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Abstract

The principles underlying functional asymmetries in cortex remain debated. For example, it is 

accepted that speech is processed bilaterally in auditory cortex, but a left hemisphere dominance 

emerges when the input is interpreted linguistically. The mechanisms, however, are contested: 

what sound features or processing principles underlie laterality? Recent findings across species 

(humans, canines, bats) provide converging evidence that spectrotemporal sound features drive 

asymmetrical responses. Typically, accounts invoke models wherein the hemispheres differ in 

time-frequency resolution or integration window size. We develop a framework that builds on and 

unifies prevailing models, using spectrotemporal modulation space. Using signal processing 

techniques motivated by neural responses, we test this approach employing behavioral and 

neurophysiological measures. We show how psychophysical judgments align with spectrotemporal 

modulations and then characterize the neural sensitivities to temporal and spectral modulations. 

We demonstrate differential contributions from both hemispheres, with a left lateralization for 

temporal modulations and a weaker right lateralization for spectral modulations. We argue that 

representations in the modulation domain provide a more mechanistic basis to account for 

lateralization in auditory cortex.
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Introduction

A hallmark of speech perception and language comprehension is that these perceptual and 

cognitive processes are subserved by an asymmetric distribution of cortical circuitry. The 

original observations of Broca 1 and Wernicke 2 provided striking evidence that damage to 

cortical regions in the left (dominant) but not the right hemisphere caused impairments in 

comprehension and production. A great deal of research has focused on elucidating the 

functional neuroanatomy of these (and other, subsequently identified) regions as well as 

their underlying computational principles 3–7. In contrast to the historically established one-

size-fits-all view on lateralization of speech and language - a perspective that remains the 

prevailing one in the clinical literature 8,9 - there is now emerging consensus that both left 

and right temporal cortices are heavily involved in speech perception proper (as well as 

some aspects of linguistic processing 10), i.e. the mapping from acoustic input to the internal 

representations (informally speaking, words) that form the basis for language processing (for 

recent fMRI data supporting this hypothesis, see 11). However, the functional and 

computational differences between the two hemispheres with respect to auditory processing 

remain incompletely understood and vigorously contested 12,13.

A series of influential behavioral studies provided suggestive evidence that the left 

hemisphere is sensitive to rapidly changing auditory cues 14–16. This sensitivity manifested 

when temporal intervals between stimuli were reduced below 100–150 ms in aphasic 

patients [temporal order judgment] 14, children with developmental delays [discrimination] 
16, as well as a sensitivity to the length of formant transition in healthy listeners [dichotic 

listening] 15. In parallel, clinical reports argued that focal damage to the right hemisphere 

produces impairments in processing slower changing prosodic cues in speech 17,18 as well 

the ability to discriminate spectral information 19,20.

Based on these findings as well as on foundational neuroimaging studies 21,22, a framework 

emerged whereby left hemisphere structures - specifically language related regions, 

principally the temporal lobe but also inferior frontal gyrus - are more sensitive to temporal 

cues whereas right hemisphere structures are more sensitive to spectral cues 23. A related, 

complementary framework explained the differences in auditory sensitivity as a function of 

temporal integration windows of neural ensembles in auditory cortex, proposing that the left 

auditory cortex integrates incoming auditory information over shorter timescales (~20–

80ms) and right regions over longer timescales (~150–300 ms), asymmetric sampling in 

time 24. A third view associates lateralization with function: if representations are linguistic, 

they are processed by the dominant, typically left hemisphere 13,25. Notwithstanding the 

existing neural and behavioral evidence, the mechanisms underlying functional lateralization 

in hearing remain underspecified and are the source of significant disagreements. Focusing 

here solely on competing auditory theories, we advance these theories building upon their 

approaches and providing a unifying framework, motivated by a different analytic view on 

signals that is closely aligned with neural response properties.

Recent reports from different mammalian species including humans 26–29, dogs 30, and 

mustached bats 31,32 provide converging evidence that spectrotemporal sound features are 

processed in an asymmetrical manner, presumably reflecting shared neurocomputational 
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principles across species. Nevertheless, conceptual gaps have held back a cross-species 

model and interpretation. First, the stimuli as well as the type of stimulus manipulation 

employed are inconsistent across studies (both within human research and across species). 

Second, the models used to interpret the results 23,24 differ in their implementational 

specificity regarding the underlying cortical tissue.

To address these gaps, we reframe and test the asymmetry hypothesis 24 in the modulation 

domain, an acoustic ‘space’ that has been developed to mirror successful analysis 

approaches in the visual domain 33,34. The modulation domain reflects energy fluctuations 

that vary across the temporal and spectral axes of a spectrographic representation (i.e. 

temporal and spectral modulations of power in the time frequency representation), similarly 

to horizontal and vertical spatial gratings that comprise an image (Figure 1a). The 

modulation domain quantifies temporal and spectral acoustic features (Figure 1b) and has 

been used to investigate communication vocalizations (and link them to neural mechanisms) 

in the ferret 35, zebra finch 36, and in humans 37–40. Recently, spectral and temporal 

modulations have provided novel topographic maps of the human auditory cortex 41,42, and 

auditory models capitalizing on this domain have proved to be more accurate at 

reconstructing neural activity both in electrophysiology 43 and neuroimaging 42. We take 

these recent successes using the modulation domain in neural representation as providing a 

new opportunity to investigate auditory cortical asymmetries, building upon the prevailing 

auditory theories, namely the temporal versus spectral view 23, and the asymmetric sampling 

in time hypothesis 24,44.

We hypothesize that left and right auditory cortical fields differ in how they integrate 

temporal and spectral modulations across the time-frequency representation of speech. We 

argue that the left hemisphere integrates over a wider range of temporal modulations (slow 

to fast temporal modulations) but over a limited range of spectral modulations (low spectral 

modulations); in contrast, the right hemisphere integrates over a wide range of spectral 

modulations (low to high) but a limited range of temporal modulations (slow) (Figure 2. 

noteworthy, both hemispheres have a range of temporal and spectral modulations that 

overlap, namely both low temporal and low spectral modulations are processed by both 

hemispheres). This hypothesis provides a computationally specific stimulus space 

(modulation domain) that is linked to an implementational computation in cortex (i.e. 

integration of neuronal inputs from subpopulations). In order to test this hypothesis, we 

provide a filtering technique in the modulation domain that is applied to speech stimuli, and 

we test this hypothesis in human listeners using psychophysical measures (diotic and 

dichotic listening), neuronal measures (magnetoencephalography; MEG) as well as direct 

recordings from cortex in neurosurgical patients (electrocorticography; ECoG).

Results

We developed an analytic technique that filters stimuli in the modulation domain based on a 

cochlear time-frequency representation and permits resynthesis of a new waveform that 

corresponds to the filtered representation (Figure 3a, Supplementary Figure 1, see Methods, 

Modulation Domain Filtering). We closely follow the framework introduced by Elliott & 

Theunissen 38, but we diverge from that approach in critical ways in how we decompose and 
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resynthesize the signal in the frequency domain. While Elliott & Theunissen employed a 

linear frequency scale (short time Fourier transform), we employ a logarithmic frequency 

scale following the frequency distribution of the cochlea 45 using a filter bank decomposition 

(see Methods, Modulation Domain Filtering). We used this technique on a wide selection of 

English sentences and different speakers in order to control parametrically the degree of 

temporal modulations (Figure 3b) or spectral modulations (Figure 3c) contained by each 

sentence. It is noteworthy that our approach can successfully filter modulation rates in 

continuous speech while still complying with the envelope projection test 46. The envelope 

projection test is used to verify that a filtering technique claiming to limit temporal 

modulations indeed produces the desired modulation spectra in the final resynthesized 

waveform, unlike previous approaches that inadvertently reintroduced undesired 

modulations in the resynthesis process (e.g. Drullman 47). Our filtering approach produces 

spoken sentences that sound natural but have a controlled amount of modulation rates (in 

contrast to a majority of studies employing non-speech stimuli or artificial noise carriers).

Using a resolution that is rather more fine-grained than the existing literature (1 Hz 

temporally and 0.1867 cycles/octave spectrally), we first examined behavioral responses in 

English speaking participants (N=20). Listeners were presented the materials diotically and 

reported intelligibility and speaker voice pitch (male or female). This approach has been 

employed infrequently in the literature 38,48, and here we report psychometric curves on 

voice pitch identification as well as intelligibility in the critical modulation range for speech 

(i.e. 2–8 Hz). Filtering out temporal modulations completely abolished intelligibility at the 

lowest cutoff (2 Hz) and showed a logistic relationship between the amount of temporal 

modulation present in the signal and the degree of intelligibility. The most prominent boost 

in intelligibility was observed when stimuli contained more than 5 Hz temporal modulations 

and, unsurprisingly, during the second block of the task, when all stimuli were repeated 

(within-subject non-parametric factorial permutation test main effect of block 

PF-value=88.84, p<0.001, 95% CI of null hypothesis statistic=[0.029, 2.68], Figure 4a, 

Supplementary Figure 2). This effect is especially striking as each sentence is only presented 

once within a block, so the performance boost represents information from only one 

additional exemplar. As proportion data as well as categorical outcomes can violate ANOVA 

assumptions 49 we chose to use a non-parametric approach 50 and subsequently model 

psychometric curves within each participant using a logistic function51. The mean and 

standard error distribution of curve fits across participants are plotted as a continuous shaded 

line in Figure 4. To quantify the temporal modulation ranges where the psychometric curves 

showed a significant difference between the first and second block a paired Wilcoxon 

signed-rank test was performed for each value and a continuous block of 2.8 and 7.1 Hz was 

found significant (non-parametric Wilcoxon signed-rank test p<0.05). Spectral modulations 

abolished the ability to correctly identify the speaker’s voice pitch with a sharp increase in 

the performance when stimuli contained above 0.74 cycles/octave spectral modulations 

(Figure. 4a right panel). There was no effect of block (within-subject non-parametric 

factorial permutation test main effect of block PF-value= 0.1195, p=0.992, 95% CI of null 

hypothesis statistic=[0.0795, 2.96]) nor was there a significant difference between 

psychometric curves (non-parametric Wilcoxon signed-rank test p>0.17 for all paired tests). 

These results provide a compelling link between the two axes of the modulation space and 
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our ability to process the content of speech and speaker identity (speaker identity was 

maximally different in our stimulus at 1 cyc/oct, see Supplementary Figure 3).

We next asked whether differences in cortical processing across the two hemispheres could 

be detected using psychophysical measures. We designed a dichotic paradigm that leverages 

an asymmetry in the auditory pathway when different stimuli are presented to each ear 52. 

While the classic dichotic design elicits a right ear advantage when short (usually consonant-

vowel) competing stimuli are presented, we presented identical sentences that varied by the 

amount of temporal or spectral information in each ear (e.g. 3 Hz in the one ear and 4 Hz in 

the other, etc.). In a separate cohort of participants (N=60, see Methods, Psychophysical 

Experiments), we found a significant behavioral advantage when the right ear was presented 

with more temporal modulations than the left (main effect of ear within-subject non-

parametric factorial permutation test PF-value=18.963744 , p<0.001, 95% CI of null 

hypothesis statistic=[0.05455, 2.689], Figure 4b left panel). This right ear advantage (REA) 

reveals a specific hemispheric preference for processing high temporal modulations and no 

preference for low temporal modulations and the psychometric curves showed significant 

differences for values between 3.6 and 6 Hz (non-parametric Wilcoxon tailed signed-rank 

test p<0.05 for all paired tests). An analysis of the raw data in the voice pitch identification 

task did not exhibit a significant LEA during the task (main effect of ear within-subject non-

parametric factorial permutation test PF-value= 2.497, p=0.079, 95% CI of null hypothesis 

statistic=[0.03147, 2.916], Figure. 4b right panel). But, an analysis of the fitted within-

subject psychometric curves showed significant differences for values between 0.373 – 

0.541 cyc/oct (non-parametric Wilcoxon tailed signed-rank test p<0.05 for all paired tests).

In order to further quantify and assess neurally the sensitivity of each hemisphere to 

temporal and spectral modulations, we next used the same stimuli and the diotic paradigm 

while MEG signals were being recorded from participants (N=19). Across recording 

channels, average neuronal power (quantified between 0.1–8 Hz) was highest when 

participants listened to sentences with the highest temporal modulation (6 Hz) or spectral 

modulation (0.93 cyc/octave) content (Figure 5, top panel, Supplementary Figures 4, 5). 

After the onset of a sentence, the average power elicited by different modulation rates 

diverges with a systematic order in magnitude from lower modulations (blue line) to higher 

modulations (red line) and converge by the time the sentence has ended (Figure 5, top 

panel). We quantified this effect by correlating neuronal power with the sentence modulation 

rate (filter cutoffs) and tested for significance using a permutation approach for each sensor. 

Neuronal power significantly correlated (p<0.05, permutation test) with stimulus temporal 

modulation cutoffs across time, showing an increase in neural power as the participants 

heard sentences with increased temporal modulation content (Figure 5 middle panel). These 

correlations were strongest (maximal value of R=0.0796 at 500 ms post stimulus onset) 

during the onset of the stimulus and dropped by the time of stimulus offset (R=0.0428) with 

significant correlations lasting up to 110ms post stimulus offset (R=0.0231) (Figure 5 

middle panel, black horizontal lines denote significance). Similarly, correlations with 

spectral modulations were strongest (maximal value of R=0.0489 at 1060 ms post stimulus 

onset) during stimulus presentation and dropped after stimulus offset (R=0.0413) with 

significant correlations lasting up to 180 ms post stimulus offset (R=0.0238).
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Next, in order to investigate how these correlations are distributed spatially, we averaged 

correlations across time for the first half of the sentence (Figure 5 middle panel, left 

topoplot) and second half of the sentence (Figure 5 middle panel, right topoplot) and 

statistically assessed correlations for each sensor. The distribution of significant correlations 

(p<0.05, permutation test with a cluster correction for multiple comparisons) showed a left-

hemisphere biased topography (Figure 5 middle insets and lower panels), with a laterality 

index of 0.32 (−1 is maximally right hemisphere and 1 is maximally left hemisphere) for the 

temporal modulations. We statistically assessed laterality with a permutation test and found 

a significant left laterality where left sensor power was greater than right (permutation test, 

Pdifference_of_mean_R=0.01021, p=0.0020, 95% CI of null hypothesis statistic=[−0.00334 

0.00309]). Analogously, neuronal power significantly correlated with spectral modulation 

stimulus cutoffs and showed a right-hemisphere biased topography, with a laterality index of 

−0.18. We statistically assessed laterality with a permutation test and found a significant 

right laterality where right sensor power was greater than left (permutation test 

Pdifferenc_of_mean_R=−0.00498, p=0.016, 95% CI of null hypothesis statistic=[−0.00330 

0.00293]). We systematically probed neural frequency power in band-limited steps in order 

to investigate whether these sensitivities to temporal and spectral modulations are spread 

across the neural frequency spectrum. We found significant correlations with temporal 

modulations in both low (<8 Hz) and high frequency (12–23 Hz) ranges, but spectral 

modulations only correlated with low frequency neural ranges (Supplementary Figure 6).

To further substantiate our analysis approach and elucidate the cortical sources underlying 

the effect, we projected our data on the cortical surface using minimum norm estimate 

(MNE) and followed the same approach we employed in sensor space, i.e. correlated neural 

power with stimulus modulation cutoff for each cortical source. The significant correlations 

(permutation test p<0.05) shown in Figure 5 (bottom) replicate the finding in sensor space, 

with an asymmetric leftward distribution for correlations with temporal modulations (Figure 

5 bottom). Similarly to the sensor data, we statistically assessed this laterality with a 

permutation test comparing left and right neuronal power. Correlations with temporal 

modulations showed a significant left laterality where left source power was greater than 

right (permutation test, Pdifference_of_mean_R = 0.0199, p=0.003, 95% CI of null hypothesis 

statistic =[−0.0059 0.0056]) but the spectral modulation asymmetry did not pass significance 

(permutation test, Pdifference_of_mean_R = 0.0025, p=0.163, 95% CI of null hypothesis statistic 

=[−0.0057 0.0056]). Nevertheless, the same analysis limited to Heschl’s gyrus was 

significant for both temporal modulations (permutation test, Pdifferenc_of_mean_R = 0.0395 p= 

0.0180, 95% CI of null hypothesis statistic =[−0.0041 0.000]) as well as spectral 

modulations (permutation test, Pdifferenc_of_mean_R = −0.05846, p=0.0170, 95% CI of null 

hypothesis statistic =[−0.0039 0.0041]). These correlations were strongest at Heschl’s gyrus 

(Temporal modulation mean correlation for left and right hemispheres = 0.1367, 0.0972 

respectively; Spectral modulation mean correlation for left and right hemispheres = 

0.040366, 0.0988 respectively) and decreased in higher order cortical regions (Temporal 

modulation correlation range across high order regions for left and right hemispheres = 

[0.07138 – 0.1294],[0.03734 – 0.05915] respectively; Spectral modulation correlation range 

across high order regions for left and right hemispheres = [−0.002693 – 0.032166 ], 

[0.027008 – 0.06067] respectively; Supplementary Figure 7).
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In addition to a strong relationship between the stimulus modulation space and neural 

responses, we tested for significant correlations between neural responses and the 

participants’ behavioral ratings (intelligibility on a scale from 1–4). While correlation values 

were lower overall, they still passed significance (p<0.05, permutation test) and exhibited a 

more left lateralized topography compared with modulation space correlations 

(Supplementary Figure 8). Correlations with the behavioral responses (male or female) in 

the voice pitch identification task did not pass significance (Supplementary Figure 9), 

providing evidence that cortical responses are sensitive to the spectral content during the 

task. In order to verify that the correlations in the intelligibility task were due to the temporal 

modulations rather than the intelligibility of speech content per se, we replicated the effect in 

a separate cohort of participants using reversed speech stimuli (unintelligible, following an 

identical filtering procedure in the modulation domain, see Methods, Psychophysical 

Experiments). The analysis revealed significant correlations with a left-hemisphere biased 

topography (Supplementary Figures 10, 11).

Taken together, these results demonstrate that the sources of the correlations have a specific 

spatial topography which evolves over time, culminating in a left-hemisphere biased 

distribution in the case of temporal modulations and a right-hemisphere biased distribution 

in the case of spectral modulations. This pattern of results is most consistent with the 

modulation-based asymmetry hypothesis.

Lastly, we sought to verify the asymmetry of neural sources with a technique that is 

unbiased by the computational assumptions of source localization. We recorded intracranial 

neural signals in a cohort of neurosurgical patients undergoing treatment for refractory 

epilepsy who were implanted with stereotactic depth and surface electrodes for clinical 

monitoring. In a patient with rare bilateral depth coverage of superior temporal cortices, we 

found a significant correlation with temporal modulations in a left STG electrode 

(permutation test, Pcorrelation=0.413, p<0.001, 95% CI of null hypothesis statistic 

=[−0.173279 0.196382], R2=0.1708) and in a right STG electrode a significant correlation 

with spectral modulations (permutation test, Pcorrelation=0.241, p=0.015, 95% CI of null 

hypothesis statistic =[−0.171243 0.193584], R2= 0.05831). These results replicate our non-

invasive low frequency power correlations within participant and within electrode (Figure 6, 

Supplementary Figures 12-14); but these patterns could also be observed when examining 

correlations with neural high gamma activity (Supplementary Figure 15). An analysis of the 

correlations across all electrodes and participants showed that temporal modulation 

correlations were larger in the left hemisphere (MN=0.1350, SEM=0.0070) than the right 

hemisphere (MN=0.1011, SEM=0.0084) and the difference between left and right 

hemispheres was statistically significant (Wilcoxon rank sum test, Z=2.969, p=0.0030). 

Correlations with spectral modulations did not show a significant difference between 

hemispheres (Wilcoxon rank sum test, Z=−0.640, p=0.5223) with left hemisphere values 

(MN=0.1163, SEM=0.0063) similar to those in the right hemisphere (MN=0.1199, 

SEM=0.0076). Across patients, significant correlations with temporal modulations were 

more prominently visible in the left hemisphere with 8.042% of total left electrodes and 

3.218% of total right electrodes showing significant correlations (permutation test, p<0.05; 

Supplementary Figure 16, 17). Correlations with spectral modulations showed a more 
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bilateral distribution with 6.818% of total left electrodes and 6.188% of total right electrodes 

showing significant correlations (permutation test, p<0.05; Supplementary Figures 16, 17).

Discussion

We provide a theoretical and computationally driven account of hemispheric asymmetries 

for processing speech and other continuous acoustic signals. We introduce a well-defined 

computational space to investigate hemispheric asymmetries (Figure 2), signal processing 

techniques to manipulate natural stimuli in this space (Figure 3), a psychophysical mapping 

of this space, as well as behavioral and multimodal (MEG, ECoG) neural evidence 

supporting a cortical asymmetry in processing temporal-spectral modulations in speech.

The modulation domain is arguably an ideal auditory stimulus space for representing speech 

intelligibility 38 as well as permitting unified computations across different cortical 

modalities 53. Due to the complexity of manipulating and reconstructing acoustic signals in 

this space, only few studies have employed this approach to investigate speech intelligibility 
37,38,54. Our approach builds on the pipeline proposed by Elliott et al.38 (i.e. linear time-

frequency decomposition, modulation filtering, iterative convex projection) but diverges by 

employing a cochlear filter-bank which represents frequency in a logarithmic scale 

(similarly to Chi et al.48) which more closely reflects the biological representation of 

frequency in the cochlea. Unlike previous reports that mapped a wide range of the 

modulation space, we focused on a fine-grained mapping of the modulation space that is 

most relevant to speech intelligibility (below 10 Hz and below 1.5 cycles/octave). The more 

fine-grained analysis provided a 2–3 fold increase in resolution, revealing a sharp inflection 

point at the transition between 4 and 5 Hz, which is most likely due to the inclusion of 

critical temporal cues that dominate the temporal modulation spectra of speech 47,55,56. The 

boost in intelligibility is also evident, showing a significant increase in percent words 

identified above 4 Hz when the stimulus is presented for the second time in a new block (the 

same sentence is never played with a higher modulation cutoff during the first block). We 

did not find this priming effect in the voice pitch identification task, but our fine-grained 

resolution does provide a psychometric curve that has been only partially reported in the past 

(see data in Elliott et al.38) and reflects the degradation of speaker identity (male or female) 

as spectral modulation content is removed. The critical (and statistically significant) 

differences between male and female voices in our materials are well represented in the 

spectral modulation domain in the range 0.8–1.3 cyc/oct (Supplementary Figure 3) which 

fits well with our behavioral results showing a clear increase in performance at 0.75 cyc/oct 

which approaches ceiling above 1 cyc/oct (Figure 4, Supplemental Figure 2). These ranges 

most likely represent modulation power due to pitch differences in the male and female 

speakers and are driven by the fundamental frequency (which in our case is smoothed by 

low spectral cutoffs and masks the voice pitch of the speaker). Our manipulation of spectral 

cues also provides evidence for an effect of spectral modulation on intelligibility as 

previously reported by Shannon et al. 57 and Chi et al.48. This effect is much smaller in 

comparison to degrading temporal modulations and is limited to low spectral modulation 

values which could be processed in both hemispheres according to our model.
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The key conceptual advance of these studies is a link between the modulation domain as a 

representational space and cortical hemispheric asymmetries. The most prevalent models for 

hemispheric asymmetries in speech formulate computational differences between right and 

left (auditory) cortices as a difference in time-frequency resolution 23 or as a difference in 

temporal window sizes over which information is integrated 24. The time-frequency 

resolution argument draws a parallel between cortical computation and the uncertainty 

principle in decomposing an auditory signal. The acoustic (i.e. Heisenberg-Gabor) 

uncertainty principle provides a theoretical limit on the degree a signal can be resolved in 

time and frequency simultaneously: a highly resolved signal in the time domain inherently 

limits the attainable frequency resolution and vice versa 58. Proposals in both humans 23, as 

well as other model organisms 31, claim that hemispheric asymmetries address this 

uncertainty by optimizing acoustic processing with a higher temporal resolution in the left 

hemisphere and a higher frequency resolution in the right hemisphere.

Our approach closely follows this time-frequency dichotomy but is motivated by building 

closely on a biologically plausible pathway: we first represent an auditory signal using a 

filter bank mimicking the log-frequency spacing of the cochlea 45 and then move to the 

modulation space, which provides an explicit definition of temporal and spectral resolution 

as well as a cortically plausible operation of integration (i.e. integrating different cortical 

populations which are organized tonotopically). The modulation space in our model 

provides a plausible candidate for cortical computation in the realm of speech processing. 

First, the auditory pathway exhibits a low-pass characteristic, whereby ascending from 

subcortical to cortical structures elicits lower temporal modulation responses 59,60. Second, 

this low-pass neural characteristic is also evident in the temporal modulation spectra of 

speech signals 55,56 and speech intelligibility 47.

Our finding of asymmetric power correlations fits well with previous time-frequency 

tradeoff accounts that have been based on changes in temporal and spectral cues in non-

speech stimuli 12,21,23,61, but it also provides neural evidence for specific acoustic cues in 

more natural speech stimuli (i.e. sentences). Previous reports have provided evidence for 

hemispheric asymmetries to specific acoustic cues in non-speech stimuli 27,28,61–69, 

phonemic segments 21,22,70–72, as well as single words 73,74 but reports using sentence 

stimuli have been mostly linked to neural signatures rather than specific cues in the sentence 

stimuli 75–77. This is partly due to the complexity of manipulating relevant acoustic cues in 

sentential stimuli, such as the temporal and spectral modulations, which we directly address 

with our technique.

The Asymmetric Sampling in Time (AST) model proposes that the initial neural 

representation of speech is bilaterally symmetric, say at the levels of inferior colliculus to 

primary/core auditory cortex; however the two hemispheres ‘resample’ information 

asymmetrically 24. The right hemisphere predominantly extracts information from longer 

temporal windows while the left hemisphere extracts information over shorter temporal 

windows. This approach focuses on temporal sampling rather than time-frequency resolution 

per se (albeit frequency resolution is implicitly greater in the case of larger temporal 

window), but it is broadly consistent with our modulation domain model. In both models the 

speech signal is first represented bilaterally in a symmetric fashion (i.e. a high-resolution 
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time-frequency representation) and then sampled asymmetrically. In the modulation model, 

information is extracted by integrating ranges of modulation rates, while in the AST model 

information is extracted by sampling over windows. The modulation model can be viewed as 

a significant extension and modification of the AST hypothesis by extracting information 

over many windows both temporally and spectrally. In this view, the right hemisphere 

predominantly extracts information from long temporal windows due to integration over a 

limited range of temporal modulations (reflecting longer temporal cycles) while the left 

integrates a wide range of temporal modulations (reflecting both short and long temporal 

cycles). Accepting this new hypothesis demands a reframing of the AST model wherein the 

left hemisphere extracts both short and long temporal windows (but the right is still 

preferentially integrating long windows), which is consistent with reports of informative 

theta activity during speech perception 76,77.

One important aspect of the AST model is a specific oscillatory mechanism that performs 

temporal sampling and integration. There is evidence supporting left lateralized high 

frequency oscillations and right lateralized oscillations in rest as well as during speech 

processing 29,75,78–81. We investigated a range of power correlations across the neural 

spectrum and found that sensitivity to temporal modulations existed in both low and high 

frequency ranges and were left lateralized (more so in the case of high frequencies, see 

Supplementary Figure 6). We interpret our current findings as a superposition of two signals 

or event types. The first is generated by impulse responses of neural populations to the 

incoming speech signal, it is indexed by low frequency power as well as broadband activity 

in the ECoG recordings, and it reflects integration of neural activity (and populations 

sensitive to specific temporal modulation ranges). The second is generated by ongoing 

oscillations in the theta and low gamma ranges that are indexed by corresponding frequency 

power and by our hypothesis reflect temporal sampling or ‘chunking’ of the auditory signal. 

It would make sense for such a sampling mechanism to be mostly associated with temporal 

cues, such as the temporal modulations of the signal. This view is consistent with our 

findings of low and high frequency power correlations with temporal modulations 

(Supplementary Figure 6). In contrast, the spectral correlations that are restricted to lower 

frequencies most likely reflect the first mechanism, that is neural populations that integrate 

ranges of spectral modulations produce impulse responses that are mostly reflected in low 

frequency activity.

While we provide strong evidence for left hemisphere asymmetry during processing of 

temporal modulations in intelligible speech in our dichotic behavioral task (Figure 4), 

neurophysiology results (Figures 5–6) as well as processing unintelligible reversed speech 

(Supplementary Figure 10), the data supporting asymmetrical processing of spectral 

modulations is more complex. In the behavioral dichotic task we only found a significant 

difference for the within-subject fitted curves and weaker correlations with spectral 

modulations over all experiments compared to the temporal modulations. While we found 

significant right hemisphere laterality in the sensor level MEG analysis, we did not find a 

significant asymmetry in the ECoG data. One possibility is that the choice of task (Voice 

Pitch Identification) is not ideal for investigating spectral modulations within the context of 

speech.
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Another viewpoint could be raised under the lens of lateralization driven by domain-specific 

speech mechanisms 13,25. Under this view, the right hemisphere is strongly selective for 

certain acoustic cues and the left hemisphere specializes in domain-specific (speech) 

mechanisms and is not selective to an acoustic regime 13. The strong asymmetry of temporal 

modulation correlations to the left hemisphere partly challenges this view by providing an 

acoustic regime (temporal modulations) that well describes and represents speech both for 

intelligible and non-intelligible (reversed) speech. While temporal modulations could be a 

good characteristic of speech-like acoustics, thereby activating left hemisphere domain 

specific circuits, our data does not support a purely bottom up feed-forward acoustic effect. 

The degree of frontal-temporal recruitment both in our MEG and ECoG results suggest, 

unsurprisingly, that there is a larger network involved that may be sensitive both to the 

temporal modulations as well as the task and attentional demands. Indeed, the context and 

expectations during our tasks can influence perception of the modulations and the speech 

content.

Our findings and approach complement a growing number of studies in human 

neuroimaging reporting a spatial topography of auditory cortex sensitivity to temporal and 

spectral modulations 41,42,82–84. Interestingly, these studies have reported bilateral activation 

patterns and modest asymmetries at best, and furthermore the modulation topography 

profiles differ across studies 41,42,82. The limited asymmetry and discrepancy across results 

are most likely due to the varying stimuli used to probe cortical responses (modulated noise, 

ripples, environmental sounds, and speech). In the case of speech, both electrophysiology 43 

and neuroimaging 42 have shown that modulation domain cues are critical for more accurate 

modeling of auditory responses. Our stimuli constrain the amount of modulation information 

contained in the speech signal that drives asymmetric responses not readily seen in previous 

reports employing the full modulation domain.

In summary, our approach offers a unifying framework to standardize stimulus manipulation 

across the unit of interest (non-speech, phonemic segment, word, etc.) as well as across 

species of interest. We provide behavioral and neurophysiological evidence that the two 

hemispheres are differentially sensitive to ranges of temporal and spectral modulations. We 

view these sensitivities as an asymmetry in cortical architecture reflecting a neuronal 

integration of acoustic modulations and a unifying framework for hemispheric models 

critical to understanding the nature of human speech processing.

Methods

Stimulus Construction

All sentences were extracted from the Texas Instruments/Massachusetts Institute of 

Technology (TIMIT) database (2–4 s, 16 kHz) 85. A set of 28 unique speakers from the 

database was selected, 14 were female and 14 male. In order to select male and female 

speakers with similar fundamental frequencies, speakers were selected such that the first 

peak of their FFT spectra was matched for male and females speakers. We then verified 

fundamental frequency using a sawtooth waveform inspired pitch estimator (Camacho & 

Harris, JASA 2008) showing a mean F0 with relatively low female pitch values (MN = 

161.34 Hz, SD = 27) and relatively high male pitch (MN = 118.90 Hz, SD = 32.03). For 
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each speaker three unique sentences were processed and filtered in the modulation domain 

once with a low-pass cutoff of 2,3,4,5,6,7,8 Hz and once with a low-pass cutoff of 0.1867, 

0.3733, 0.56, 0.7467, 0.933, 1.12, 1.3067 cycles/octave (28 speakers X 3 sentences X 14 

filters). Stimuli length varied between 1.5–4.5 s (Mean: 2.396 s, SD: 0.576 s) containing 3–

13 words (Mean: 7.40, SD: 2.21)

Modulation Domain Filtering

All modulation filtering was performed by a toolbox written in Matlab for the purposes of 

this manuscript and is freely available. Sound waveforms were first transformed into a time-

frequency representation (spectrogram) using a filter-bank approach. Waveforms were 

filtered using 128 different frequency domain Gaussians that were designed to estimate 

cochlear critical bands 45. Gaussian center frequencies logarithmically spanned the 

frequency space and the full width at half maximum (FWHM) corresponded to the 

equivalent rectangular bandwidth 86 (i.e. Bandwidth = 24.7*(F *4.37+1), where F is the 

center frequency in KHz). The output of the filter operation was then Hilbert transformed in 

order to extract the analytic amplitude and log-transformed. The output of this filter-bank 

processing is a spectrogram, which provides a time-frequency representation estimating the 

output of the cochlea. Next, spectrograms were filtered in the modulation domain, which 

essentially is a multiplication in the two dimensional frequency domain of the spectrogram 

matrix (i.e. 2D FFT). A given spectrogram was transformed to the modulation domain using 

a 2D FFT and then multiplied with a low pass filter (cosine ramp) removing all components 

above the cutoff (similarly to modulation filtering in Elliott et al. 38). The filtered 

modulation domain was then inverse transformed back to a spectrogram (inverse 2D FFT) 

producing a new smoothed spectrogram with modulation frequencies only below the cutoff. 

All the filtering steps producing a smoothed (low-passed modulation) spectrogram are linear, 

invertible and relatively straightforward. The last operation in our filtering pipeline is 

transforming the new spectrogram into a corresponding time domain waveform. While such 

a direct transformation based only on spectrogram power estimates is not feasible there is a 

convex projection technique that iteratively produces a waveform which is maximally close 

to the desired spectrogram 87. While the original procedure by Griffin and Lim requires 

iteratively inverting the short time fourier transform, the same logic can be used to invert a 

filter bank (e.g. 88) and we follow this procedure with our inverted Gaussian filters with 10 

iterations to produce a new waveform. In brief, each new smoothed spectrogram is inverted 

to a sound waveform by initially using random phase estimates, inverting each filter in the 

filter-bank given the power and phase estimates of that critical band and summing the output 

to produce a temporary waveform. This temporary waveform is then decomposed (forward 

filter-bank) in to a spectrogram that does not fully match the smoothed spectrogram but 

contains more accurate phase information than the previous iteration (i.e. the spectrogram 

more closely matches the desired spectrogram). The new phase information, together with 

the smoothed spectrogram power estimates are used to produce a new temporary waveform, 

and this procedure is repeated with updated phase estimates until there is a sufficiently small 

difference between the desired spectrogram and the spectrogram matching the sound 

waveform.
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Psychophysical Experiments

In Experiment 1 (diotic, N=20) participants listened to two blocks of 84 unique pseudo 

randomly ordered sentences filtered either at 2,3,4,5,6,7,8 Hz low pass temporal modulation 

cutoff (and 11 cycles/octave spectral cutoff) or 0.1867, 0.3733, 0.5600, 0.7467, 0.9333, 

1.1200, 1.3067 cycles/octave spectral cutoff (and 32 Hz temporal cutoff). After each 

sentence the participant was asked to rate the intelligibility from 1–4 then type out the 

sentence on the keyboard and finally select whether the speaker was male or female 

(keyboard response, 2 alternative forced choice). Each trial was self paced and continued 

after the participant responded to all the prompts, half the participants were prompted for 

intelligibility rating first and then voice pitch identification and half were prompted in the 

reverse order. Participants heard 84 unique sentences spoken by 28 unique speakers (3 

sentences per speaker). For each speaker three cutoffs were randomly picked (either 

temporal or spectral) such that each filter cutoff appeared 6 different times (6 X 14 filters). 

In order to avoid priming effects of both speaker identity as well as sentence content, a 

sentence was never repeated within a block and a high cutoff filter never appeared before a 

lower cutoff filter for that speaker. In the second block the same sentences selected for the 

first block were repeated but in a different pseudorandom order, this manipulation ensured 

that the only priming effects of repeating a sentence or hearing more modulation content for 

that speaker were due to the second block. For each participant a different set of random 

filter and sentence permutations were selected.

In Experiment 2 (dichotic, N=60) participants listened to four blocks (2 blocks rating 

intelligibility and 2 marking male or female) of 120 pseudorandomly ordered sentences per 

block (40 unique sentences) constructed from the same filters as in Experiment 1 but were 

aligned in the audio stereo such that right ear and left ear received the same sentence but one 

ear received a filter at a higher cutoff (temporal dichotic pairs: [2,3], [3,4], [4,5], [5,6], [6,7] 

Hz and spectral dichotic pairs [0.1867,0.3733], [0.3733,0.5600], [0.5600.0.7564], 

[0.7564,0.9333], [0.9333,1.1200] cyc/oct). Each sentence was repeated once with a higher 

cutoff on the left ear (and lower on the right), once with a higher cutoff on the right ear (and 

lower in the left) and once as a diotic pair of the lower cutoff (e.g. [2,2] Hz). Half the 

sentences were presented first with a higher cutoff on the left (and then right and diotic) and 

half were presented first with a higher cutoff on the right (and then left and diotic). Each 

filter cutoff dichotic pair was heard in 8 unique sentences, four of which appeared first with 

higher modulation cutoffs on the left ear and four of which appeared first with higher 

modulation rates on the right ear. As in experiment 2 in order to avoid priming effects of 

both speaker identity as well as sentence content, a dichotic sentence did not repeat within a 

block and a higher cutoff dichotic pair filter did not appear before a lower cutoff dichotic 

pair filter for that speaker. For each participant a different set of random filter and sentence 

permutations were selected. Participants were asked to rate intelligibility and transcribe the 

sentence in two consecutive intelligibility blocks (the second block contained the same 

sentences as the first but in a different pseudo-random order) and in two consecutive voice 

pitch blocks, the participants were asked to mark the voice pitch of the speaker. Half the 

participants performed the intelligibility blocks first and then the voice pitch blocks and half 

the participants performed the voice pitch blocks first. Forty of the sixty participants first 
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performed an audiometer task to assess hearing thresholds in the left and right ears and to 

ensure differences were not greater than 5 dB between both ears.

Experiment 3 (MEG, N=19) was identical to Experiment 2 but only diotic stimuli were used, 

i.e. participants listened to four blocks (2 blocks rating intelligibility and 2 marking voice-

pitch) of 120 pseudorandomly ordered sentences per block (40 unique sentences) using the 

same temporal and spectral cutoffs: 2,3,4,5,6 Hz or 0.1867, 0.3733, 0.5600, 0.7467, 0.9333 

Cyc/Oct. Participants were only required to respond with an intelligibility rating (1–4) in the 

intelligibility blocks (no sentence transcription) and mark male or female in the voice pitch 

blocks. One participant was excluded due to excessive movement in the MEG leaving 19 out 

of the 20 recruited participants.

Experiment 4 (MEG, N=10) consisted of speech sentence stimuli as well as reversed 

sentences, identical to the pre-processed sentences in Experiment 1–3. Sentences were first 

reversed (audio vectors flipped left to right) and then filtered with identical procedures and 

cutoff values as in Experiment 3 (2,3,4,5,6 Hz or 0.1867, 0.3733, 0.5600, 0.7467, 0.9333 

cyc/oct). Participants were asked to detect a tone that was embedded in 8% of stimuli while 

they listened to pseudo-randomly presented sentences. Stimuli with an embedded tone and 

stimuli with responses were removed from analysis. To ensure participants were paying 

attention to the non-reversed intelligible sentence stimuli, questions about the content were 

asked during the end of each block. An identical amount of reversed speech stimuli were 

presented per cutoff as in Experiment 3. One participant was excluded due to falling asleep 

repeatedly during the experiment leaving a total of 10 out of 11 recruited participants.

Across experiments 1–4, participants were counter balanced in the hand they were instructed 

to respond with, where half responded with the left hand and half with the right hand 

(transcriptions in Experiments 1 and 2 were performed freely with both hands). Experiments 

1 and 2 were performed in a sound proof psychophysical booth and Experiment 2–4 was 

performed in the MEG scanner. Across all experiments participants first performed a 

practice block consisting of four unique exemplars that did not appear in the main 

experiment.

Experiment 5 (ECoG, N=8) was identical to Experiment 3 (MEG) but consisted of 80 

pseudorandomly ordered sentences per block (40 unique sentences) and only one block of 

Intelligibility and one block of Voice Pitch Identification were administered per patient. 

Patients heard stimuli through a speaker presented in front of them in the hospital bedside 

environment.

Psychophysical Analysis

Intelligibility transcriptions were processes by an algorithm to assess how many words were 

correct in each sentence allowing up to two spelling mistakes (Levenshtein distance of 2) 

and was verified by a human rater providing minor corrections where appropriate. The 

proportion of words correct as well as correct voice pitch (male or female) responses are 

plotted in raw form across participants as mean and SEM in Figure 4. In order to assess 

statistically significant effects of Filter and Block (or Ear in the dichotic case) we first 

applied a within-subject (a.k.a “repeated measures”) analysis of variance (ANOVA) and used 
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the raw scores as proportion (percent correct) data are notoriously susceptible to violation of 

ANOVA assumptions. While the Block and Ear conditions did not violate sphericity 

assumptions we did find a significant violation of sphericity for Filter as reported by 

Mauchly’s Test for Spehricity (diotic Intelligibility W=0.0401, p=7.343e-5; diotic Voice 

Pitch Identification W=0.0212, p=1.88e-6; dichotic Intelligibility W=0.528, p=3.09e-5; 

dichotic Voice Pitch Identification W=0.724, p=0.0296). Instead of reporting the corrected 

ANOVA statistics with sphericity corrections we opted to use a non-parametric approach of 

analysis of variance using a factorial permutation test. We used 1000 permutations as 

recommended by the default value of the ez-package 50 but also verified that all effects held 

with 10000 permutations. Both ANOVA analysis, sphericity tests and final non-parametric 

factorial test were implemented in R using the ez-package 50 which is designed for within-

subject analysis of factorial experiments (we used ezANOVA for the ANOVA and sphericity 

tests and ezPerm for the permutation test as well as ezBoot for validating data). When 

permutation test p-values equaled 0 we reported the more conservative estimate of 1/(m+1) 

where m is the number of permutations. It is noteworthy that all effects reported in the 

manuscript using the non-parametric approach mirrored the results of the ANOVA after 

correction for sphericity (i.e significant effects and non-significant effects). In addition to 

testing the effects across participants using a repeated measure factorial design for statistical 

assessment we also performed a within-subject analysis by fitting a logistic function for each 

participant’s data using a maximum likelihood criterion with fixed gamma and lambda 

parameters implemented by the Palamedes Matlab toolbox 51. The mean fitted curve across 

participants and SEM are depicted in Figure 4. These curves were then used to assess the 

exact range of modulations that showed a significant effect by performing a paired non-

parametric Wilcoxon signed-rank test (implemented in Matlab). This test was performed on 

each data point of the curve and values with an alpha criterion of 0.05 (p<0.05) and to 

reduce type I errors (multiple comparisons) only a range of values showing continuous 

statistical significance was used, i.e. if any intermediate values did not pass significance the 

range of values reported was decreased to the largest block of continuous significant 

modulations.

No statistical methods were used to pre-determine sample sizes but our sample sizes are 

similar to, and in experiments 2 and 3 larger than, those reported in previous 

publications38,63,75–77,96.

In all experiments each participant listened to a different random order of speech stimuli 

(combination of filter, speaker and sentence). This randomization process ensured a random 

order of stimuli for each participant while reducing priming effects within block (e.g. for 

both speaker identity as well as sentence content, a high cutoff filter never appeared before a 

lower cutoff filter for that stimulus). In experiments 1–4, the order of tasks and response 

hand were counter balanced across participants (within experiment). Data collection and 

analysis were not performed blind to the conditions of the experiments.

Participants

Twenty participants participated in Experiment 1 (9 males; mean age 19.8, range 18–24), all 

participants were native speakers of American English and were right handed. Sixty 
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participants participated in Experiment 2 (27 males; mean age 24.67, range 18–46) all 

participants were native speakers of American English and all but three were right handed. 

Twenty participants participated in Experiment 3 (10 males; mean age 25.1, range 19–46) all 

participants were native speakers of American English and all were right handed. Ten 

participants participated in Experiment 4 (5 males; mean age 25 range 22–46) all 

participants were native speakers of American English and all but one participant were right 

handed. One participant in Experiment 3 was rejected due to consistent artifact and noise 

during the MEG recording. Participants in all experiments self-reported normal hearing and 

no neurological deficits. Six additional participants performed tasks but were removed from 

analysis due to a hearing threshold greater than 20 dB (in Experiment 1 and 2) and one 

participant that fell asleep during the MEG task. Participants were either paid for taking part 

in the study or received course credit and provided written informed consent. The protocol 

was approved by the local Institutional Review Board (New York University’s Committee on 

Activities Involving Human Subjects) for all of these studies.

MEG Data Acquisition and Analysis

Neuromagnetic responses were recorded using a 157-channel whole-head axial gradiometer 

system (KIT, Kanazawa Institute of Technology, Japan) in a magnetically shielded room 

using a 1000 Hz sampling rate. Five electromagnetic coils were attached to the participant’s 

head to monitor head the position during the MEG recording. The coils were localized to the 

MEG sensors, at three different time points: at the beginning of the experiment between the 

intelligibility and voice pitch tasks and at the end of the experiment. The position of the coils 

with respect to three anatomical landmarks: the naison, and left and right tragus were 

determined using 3D digitizer software (Source Signal Imaging, Inc.) and digitizing 

hardware (Polhemus, Inc.). This measurement allowed a coregistration of the MEG data 

with a MRI template brain (MNI). An online hardware bandpass filter between 1 and 200 Hz 

and a notch filter at 60 Hz was applied during data acquisition. Participants were asked to 

perform a practice block with their eyes open but performed the main experiment 

(Experiment 3) with their eyes closed in order to minimize eye blinks. The heard each 

filtered sentence and responded with one of four button presses in order to continue to the 

next trial.

Data processing and analysis was conducted using custom MATLAB scripts and functions 

from the FieldTrip toolbox89. For each participant’s dataset, noisy channels were visually 

identified and rejected. Two denoising algorithms were run in sequence to regress out 

environmental noise measured with three reference sensors located away from the 

participant’s head. First, a least squares estimate between data sensors and reference sensors 

was estimated with 5 minutes of data recorded with no participants (empty room) and these 

weights were then used to remove environmental noise in the recording session (Experiment 

3) similarly to Adachi et al. 90. Any remaining environmental noise components were 

removed using a time-shifted PCA procedure 91. MEG signals were then zero-meaned and 

artifact components (eye blinks, heartbeat, stationary noise) were identified and removed 

using an independent component analysis (ICA) of the PCA space. Signals were then 

downsampled to 100 Hz for time efficiency and marked with onsets and offsets of each 

sentence.
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Power estimates were extracted for the full length of the data using a frequency domain 

FWHM Gaussian filter, a Hilbert transform and log transforming the power. This procedure 

was conducted for every frequency range of interest (e.g. 0.1–8 Hz in Figure 5) and for all 

frequencies spanning 0.1–50 Hz (Figure S6) when examining the entire spectra (center 

frequencies were logarithmically spaced and fractional bandwidth was used).

Correlation analysis was performed between the filter type (ordinal 1–5) and the neural 

power estimate across the 240 sentences. Correlations were then averaged across 

participants, and significance was estimated by comparing the correlation with a null 

distribution of permutations. Each permutation was constructed by randomly reordering the 

filter type labels and repeating the same correlation and averaging previously described. This 

procedure was repeated 1000 times, providing a null distribution for assessing significance. 

When evaluating correlations on the level of sensor (topographic plots in Figure 5, 

Supplemental Figures 4–6, 9-11) power estimates were first averaged across time and then 

correlated with the filter type. When evaluating correlations over time (Figure 5 middle 

panel, Supplemental Figures 8-11) a sliding window approach was employed, averaging 

power across a window of 250 ms for each correlation. In order to correct for multiple 

comparisons, only significant clusters were included. For the temporal correlations, a 

minimum of two consecutive correlations in time were used as a threshold. For the spatial 

topographies (sensor and source) a cluster correction was used based on random 

permutations (1000) in order to only include clusters that had an average significant 

correlation.

In this approach no sensors were pre-selected but rather all correlations were computed 

within sensor. For spatial topography plots, only significant data that survived the 

permutation test and correction for multiple comparisons are shown. To clarify the process 

for each sensor: power estimates were averaged across time, producing one estimate per 

sentence, these estimates were then correlated with their corresponding filter cutoff 

producing one correlation per sensor. This process was repeated with randomly shuffled 

labels (cutoff values) for each sensor in order to estimate the permuted null distribution. 

Final topographies contain the average correlations across participants that were significant 

compared to the permuted null distribution (which was verified to hold a normal 

distribution) and survived a cluster size correction for multiple comparisons (based on 

permuted data). A laterality index (varying form −1 to 1) for topographies was computed as 

(L-R)/(L+R) where L corresponds to the significant correlations for left sensors and R 

corresponds to right sensors. In order to test for statistical significance we followed the same 

permutation approach of randomly shuffling labels and producing a null distribution of 

laterality indices. This distribution was found to violate normality so we opted to test 

significance on the un-normalized indices i.e. (L-R) instead of (L-R)/(L+R). The distribution 

was verified to be normal and the actual (L-R) laterality index was compared to the null 

distribution to report p-values. The same correlation procedure was followed in a separate 

pipeline for each vertex in source space after data was projected to estimate cortical sources.

Source reconstruction was employed using a cortically-constrained minimum norm 

estimation (MNE) 92. This method approximates the cortical surface as a large number of 

current dipoles, and estimates the dipole’s amplitude configuration with minimum overall 
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energy that generates the measured magnetic field. Power estimates in source space were 

then computed similarly to sensor space (0.1–8 Hz filter, Hilbert transform, log transform) 

and correlations were performed in sensor space with the same permutation and cluster 

procedures. In order to assess correlations in anatomical regions of interest (Supplemental 

Figure 7), uncorrected correlations were averaged per anatomical ROI (base on a fieldtrip 

provided atlas) in order to avoid statistical double dipping.

Intracranial Data Acquisition

Three (two patients with bilateral sterotactic implants and one patient with a left grid 

implant) patients were recruited from North Shore University Hospital and five patients (one 

left grid implant, one right grid implant and three implants with bilateral surface strips) from 

New York University Langone Medical Center. Patients were undergoing neurosurgical 

treatment for refractory epilepsy and consented to participate in cognitive tasks during lulls 

in clinical treatment. Electrode placement and treatment were dictated solely by the clinical 

needs of each patient. All participants gave written consent to participate in the study as well 

as an additional oral consent immediately before recording the task. The study protocol was 

approved by the NYU, NYU Langone Medical Center, North Shore University Hospital 

Committees on Human Research. Synchronized electrophysiology and trigger onsets for 

sentence stimuli were acquired to ensure time-locked analysis. At NYU Langone Medical 

Center all signals were acquired clinically with Nicolet ONE clinical amplifier (Natus) and 

sampled with a rate of 512 Hz. At North Shore University Hospital, signals were acquired 

with a Xltek EMU 128 clinical recording system (two stereotactic patients) with a sampling 

rate of 500 Hz and Xltek 512 channel clinical recording system (grid patient) with a 

sampling rate of 512 Hz.

Intracranial Electrode Localization

Electrode localization at NYULMC in participant space as well as MNI space was based on 

co-registering a pre-operative (no electrodes) and post-operative (with electrodes) structural 

MRI using a rigid-body transformation and then projecting electrodes to the surface of 

cortex (pre-operative segmented surface) to correct for edema induced shifts following 

previous procedures93, registration to MNI space was based on a non-linear DARTEL 

algorithm94. Electrode localization at North Shore University Hospital was based on a rigid-

body transformation between a preoperative MR and a postoperative CT with electrodes 

projected to the pial surface to correct for edema induced shift and registered to MNI 

coordinates based on a spherical warping transformation as implemented by freesurfer 95. In 

both cases depth electrodes were not corrected for the edema induced shift.

Intracranial Data Analysis

Preprocessing of the data followed previous reported procedures96 and included visual 

inspection and rejection of noisy electrodes (60 Hz line noise, poor contact with abnormal 

voltage readings). A common average referencing (CAR) approach was used by zero-

meaning each channel and then removing the mean of all channels (the CAR) from each 

electrode (the CAR was also removed from noisy electrodes to ensure no residual signal was 

left). Electrodes over epileptiform regions were excluded as well as electrodes that were 

outside of cortical tissue. Ictal and epileptiform activity that spread across to other electrodes 
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was manually identified and any trials overlapping with the activity were excluded from 

analysis. Low frequency (0.1–8 Hz) or high frequency (70–150 Hz) activity was extracted 

with the same band-pass filtering approach as in MEG (i.e. frequency domain FWHM 

Gaussian filter, a Hilbert transform and log transformation for low power and percent change 

from baseline for high gamma). For low power correlations we followed a similar approach 

to MEG data analysis by correlating low frequency power with filter type (ordinal 1–5) and 

assessing significance by a permutation where all labels were randomly assigned and then 

correlated (1000 times) to create a null-distribution (Figure 6, Supplemental Figures 12-17). 

All electrodes were also tested for significant power change from baseline (paired t-test, 

p<0.05) as a measure of signal response in the electrode. For analysis of correlations across 

patients and their asymmetry we focused on all electrodes that showed a significant increase 

of power from baseline and calculated their correlations focusing on positive correlations 

and aggregating correlations (reported mean, SEM and asymmetry significance in the 

Results) regardless of whether the correlations themselves were significant (in order to 

provide an unbiased estimate of signal and effect size). When reporting the percent of 

significant electrodes (Results), their location value and the asymmetry index 

(Supplementary Figures 16,17) we only report electrodes with a significant correlation via a 

permutation test (p<0.05).

Statistical Reporting of Permutation Tests

While there is no consistent format for reporting statistical permutation tests, we chose to 

follow the approach of Collingridge97 by employing the nomenclature “Ptest-statistic = X” to 

denote the permutation test (P) of a specific test-statistic (subscript) with the real observed 

test-statistic reported as X. Given that Confidence Intervals (CI) are not well-defined nor 

meaningful for a permutation test (and can vary in meaning depending on the reported 

parametric statistic) we chose to report the 5% and 95% percentiles of the null hypothesis 

distribution (permutation results) which reflect the confidence intervals of the test statistic 

under random labels and if X falls outside the CI range we can reject the null hypothesis of 

the permutation test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Time, Time-Frequency, and Modulation domain representations for sound waveforms. (a) 

Sound waveform of a spoken sentence (left panel, top) is shown along with its 

corresponding spectrogram representation (left panel, bottom). The spectrogram can be 

represented as a decomposition in the modulation domain (middle panel) of horizontal 

(temporal, typically as cycles per second) and vertical (spectral, typically as cycles per 

octave) modulations. The degree (power intensity) of temporal and spectral modulations in 

the spectrogram is depicted in the right panel (showing the average modulation spectra of all 

our speech material, N=84). Superimposed gray squares correspond to the approximate 

temporal and spectral ranges shown in the middle panel. (b) To provide better intuitive 

insight into these representations, two artificially created audio signals are shown with a 

temporal modulation peak (left panel, top waveform) and a spectral modulation peak (left 

panel, bottom waveform). For both audio signals representations are shown in the time 

domain (left), the time-frequency domain (middle), and the modulation domain (right).
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Figure 2. 
A schematic depiction of the modulation asymmetry hypothesis whereby the left auditory 

system integrates a wide range of temporal modulations but a limited range of spectral 

modulations and the right auditory system integrates a wide range of spectral modulations 

but a limited range of temporal modulations.
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Figure 3. 
Overview of the filtering technique used to produce modulation domain filtered stimuli. (a) 

An audio waveform is filtered in the frequency domain using a cochlear filter bank, and the 

subsequent spectrogram is Fourier transformed, two dimensionally, to produce a modulation 

domain representation. In the modulation domain, signals are low-pass filtered using a 

temporal (b) or spectral (c) cutoff and inversed Fourier transformed to produce the desired 

modulation-limited spectrogram. Finally, an iterative convex projection technique is 

employed to produce an audio signal that maximally matches the desired modulation-limited 

spectrogram.
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Figure 4. 
Psychophysical performance as a function of temporal and spectral modulations in two 

separate experiments (diotic and dichotic). (a) Intelligibility (proportion of words transcribed 

correctly; N=20) at different temporal modulation cutoffs (left) and voice pitch identification 

(percent of correct responses; same participants N=20) at different spectral modulation 

cutoffs (right). Raw data is shown for each modulation value with mean and standard error 

of the mean across participants depicted in the error bars. Additionally the within-subject 

curve fits are shown with a solid curve depicting the mean and standard error of the mean 

across in the shaded area. Stimuli are repeated again in a subsequent block (block 2, in red). 

(b) The same tasks are used in a separate experiment employing dichotic stimulus 

presentation (N=60), with a different level of modulation information in each ear. Each value 

on the x-axis tick represents two different modulation values presented to each ear which are 

denoted in parentheses below the tick. The color code denotes in which ear the higher of the 
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two values was presented (Blue, right ear was presented with a higher value; Cyan, left ear 

was presented with a higher value). Higher intelligibility is seen for sentences with more 

temporal modulations in the right ear compared to the left (dark blue curve). This right ear 

advantage is evident for temporal modulations but not spectral modulations.
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Figure 5. 
MEG results showing significant correlations between neural power and degree of stimulus 

modulation. For each task, the average neural power for each modulation cutoff is shown 

(top) locked to the onset of a sentence (left most x-axis) as well as the offset (right most x-

axis) with mean across sensors and participants and shaded error bars depicting standard 

error of the mean across participants (N=19). The correlations are shown in the middle panel 

as a function of time (mean across sensors and participants and shaded SEM across 

participants, N=19) and spatial sensor locations (mean across time and participants, N=19) 

in the topography plots above. Power estimates are projected to source space using a 

minimum norm estimate, and significant correlations in source space are shown in the 

bottom panels (mean correlations across participant, N=19).
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Figure 6. 
Intracranial ECoG recordings in a patient with bilateral stereotactic depth electrodes, 

sampling superior temporal cortices. Reconstruction of electrode locations (MNI coordinates 

= [−60.17, −7.76, 2.82] , [52.81, −7.95, 2.64]) are shown (top) for an axial slice Z=3. Two 

significant electrodes with low frequency (0.1–8 Hz) mean (shaded SEM across trials, 

N=16) power traces shown for each modulation filter (middle) as well as average power 

(bottom) collapsed across time with mean and SEM across trials (N=16).
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