-SU1 and L. plantarum Uruma-SU4, isolated
from algal beach casts in a dietary supplementation experiment on a specific pathogen
free (SPF) mice Kwl: ddY mice in high-fat diet. After FL consumption, TC, LDL-C and
the ratio LDL-C/HDL-C were lower, whereas cecal L. johnsonii and C. disporicum were
increased [123].

STZ-induced diabetic Wistar rats in high-fat diet (T2DM) were supplemented with
fermented milk that was produced by inoculation of skim milk with probiotic cultures,
L. rhamnosus NCDC 17 and L. rhamnosus GG, at 1% (v/v) [124]. Both probiotic treatments
increased the population of total bacteria. L. rhamnosus NCDC 17 supplementation group
had higher populations of E. rectale- C. coccoides, Bacteroides, lactobacilli and bifidobacteria.
LGG and L. rhamnosus NCDC 17 decreased FGB and increased insulin levels and had a
positive effect on glycosylated hemoglobin [124]. Free fatty acids levels and lipid profile
were improved after HFD + L. rhamnosus NCDC 17 administration and triglycerides were
reduced, whilst both probiotics increased HDL-C levels. Finally, L. rhamnosus NCDC
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17 supplementation decreased expression levels of TNF-α and IL-6 genes and increased
mRNA of the adiponectin gene [124].

A non-dairy fermented product with a combination of specific LABs and non-bitter
beer yeast was administered to Zucker diabetic fatty (ZDF) rats, a model for T2DM asso-
ciated with obesity [125]. Decreased glucose absorption was observed in treated group,
along with decreased blood glucose. Microbial diversity was enriched after administration
and Firmicutes, Saturella, Proteus, Alistipes, Anaerococcus were increased in the supplemented
group, while Streptococcacae, Anaerococcus and Streptococcus, Barnesiella and Blautia were
enriched in the control group. Hu et al. [126] showed that mixed fermentation by L. fermen-
tum and Saccharomyces cerevisiae enhanced DNJ extraction efficiency from mulberry leaves.
When implemented to STZ-induced diabetic mice, the extract seems to have relieved
gut dysbiosis by promoting the growth of Lactobacillus, Lachnospiraceae NK4A136 group,
Oscillibacter, Alistipes and Bifidobacterium [126]. At the same time, the growth of Ruminococ-
caceae UCG-014, Weissella, Ruminococcus, Prevotellaceae Ga6A1 group, Anaerostipes, Klebsiella,
Prevotellaceae UCG-001 and Bacteroidales S24-7 group were significantly suppressed [126].

The efficacy of probiotics in diabetes relies on their ability to lower FBG and insulin
levels in preclinical setting, as well as human trials [127]. VSL#3 is a probiotic product
available in the market that contains strains of Bifidobacteriaceae (B. longum, B. infantis and
B. breve), Lactobacillaceae (L. acidophilus, L. paracasei, L. delbrueckii subsp. Bulgaricus and
L. plantarum) and S. thermophilus. When it was administrated to the non-obese diabetic
(nod) mice model, where T1DM occurs as a result of insulitis, ameliorated diabetes pro-
gression took place, which was accompanied by reduced degree of insulitis in histological
examination [128]. Inflammation markers were decreased as there was an inhibition of
IL-1β expression and also enhancement of indoleamine-2, 3-dioxygenase (IDO) and IL-33
was documented [128]. An interesting outcome included the reduced differentiation of
T-helper cells in autoimmune sites of the pancreatic lymph nodes (PLN), the site where
the autoimmune response is regulated in T1DM [128]. The potential health benefits of
probiotic administration were maximized with the increased Lactobacillacae, clostridia
and Rikenellaceae after VSL#3 treatment and decreased abundance of Bacteroidetes strain
S24-7 [128].

Other animal models, such as STZ-induced diabetic Wistar rats in HFD (T2DM),
were utilized in exploring the supplementation with L. plantarum (probiotic), inulin (pre-
biotic) or in combination (symbiotic) [129]. Probiotic and synbiotic treatment led to an
increase of Firmicutes phylum and of Lactobacillales family, while Clostridiales, Enterococ-
caceae and Bacteroidales were decreased [129]. Prebiotic treatment increased Streptococcaceae
classification [129]. All treated groups were dominated with Lactobacillus genera and
were characterized by enhanced Lactobacillus/Firmicutes ratio, whilst only the synbiotic
supplementation increased specifically the probiotic L. plantarum population [129]. An
improvement of oxidative stress status in hippocampus and prefrontal cortex, as well as a
neuropsychological improvement and reversion of cognitive impairment were observed
after symbiotic administration, underlying the variety of health benefits that probiotics can
offer [129].

L. rhamnosus BSL and L. rhamnosus R23, when administered in STZ-induced diabetic
Sprague-Dawley rats, led to elevated LAB levels after 30 days of probiotic supplementation
and improved glucose tolerance and glucose control, as FBG was significantly reduced.
After probiotic treatment, there was a decrease in TC and in atherogenic index [130].

Tian et al. [131], and Li et al. [132] used L. paracasei subsp. paracasei G15 and/or L. casei
Q14 isolated from dairy food in STZ-induced diabetic Wistar rats in high-fat diet (T2DM)
and concluded that glucose tolerance was restored and TC and triacylglycerol level was
suppressed after 6 weeks of probiotic administration [131,132]. Hyperinsulinemia was
ameliorated with insulin and glucagon levels being lower after probiotic ingestion and
concentration of antidiabetic hormones GLP-1 and PYY was augmented after probiotic sup-
plementation [131,132]. Furthermore, plasma LPS was reduced and a healthier intestinal
microenvironment was achieved by improving intestinal barrier structure. The epithelial
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and mucosal structure was normalized and consisted of more integral mucosa [131,132].
Interleukins were also affected; specifically, IL-1β, IL-8 and IL-6 levels were diminished.
The relative abundances of Lactobacillus, Bifidobacterium, Clostridium leptum, Bacteroides and
Prevotella were increased after probiotic treatment [131,132].

Similar findings were observed in STZ-induced diabetic C57BL/6J mice in high-fat diet
(T2DM) supplemented with L. casei CCFM419 [133]. Microbiota modulation was conducted
with increased Allobaculum and Bacteroides genera and Bacteroidetes phylum abundances and
decreased Firmicutes [133]. Post-probiotic ingestion, FBG and HBA1c and leptin levels were
lower, 2-h postprandial blood glucose was reduced, and insulin sensitivity was improved
by decreased fasting insulin concentration, as well as improvement of HOMA-IR value
was noticed [133]. Inflammation was ameliorated with decreased levels of TNF-α, IL-6
and IL-10 [133]. Lipid control was conducted with reduced LDL-C and increased HDL-C
levels [133]. Finally, there was a recovery of impaired islet cells and the expression of
mRNAs of PI3K and GS, concerning the insulin resistance, was increased and GSK-3β
mRNA expression was decreased [133].

L. casei Zhang, when administrated in STZ-induced diabetic Sprague-Dawley rats
in high-fat sucrose diet (HFS) (T2DM), led to more abundant cecal Bifidobacterium and
Lactobacillus genera and lower levels of C. coccoides–E. rectale group and C. scindens mem-
bers [134]. Probiotic supplementation led to reduced endotoxin LPS production that had
been induced by STZ and the onset and development of hyperglycemia in both fasting
and postprandial 2 h blood glucose levels and OGTT levels was reversed [134]. What
is more, pro-inflammatory cytokines (IFN-c and TNF-α) was inhibited after probiotic
administration [134].

L. rhamnosus CCFM0528 provoked increased Bacteroidetes and decreased Firmicutes in
phyla level and elevated Bifidobacterium, Lactobacillus, Allobaculum and Bacteroides genera
in STZ-induced diabetic C57BL/6J mice in high-fat diet (T2DM) accompanied with ame-
lioration of insulin resistance, glucose tolerance, FBG and postprandial 2-h blood glucose;
TNF-α and IL-6 production were decreased and GLP-1 was increased [135].

All of the above-mentioned studies presented in detail in Table 1, provided similar
results and reach to the same conclusion. Prebiotics, as well as probiotics and foods
enriched with such ingredients can promote gut health via enhancement of the presence of
beneficial bacteria genera and accumulation of advantages for the host immune system
and metabolic regulation.
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Table 1. Animal models supplemented with food ingredients; the main beneficial outcomes in the immunity system and the after-effect alterations in intestinal microbiota.

Type of Compound Dietary Supplement Animal Model Outcomes In Immune System Outcomes in Microbiota Reference

Prebiotics

Propolis
STZ-induced diabetic
Sprague-Dawley rats

(T2DM), male

240 mg/kg propolis led to lower
FBG levels.

Insulin resistance reduced after
propolis treatment.

Propolis treatment could repair the
intestinal mucosal injury

Overall structure of the gut microbiota in
diabetic rats was shifted toward that in

normal rats.
Lactobacillus genera were predominant in
the control and propolis treatment groups.

Significant down regulation of the
abundances of Blautia, Fusicatenibacter and

ClostridiumXlVa in the model group.

[115]

High fat diet group
supplemented with

pistachio nuts
C57BL/6J (B6), male

Decreased amounts of TNF-α and
IL-1βin serum (HFD-P vs HFD).

Inflammatory foci, IL-1β, CCL-2 gene
expression were lower in the liver of

HFD-P vs HFD.
Improvement of inflammation in

obese mice.

Lower Firmicutes/Bacteroidetes in HFD-P
vs HFD/

Parabacteroides, Dorea, Allobaculum,
Turicibacter, Lactobacillus and Anaeroplasma

increased with pistachio.
Oscillospira, Desulfovibrio, Coprobacillus and

Biophila reduced with pistachio
supplementation.

[116]

Pistachio nuts STZ-induced diabetic Wistar
rats (T1DM), male -

Elevated levels of lactobacilli and
bifidobacteria in jejunum, ileum and

cecum of diabetic animals.
Increased fecal lactobacilli and

bifidobacteria counts and decreased
enterococci after 4 weeks of pistachio diet

(in healthy and diabetic animals).

[117]

Whole grain barley /
barley malt Wistar rats, male -

Lower Firmicutes/ Bacteroidetes increased
Actinobacteria and Verrucomicrobia, after

barley supplementation.
Akkermansia, Ruminococcus, Blautia,

Biophila, Turicibacter, Roseburia higher after
barley malt intake.

[118]

Corn starch diet with
chlorogenic acid Wistar rats, male

Decreased inflammation and fat
deposition in the liver along with

reduced plasma liver enzyme activities
of obese rats.

Increased diversity of gut microbiota.
Rats showed decreased abundance of
Actinobacteria and Bacteriodetes with
increased abundance of Firmicutes.

[119]

Taro starch, beet juice, L.
plantarum IS-10506

STZ-induced diabetic
Sprague Dawley rats

(T1DM), male
-

The RA of these six OTUs,
Christensenellaceae R-7 group, Prevotella 9,
an unknown species of the Prevotellaceae

family, Prevotellaceae UCG-001 and
Ruminococcaceae UCG-005 and

Ruminococcus 1 were all increased after
starch feeding.

[121]
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Table 1. Cont.

Type of Compound Dietary Supplement Animal Model Outcomes In Immune System Outcomes in Microbiota Reference

Probiotics

L. plantarum (probiotic),
inulin (prebiotic) or in

combination (symbiotic)

STZ-induced diabetic
Wistar rats

(T2DM), male

Improvement of oxidative stress status in hippocampus
and prefrontal cortex.

Neuropsychological improvement.Cognitive impairment
is reversed after symbiotic administration.

Probiotic and synbiotic treatment led
to increase of Firmicutes phylum and in
Lactobacillales family, while Clostridiales

and Bacteroidales were decreased.

[127]

VSL#3 containing
Bifidobacteriaceae,

Lactobacillaceae, and
Streptococcus thermophilus,
alone or in combination

with Retinoic Acid.

Nod mice

Protection from diabetes progression
Reduced degree of insulitis in histological examination.

Inhibition of IL-1β expression.
Enhancement of indoleamine-2,3- dioxygenase (IDO)

and IL-33.

Increased Lactobacillacae, clostridia and
Rikenellaceae after VSL#3 treatment.

Decreased abundance of Bacteroidetes
strain S24-7.

[128]

L. rhamnosus BSL and L.
rhamnosus R23

STZ-induced diabetic
Sprague-Dawley rats

(T2DM), male

Fasting blood glucose (FBG) was significantly reduced
after probiotic administration.

Improved glucose tolerance and glucose control after
probiotic administration.

Decrease in Total Cholesterol (TC)

Increased LAB levels after 30 days of
probiotic supplementation [130]

L. paracasei subsp. paracasei
G15 and/or L. casei Q14
isolated from dairy food
alone or in combination

with metformin

STZ-induced diabetic
Wistar rats in high-fat

diet (T2DM), male

Restored glucose intolerance in all treatment groups after
6 weeks.

FBG decreased after 13 weeks in all treatment groups.
Probiotics reduced plasma LPS.

The lactobacillus and metformin treatments significantly
reduced both IL-1β and IL-8 levels.

Separated clustering of microbiota in
each group.

Microbiota of group supplemented
with L. casei Q14 was located near the

healthy group.

[131]

L. paracasei subsp. paracasei
G15 and/or L. casei Q14
isolated from dairy food

STZ-induced diabetic
Wistar rats in high-fat

diet (T2DM), male

Restored glucose tolerance and suppressed total
cholesterol and triacylglycerol (TAG) level, after 6 weeks

of probiotic administration.
Hyperinsulinemia was ameliorated with insulin and
glucagon levels being lower after probiotic ingestion.

Abundances of Lactobacillus and
Bifidobacterium,Clostridiumleptum,

Bacteroides, Prevotella, were increased
after probiotic treatment.

[132]

L.casei CCFM419

STZ-induced diabetic
C57BL/6J mice in

high-fat diet
(T2DM), male

Ingestion of L. casei CCFM419 led to lower FBG, reduced
2-h postprandial blood glucose.

Improved insulin sensitivity by decreased fasting insulin
concentration and HOMA-IR value.

Decreased levels of TNF-α and IL-6 and IL-10.
Reduced LDL-C and increased HDL-C levels.

The abundance of Allobaculum and
Bacteriodes were increased after

probiotic treatment.
Decreased Firmicutes and increased

Bacteroidetes.

[133]

L. casei

STZ-induced diabetic
Sprague-Dawley rats in

high-fat sucrose diet
(HFS) (T2DM), male

L. casei reduced the endotoxin LPS production induced by
STZ.

L. casei Zhang ingestion prevents from the onset and
development of glycemia in both fasting and

postprandial 2 h blood glucose levels and OGTT levels.
Inhibition of pro inflammatory cytokines (IFN-c and

TNF-α) after probiotic administration.

Caecal Bifidobacterium and Lactobacillus
were more abundant in

probiotic-treated rats in HFS diet than
the plain HFS group.

Higher C. coccoides–E.rectale group and
C. scindens members in HFS than the

probiotic HFS and control rats.

[134]
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Table 1. Cont.

Type of Compound Dietary Supplement Animal Model Outcomes In Immune System Outcomes in Microbiota Reference

Probiotics L. rhamnosus CCFM0528

STZ-induced
diabetic C57BL/6J

mice in high-fat diet
(T2DM), male

Amelioration of insulin resistance, glucose tolerance,
FBG and postprandial 2-h blood glucose.

Decreased TNF-α and IL-6.
Increased GLP-1.

Increased Bacteroidetes and decreased
Firmicutes.Increased Bifidobacterium,

Lactobacillus, Allobaculum and Bacteroides.
[135]

Fermented
products

Green loofah L. cylindrica
homogenate (LH) and

fermentedLH (FL) with
Lactococcus lactis subsp.
lactis Uruma-SU1 and L.
plantarum Uruma-SU4,

isolated from algal
beach casts.

male Kwl: ddY mice
in high-fat diet

TC, LDL-C, and the ratio LDL-C/HDL-C were lower
after FL.

Caecal L. johnsonii and C. disporicum were
increased through the consumption of

fermented loofah.
[123]

Fermented milk by
inoculation of skim
milkwith probiotic

cultures (L. rhamnosus
NCDC 17 and L.

rhamnosus GG) at 1% (v/v)

STZ-induced
diabetic Wistar rats

in high-fat diet
(T2DM), male

L. rhamnosus NCDC 17 supplementation decreased
expression levels of TNF-α and IL-6 genes, increased

mRNA of the adiponectin gene.
LGG and L. rhamnosus NCDC 17 decreased FGB levels.

Lower insulin levels after probiotic treatment.

Both probiotic treatments increased the
population of total bacteria.

HFD + L. rhamnosus NCDC 17 group had
higher populations of Eubacterium rectale-C.

coccoides, Bacteroides, lactobacilli and
bifidobacteria.

[124]

Non dairy fermented
food product

Zucker diabetic fatty
(ZDF) rats, male

Decreased glucose absorption in treated group.
Decreased blood glucose with the FFP.

Enriched microbial diversity after FFP
administration.

Increased Firmicutes, Saturella, Proteus,
Alistipes, Anaerococcus in FFP group and

Streptococcacae, Anaerococcus and Streptococcus,
Barnesiella and Blautia in control group.

[125]

Mixed fermentation by L.
fermentum and

Saccharomyces cerevisiae
was used to enhance DNJ
extraction efficiency from

mulberry leaves

STZ-induced
diabetic Kunming

mice, male
-

Relieved gut dysbiosis in diabetic mice by
promoting the growth of Lactobacillus,

Lachnospiraceae NK4A136 group, Oscillibacter,
Lachnospiraceae, Alistipes, and Bifidobacterium.

[126]

Other products

Corn starch tea (instant or
matcha)

Kunming mice,
female

Particularly increased levels of
Coriobacteriaceae, Lactobacillaceae, Prevotellaceae

and Bifidobacteriaceae, and decreased
Bacteroidaceae, Ruminococcaceae,

Helicobacteraceae and Enterobacteriaceae.

[120]

Human milk Nod mice, female Prevention of diabetes onset and progression.

Elevated fecal Bifidobacterium and Akkermansia
by human milk.

Cecal B. fragilis and E. coli lower after
HM.Higher cecal and colonic B. vulgatus by

human milk intake.

[122]
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3.3. Human Studies

A range of food supplements are consumed by various groups of people with the aim
of improving health. Several clinical studies have been conducted so far, especially with
probiotics per se. There are also a small number of studies in which food products enriched
with specific beneficial microbes are examined. These foods include mainly fermented
milk products.

Allen et al. [136] evaluated the safety of a bacterial dietary supplement for the preven-
tion of atopy in infants in a randomized, double-blinded, placebo-controlled trial. Two
strains of lactobacilli (L. salivarius CUL61 and L. paracasei CUL08) and bifidobacteria (B.
animalis subsp. lactis CUL34 and B. bifidum CUL20) with a total of 1 x 1010 colony-forming
units were administered daily to women during the last month of pregnancy and to infants
aged 0–6 months, with beneficial results [136].

Kassaian et al. [137] assessed the effects of probiotics and synbiotics on metabolic syn-
drome in individuals with prediabetes. One hundred and twenty adults with prediabetes
were enrolled in a double-blind, placebo-controlled randomized parallel-group clinical
trial [137]. Participants were randomized to a multi-species probiotic or inulin-based
synbiotic or placebo. The potential benefits of using probiotic and synbiotic for metabolic
syndrome management in prediabetes have been supported by the results, which provided
an important strategy to combat metabolic syndrome-associated diseases [137].

Khalili et al. [138] divided forty patients with T2DM (n=20 for each group) into
intervention (probiotic) and placebo groups. The intervention group received a daily
capsule containing 108 cfu of L. casei for eight weeks [138]. The patients in placebo group
took capsules containing maltodextrin for the same time duration. In comparison with
the placebo, L. casei supplementation significantly increased SIRT1 and decreased fetuin-A
levels at the end of the trial in a way that improved glycemic response in subjects with
T2DM [138]. Affecting the SIRT1 and fetuin-A levels introduced a new known mechanism
of probiotic action in diabetes management [138].

Medina-Vera et al. [139] studied the effects of a functional food-based dietary in-
tervention on fecal microbiota and biochemical parameters in patients with T2DM. In a
placebo-controlled, randomized, double-blind study 81 patients with T2DM were divided
into two 3-month treatment groups: one following a reduced-energy diet with a dietary
portfolio (DP) comprising high-fiber, polyphenol-rich and vegetable-protein functional
foods, the other taking a placebo (P) [139]. Patients with T2DM exhibited intestinal dysbio-
sis characterized by an increase in Prevotella copri [139]. Dietary intervention with functional
foods significantly modified fecal microbiota compared with P group by increasing alpha
diversity and modifying the abundance of specific bacteria, independently of antidiabetic
drugs [139]. There was a decrease in P. copri and an increase in Faecalibacterium prausnitzii
and Akkermansia muciniphila, two bacterial species known to have anti-inflammatory ef-
fects [139]. The DP group also exhibited significant reductions in areas under the curve for
glucose, TC and LDL-C [139].

Sabico et al. [140] studied the effects of 6-months multi-strain probiotics supplementa-
tion in T2DM in a randomized, double-blind, placebo-controlled trial and concluded in
the beneficial role of probiotics in inflammation, promising adjuvant anti-diabetes ther-
apy [140].

Gut bacterial translocation to the blood may play an important role in the development
of insulin resistance in T2DM. Sato et al. [141] investigated whether probiotics could reduce
bacterial translocation and cause changes in the gut microbiota, in two groups of Japanese;
the probiotic group that consumed Lactobacillus casei strain Shirota-fermented milk, and the
control group administered no probiotics [141]. Probiotic administration reduced bacterial
translocation and altered the gut microbiota in Japanese patients with T2DM [141].

In a randomized, double-blind, placebo-controlled study, participants were assigned
into two groups: a probiotic group, consuming fermented milk containing L. acidophilus
La-5 and B. animalis subsp lactis BB-12 (109 colony-forming units/d, each) and a control
group, consuming conventional fermented milk [142]. Probiotic consumption improved
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the glycemic control in T2DM subjects. However, the intake of fermented milk seems to
be involved with other metabolic changes, such as decrease in inflammatory cytokines
(TNF-a and resistin) and increase in acetic acid [142]. Furthermore, dietary intervention by
consumption of yogurt with live probiotics and other dairy products seems to improve the
antioxidant status and FPG levels in T2DM patients [143,144]. Table 2 shows representative
human studies showing supplementation with fermented foods containing probiotics,
prebiotics and synbiotics and the main beneficial outcomes in the human body (immune
system and gut microbiome).

Table 2. Representative human studies showing supplementation with fermented foods containing
probiotics, prebiotics and synbiotics and the main beneficial outcomes in the human body immune
system.

Fermented Food/Probiotics Outcome in the Immune System Reference

fermented milk containing L.
acidophilus La-5 and B. animalis

subsp lactis BB-12

improved the glycemic control in T2DM subjects
decrease in inflammatory cytokines (TNF-a and

resistin) and increase of the acetic acid
[142]

The probiotic group consumed
Lactobacillus casei strain
Shirota-fermented milk

Probiotic administration reduced bacterial
translocation and altered the gut microbiota in

Japanese patients with T2DM
[141]

6-months multi-strain probiotics
supplementation in T2DM

beneficial role of probiotics in inflammation,
promising adjuvant anti-diabetes therapy [140]

reduced-energy diet with a
dietary portfolio (DP)
comprising high-fiber,
polyphenol-rich and

vegetable-protein
functional foods

Increase in Faecalibacterium prausnitzii and
Akkermansia muciniphila, two bacterial species

known to have anti-inflammatory effects.
Dietary intervention with functional foods
significantly modified fecal microbiota by

increasing alpha diversity.

[139]

4. Conclusions

In conclusion, colonization of intestinal mucosa by beneficial microbes is related to
the appropriate production of short chain fatty acids and bile acids, which have a positive
effect in immune system development and can regulate signaling cascades involving
energy intake and fat metabolism. On the other hand, microbial dysbiosis lead to chronic
low-grade intestinal inflammation and insulin resistance, thus providing an advance for
metabolic disorders. Evidence from animal and human studies stated probiotics as a
modern approach with claimed health benefits. The inclusion of functional foods with
probiotic properties in the daily dietary pattern consists of a positive approach with
beneficial impact on human health and under this point of view could contribute to the
improvement of the diabetes metabolic imbalance, preventive and therapeutic control of
the disease. The involvement of oral and general health professionals in strategies aimed
at identifying individuals at risk from diabetes through early manifestations and diet
programs with functional foods should be maximized in order to retard the development
of possible complications.

Our review deals with the role of intestinal microbiota in the pathogenesis of T2DM.
As it is well known, gut microbiota keep a crucial place in the pathogenesis of T2DM
by swaying body pro-inflammatory activity, insulin resistance and bile-acid metabolism.
Undoubtedly, tempering the intestinal microbiota through the use of food ingredients
showed improvement of the glucose metabolism and insulin resistance in the diabetic host.

Notwithstanding, research into diabetes raises multiple inquiries to get better knowl-
edge of the ‘dialogue’ between gut microbiota and diabetes T2DM. Animal models are
valuable tools to explore these complex interactions and have responses on the pathophysi-
ology of the disease and enable us with individualized therapies based on modulation of
the intestinal microbiota in T2DM.
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