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Abstract

Accurate reconstruction of ancestral character states on a phylogeny is crucial in many genomics studies. We study how to
select species to achieve the best reconstruction of ancestral character states on a phylogeny. We first show that the
marginal maximum likelihood has the monotonicity property that more taxa give better reconstruction, but the Fitch
method does not have it even on an ultrametric phylogeny. We further validate a greedy approach for species selection
using simulation. The validation tests indicate that backward greedy selection outperforms forward greedy selection. In
addition, by applying our selection strategy, we obtain a set of the ten most informative species for the reconstruction of
the genomic sequence of the so-called boreoeutherian ancestor of placental mammals. This study has broad relevance in
comparative genomics and paleogenomics since limited research resources do not allow researchers to sequence the large
number of descendant species required to reconstruct an ancestral sequence.
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Introduction

Ancestral sequence reconstruction incorporates DNA or protein

sequences from modern organisms into an evolutionary model to

estimate the corresponding sequence of an ancestor that no longer

exists on the Earth. In 1963, Pauling and Zuckerlandl first

discussed how to study an ancient protein by inferring its sequence

from the sequences of the corresponding proteins found in extant

organisms, and subsequently synthesizing the sequence for

functional analysis in laboratory [1]. With many genomic

sequences being known and recent advances in DNA synthesis,

ancestral sequence reconstruction has become an important

approach to the investigation of the origins and evolution of

proteins and other molecules [2,3].

Different methods have been proposed to estimate the sequence

of an ancestor when the phylogeny that relates the ancestor to the

extant taxa whose sequences are used for reconstruction is known

[4,5]. Among these methods, the parsimony and maximum

likelihood methods are the most widely used. The Fitch

(parsimony) method [6] was first used for ancestral sequence

reconstruction in 1984 [7]. Since then, it has been used in

reconstructing ancestral sequences of digestive ribonucleases [8],

chymase proteases [9], and immune RNases [10]. To reconstruct

the character state at the root on a phylogeny, the method assigns

states to internal nodes of the given phylogeny so as to minimize

the total number of state changes on all branches. Here, the states

could represent particular traits or morphological features. In

ancestral DNA sequence reconstruction, the characters are

sequence sites and the states are four nucleotides. The parsimony

method is quite accurate and effective for the extant sequences

that are closely related to each other [11].

The marginal maximum likelihood (ML) method and its

variants were later proposed to infer ancestral states more

accurately through an explicit statistical framework [12–16].

Given a phylogeny with branch lengths, a model that specifies

change rates on all branches, and a set of observed states at the

taxa, the marginal ML method selects a state, as the ancestral

state, that has the maximum likelihood, the conditional probability

that the observed states would have evolved given the state at the

ancestor under consideration. The ML method has been used for

reconstructing ancestral sequences of vertebrate rhodopsins [17],

steroid hormone receptors [18], elongation factor EF-Tu [19], and

the ligand-binding pocket of Family CG protein-coupled receptors

[20]. Recently, the Bayesian method has also been proposed and

implemented by Huelsenbeck and his coworkers [21].

Different reconstruction methods infer different proxies of an

ancestral genome from the same set of extant sequences. But, it is

believed that the reconstruction uncertainty involved in deciding

which reconstruction method to use is generally less significant

than the uncertainty arising from the different evolutionary

features of the extant sequences to use for reconstruction [22].

Therefore, we study how taxon selection affects the accuracy of

ancestral state reconstruction on a phylogeny in this paper.

Relative to the study of phylogeny estimation, less attention has

been paid to accuracy analysis for ancestral state reconstruction.

There are only several papers on the merits and limitations of
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various methods for ancestral sequence reconstruction [22–26],

the effect of the given phylogeny topology [27–29], and the

reconstruction accuracy in terms of physico-chemical properties of

proteins [30].

When the genome of the common ancestor for a group of

organisms is reconstructed, one would expect that the accuracy

will increase with the number of extant genomic sequences used.

For instance, in a recent review, Crisp and Cook [4] recommend-

ed that ‘‘if ancestral features are to be inferred from a phylogeny, a

method that optimizes character states over the whole tree should

be used.’’ However, this is not always true for the Fitch method

(see the result section for detailed discussion). In other words, the

accuracy of a particular method is not necessarily a monotonic

function of the size of taxa used in ancestral state reconstruction.

Additionally, biomedical research resource limitations often

prevent a researcher from sequencing all extant genomes in an

ancestral genome reconstruction project. These facts motivate us

to investigate the effect of taxon sampling on inferred ancestral

states and how to select taxa for the best reconstruction of an

ancestral sequence.

Finally, we remark that there have been a couple of studies on

the related problems. Given a set of sequenced organisms and a

phylogeny over a set of both sequenced and unsequenced

organisms, Sidow and his coworkers propose sequencing the

organisms that maximize the additive evolutionary divergence on

the phylogeny in [31]. In another work [32], McAuliffe, Jordan

and Pachter present an elegant statistical framework for optimal

species selection for detecting single-site reservation. Here, we

propose an algorithmic approach to taxon selection for ancestral

state reconstruction and investigate as an application what species

are informative for reconstructing the genomic sequence of the so-

called boreoeutherian ancestor.

Results

Monotonicity of Reconstruction Accuracy: Parsimony
Method

Intuitively, more taxa should give better estimation of the

ancestral sequence at the root of a phylogeny. However, this is not

necessarily true for all reconstruction methods. The reason for this

fact is probably that reconstruction accuracy is highly sensitive to

the topology of the phylogeny under consideration [28,29]. For

example, if the root of a phylogeny T has a leaf child on a branch

that is shorter than the other branch leading to a clade,

reconstructing the root state from all taxa in the tree is no better

than using the sole child taxon of the root when the Fitch method

is used [33].

A natural question to ask is then how often this counterintuitive

situation arises in practice. In evolutionary study, branch lengths

in a phylogeny may satisfy a molecular clock, so that the path from

the root to a leaf has equal length (or evolutionary time).

Phylogenies in which branch lengths satisfy a molecular clock are

said to be ‘ultrametric’. Even on an ultrametric phylogeny,

reconstructing the root state from a subset of taxa can be more

accurate than from all taxa. Figure 1 presents such an example, in

which the reconstruction from four taxa a,i,b,e is more accurate

than from all taxa in the two-state Jukes-Cantor model.

The accuracy of reconstructing the root state in a phylogeny is a

continuous function of branch lengths. On the phylogeny in

Figure 1, it is still true that the Fitch method reconstructs the root

state from taxa a,i,b,e more accurately than from all the taxa when

the lengths of branches leading to these four taxa increase by a

small amount. Therefore, the accuracy of reconstructing the root

state could increase even if some taxa that are close to the root are

discarded on a phylogeny for Fitch method [34].

Monotonicity of Reconstruction Accuracy: The Marginal
ML Method

Consider two subsets L1 and L2 of taxa such that L15L2 on a

phylogeny T . It is known that, among all reconstruction methods,

the marginal ML method has the highest accuracy of reconstruct-

ing the root state from all the taxa in the spanning subtree over L2

(see [35] for example). A simple proof of this fact can be found in

the Materials and Methods section. Note that reconstructing the

ancestral state from the taxa of L1 is just a special reconstruction in

the tree spanning over L2, in which the state information carried

in the taxa in A2 but not in A1 is ignored. Therefore, when the

marginal ML method is used, the reconstruction from the taxa in

L2 is at least as accurate as that from the taxa in L1. In other

words, the reconstruction accuracy of the marginal ML method is

a monotonic function of the size of taxa selected for reconstruction

(E. Mossel, personal communication).

Taxon Selection for Ancestral State Reconstruction
The Fitch method is efficient for ancestral state reconstruction.

But, as we have shown, its reconstruction accuracy is not a

monotonic function of the size of taxon sampling. When it is

employed, it is necessary to first identify a subset of taxa to achieve

the best reconstruction. Moreover, due to limited research

resources, it is usually unlikely to sequence the large number of

extant genomes in a comparative genomics project. This motivates

us to investigate how to identify a small or medium number of taxa

for qualitative reconstruction of an ancestral genome. Formally,

we study the following taxon selection problem:

Figure 1. An ultrametric phylogeny on which the Fitch method
does not have monotonic accuracy. When the Fitch method is
used, the accuracies of reconstructing the root state from taxa a, i, b, e
and from all taxa are 0.921926 and 0.915298 in the two-state Jukes-
Cantor model, respectively. The Newick format of the tree is
( (g :2 .1553,d:2 .1553) : 47 .8447, ( ( ( f :0 .8271, a : 0 .8271) :14.1190,
( h : 5 . 2 3 5 2 , i : 5 . 2 3 5 2 ) : 9 . 7 1 0 9 ) : 1 0 . 0 6 1 3 , ( e : 2 1 . 7 2 6 3 , ( c : 4 . 2 1 6 0 , -
b:4.2160):17.5103):3.2811):24.9926), where the branch lengths are
scaled 100 times. The conservation probability on a branch of length
t is 0:5(1ze{2at), where a is set to 0.25.
doi:10.1371/journal.pone.0008985.g001

Greedy Species Selection
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Given a phylogeny T over a set of n taxa, a Markov

evolutionary model of a character in T , a reconstruction

methodM, and an integer kƒn, find the k taxa that allow

the character state at the root to be reconstructed with the

highest accuracy over all k-taxon subsets when M is used.

Since the reconstruction accuracy of a method depends on both

the topology of the given phylogeny and the evolutionary model of

the considered character, the taxon selection problem is unlikely

polynomial-time solvable, although its complexity status is not yet

known. Here we propose two heuristic strategies for solving this

problem which originated in our linear regression study.

The first strategy selects k taxa one by one in terms of

incremental accuracy. We call this the forward greedy method. The

algorithm first picks a taxon that is the closest to the root, breaking

ties arbitrarily. In each of the next k{1 steps, the algorithm selects

a taxon that, together with the taxa that have been selected, gives

the largest increment in reconstruction accuracy.

The other strategy is called the backward greedy method. It removes

taxa one by one by considering the accuracy decrement rather

than the accuracy increment. Assume there are n taxa on the input

phylogeny. In each of the n{k steps, the method deletes a taxon

with the property that the removal of this taxon leads to the least

decrement in reconstruction accuracy.

We validated these two methods on 4000 random ultrametric

phylogenies over 16 taxa in which branches have different lengths

for each of tree heights 0.1, 0.2, 0.5, 1, 2, 5. We selected k taxa by

using each method in each random ultrametric phylogeny,

calculated the accuracy of reconstructing the root state from the

selected taxa and compared it with the accuracy of the

reconstruction from all the taxa in the phylogeny. Here the exact

accuracy of using the selected k taxa is calculated using the branch

substitution rates on the subtree spanned by the taxa. Because the

accuracy of reconstructing the root state from k selected taxa

varies on different random phylogenies, we used the accuracy

difference to measure the performance of the proposed methods

on each generated ultrametric phylogeny. Figure 2 shows the

average difference between the accuracies of using all the 16 taxa

and using the selected k taxa for reconstructing the root state in a

random ultrametric phylogeny of height 2 when the Fitch method

Figure 2. The box-and-whisker plot of the difference of the accuracies of reconstructing the root state from all 16 taxa and from the
selected k taxa on random ultrametric phylogenies of height 2 for the Fitch method. A negative difference indicates that the
reconstruction accuracy of using the selected k taxa is higher than that of using all the 16 taxa in the corresponding phylogeny. The (blue) curve
represents the average difference. The bottom and top of the box are the 25th and 75th percentile; the bar inside the box indicates the median; and
the (red) crosses are outliers.
doi:10.1371/journal.pone.0008985.g002
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was used. Note that there are a number of negative outliers for

both selection methods in each plot, indicating that the selected

subset of taxa leads to a better reconstruction than using all 16

taxa in the corresponding ultrametric phylogeny.

We also ran the selection methods for the marginal ML method.

Computing the exact reconstruction accuracy of the marginal ML

method by definition takes exponential time. It is still open if it is

NP-hard or not. Because of the computational intensity of

calculating the accuracy of the ML method, we ran the methods

over 324 random ultrametric phylogenies for each tree height

given above. Figure 3 shows the average accuracy difference for

the marginal ML method in the case of tree height 2.

We repeated our experiments with 4,000 phylogenies over 16

taxa randomly generated by a Yule model using the Fitch method.

To investigate how the tree topology affects the reconstruction

accuracy, we assign equal length to all branches in each generated

phylogeny. We reconstructed the root state of a two-state

character on each generated phylogeny in a Jukes-Cantor model.

Let p denote the conservation probability on the branches of

a phylogeny. The probability that one state changes into the

other is 1{p on each branch. For each kƒ16 and

p~0:75,0:80,0:85,0:90,0:95,0:99, we selected k taxa by using

each method and calculated the accuracy of reconstructing the

root state from the selected taxa in each generated phylogeny.

Similar facts were also observed in this case.

We observed the following facts from the above experiments.

First, when the branch conservation probabilities p are smaller

than 0.9 on a phylogeny, the methods frequently produced a

subset of taxa that have higher reconstruction accuracy than all 16

taxa in the phylogeny. However, this becomes rare as p exceeds

0.9. In addition, as a function of the size k of taxon sampling,

reconstruction accuracy increases rapidly when k is less than 10

and becomes stable when k is medium or large. When k is small,

there are many outliers in the box-and-whisker plots in the figures.

This indicates that the accuracy of reconstructing the root state

from a subset of k taxa varies in a wide interval when k is small.

Secondly, the backward greedy algorithm generally outperforms

the forward greedy algorithm. In about 80% of our experiments as

Figure 3. The box-and-whisker plot of the difference of the accuracies of reconstructing the root state from all 16 taxa and from the
selected taxa on random ultrametric phylogenies of height 2 for the marginal ML method. A negative difference indicates that the
reconstruction accuracy of using the selected k taxa is higher than that of using all the 16 taxa in the corresponding phylogeny. The (blue) curve
represents the average difference. The bottom and top of the box are the 25th and 75th percentile; the bar inside the box indicates the median; and
the (red) crosses are outliers.
doi:10.1371/journal.pone.0008985.g003
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shown in Figure 4, the backward greedy method produced a better

taxon subset in terms of reconstruction accuracy. But, the

backward greedy method is less efficient as it starts the taxon

selection from the whole set of taxa in a phylogeny and removes

taxa one by one until the required number of taxa remain.

We also analyzed the mean value of the reconstruction accuracy

using an arbitrary subset of k taxa in a phylogeny and compared it

with that of using the k taxa selected by each method. The

reconstruction accuracy using the k taxa selected by each

algorithm is significantly higher than using k arbitrary taxa (see

Figures S1 and S2).

Selecting Species for Reconstructing Boreoeutherian
Sequence

We now consider species sampling for reconstructing the

genomic sequence of the so-called boreoeutherian ancestor of all

placental mammals that lived approximately 100 million years

ago. We examined the accuracy using the species selected by the

two greedy methods for reconstructing the ancestral genome over

the phylogeny over 24 extant species shown in Figure 5 (personal

communication from Adam Siepel). Our dataset covers 20,917

base positions in the CFTR region; on each of these positions all

24 species have a nucleotide. In the CFTR region, different base

positions have, on average, similar relative rate of evolution [31].

We first reconstructed the nucleotides in these 20,917 base

positions in the boreoeutherian genome by applying the base-level

reconstruction program reported in [25] to the sequences of all the

24 species. Then, we selected a subset of k species (4ƒkv24)
using both the backward and forward selection methods. We also

inferred the ancestral nucleotides based on the selected species

using the same reconstruction program. Since the boreoeutherian

genome is unknown, it is impossible to obtain the true

reconstruction accuracy of using a selected subset of species.

Hence, we estimated the accuracy of reconstructing the bor-

eoeutherian ancestral sequence from all 24 species by taking the

simulation approach described in [25]. We first simulated

evolutionary process starting from a hypothetical ancestral

sequence of 20,000bp. We then ran the reconstruction program

reported in Blanchette et al. (2004) to predict the boreoeutherian

ancestral sequence from the resulting sequences at all 24 extant

species. Finally, we compared the predicted ancestral sequence

and the hypothetical ancestral sequence to estimate the recon-

struction accuracy. The average accuracy is 99.43% (over 100

simulations). Since the reconstruction from all 24 species are quite

accurate, we examined the relative accuracy by comparing the

reconstruction from selected species with the reconstruction from

all 24 species. The results obtained from the backward selection

method are summarized in Table 1 and those from the forward

selection method are given in Table 2.

The results show that the two methods output quite different

subsets of k species for each k. For instance, when 4 species were

selected, the backward greedy method output marmoset, alpaca,

armadillo, and sloth, whereas the forward greedy method output

gorilla, orangutan, rhesus and marmoset. The only common species in

these two selected subsets is marmoset. When the number of species

to be selected is 15, the two subsets output from the backward and

forward methods have only the following 7 species in common:

marmoset, mouse_lemur, treeshrew, mouse, guinea_pig, squirrel, and rabbit.

This observation suggests that the effect of a species on ancestral

sequence reconstruction should not be examined separately.

Figure 4. The backward greedy selection vs the forward greedy selection. Each circle represents a selection instance. If reconstructing the
root state from the 12-taxon subset output from the backward selection is more accurate than that from the forward selection on a random 16-taxon
phylogeny, the corresponding circle falls in the region above the line x~y; otherwise, it falls in the region below the line.
doi:10.1371/journal.pone.0008985.g004
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Our test results demonstrate that the backward greedy approach

again outperformed the forward greedy approach for the

boreoeutherian sequence reconstruction. The results in Table 1

also suggest that using just 20 or more species, one can reconstruct

in the base level the boreoeutherian genome with high accuracy

once the genomic sequences are aligned.

The species selection made by the backward greedy method is

broadly consistent with an early study of Cooper et al. [31]. In

investigating the relative divergence of a species with respect to

human, mouse and rat, they find that dog is the most divergence

informative and cow is more informative than the others. Our

backward greedy selection process first eliminated cow, then

guinea_pig and then dog, showing that dog is more informative

than cow for inferring the boreoeutherian genomic sequence. This

consistency further suggests that the backward greedy method is

superior to the forward greedy method.

Discussion

Monotonicity of Ancestral State Reconstruction
Reconstructing the ancestral state of a character is far more

complicated than we thought. Our first finding is that the accuracy

of reconstructing the root state of a character is not a monotonic

function of the taxon sampling size even in an ultrametric

phylogeny for the Fitch method. In our counterexample, the

reconstruction of the root state from a subset of four taxa is more

accurate than from all nine taxa in an ultrametric phylogeny

(given in Figure 1). This fact is presented under the assumption

Figure 5. The phylogeny over 24 mammal species used in the reconstruction of the boreoeutherian ancestral sequence (Personal
communication from Adam Siepel).
doi:10.1371/journal.pone.0008985.g005
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that a character has only two states and evolves in a Jukes-Cantor

model. Obviously, our finding also holds under any general

evolutionary mode for a multiple-state character. Finally, we

remark that the non-monotone property of ancestral state

reconstruction occurs often when branch lengths are long.

It has been known for a long time that the parsimony method is

not consistent when the branches are long and hence more

characters do not always lead to the reconstruction of the true

phylogeny (see Chapter 9 of [5] for details). Our finding suggests

that more taxa are not necessarily better to reconstruct the root

state of a character, even in an ultrametric phylogeny when the

Fitch method is used. To some degree, these two results are

parallel.

There are two possible reasons for this limitation of the Fitch

method. First, the Fitch method ignores character change rates on

all branches. Second, the Fitch method is a kind of ‘local’ method

in the sense that it estimates the states of an internal species from

those states estimated at the children of the species. As such,

incorrect estimates made at the internal species close to the taxa

propagate all the way through to the root state.

The Fitch method is computationally fast, but it has limitations.

Hence, the weighted parsimony method proposed by Sankoff in

[36] could be a natural choice for ancestral state reconstruction. It

is not only computationally efficient as the Fitch method, but also

takes the branch lengths into account by posing a weight on each

branch.

Unlike the Fitch method, the marginal ML method does not

have such an undesirable property. However, when the marginal

ML method is used, reconstructing the root state from all taxa

could have the same accuracy as from a small subset of taxa on a

phylogeny. Additionally, the marginal ML method is not as

efficient as the Fitch method. Hence, developing a fast method

with monotonic reconstruction accuracy is important for future

research. One promising approach for improving ancestral

sequence reconstruction is to utilize other biological factors. For

example, co-evolutionary information of the studied genes or

proteins is employed for reconstructing the gene content of the

LUCA [37].

Stability of Ancestral State Reconstruction
Our experimental results demonstrate that the accuracy of

reconstructing the root state from a subset of taxa varies in a wide

range especially when the size of taxon sampling is small for both

the Fitch and ML methods. But the situation is much worse for the

Fitch method. This is because the Fitch method computes a subset

of taxa as an assignment to each internal species without graded

ambiguity and hence topology can have big influence on the

reconstruction procedure. This further confirms the same

observation made in [24], in which different reconstruction

accuracies were discussed for the Fitch method.

The accuracy variability of reconstructing the root state suggests

that ancestral state reconstruction is sensitive, and the inferred

ancestral state could be unreliable when a small number of taxa

are used. In the reconstruction of the boreoeutherian ancestral

Table 1. The species selected by the backward greedy
method and their relative reconstruction accuracy in the
reconstruction of boreoeutherian sequence.

Species Sampling size Percentage identity

Marmoset, alpaca, armadillo, sloth 4 96.18

+megabat 5 97.08

+rabbit 6 97.95

+squirrel 7 98.39

+treeShrew 8 98.77

+dog 9 98.97

+dolphin 10 99.18

+guinea_pig 11 99.31

+mouse_lemur 12 99.49

+horse 13 99.62

+cow 14 99.65

+mouse 15 99.71

+bushbaby 16 99.85

+tarsier 17 99.89

+rat 18 99.92

+kangaroo_rat 19 99.96

+rhesus 20 99.99

+gorilla 21 100.00

+orangutan 22 100.00

+human 23 100.00

+chimp 24 100.00

The species selected for each size include those appearing in the corresponding
row or above. The third column is the percentage of base positions at which
using the selected taxa and the all 24 taxa give the same nucleotide.
doi:10.1371/journal.pone.0008985.t001

Table 2. The species selected by the forward greedy method
and their relative reconstruction accuracy in the
reconstruction of boreoeutherian sequence.

Species Sampling size Percentage identity

Gorilla, orangutan, rhesus, marmoset 4 90.18

+human 5 90.19

+chimp 6 90.19

+mouse_lemur 7 92.86

+bushbaby 8 93.68

+tarsier 9 94.52

+rabbit 10 95.50

+squirrel 11 95.72

+treeShrew 12 97.07

+guinea_pig 13 97.24

+mouse 14 97.21

+rat 15 97.27

+kangaroo_rat 16 97.32

+alpaca 17 97.70

+megabat 18 98.35

+dog 19 98.46

+dolphin 20 98.55

+horse 21 98.61

+cow 22 98.63

+armadillo 23 99.67

+sloth 24 100.00

The species selected for each size include those appearing in the corresponding
row or above. In the third column, the percentage identity denotes the fraction
of base positions at which using the selected taxa and the all 24 taxa give the
same nucleotide.
doi:10.1371/journal.pone.0008985.t002
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genome, where we used the method reported in [25], the 6 species

selected by the forward selection method have a relative accuracy

of 90.16%, whereas the 6 species selected by the backward

selection method have relative accuracy as high as 97.95%.

Therefore, caution should be exercised before drawing conclusions

about evolutionary hypotheses about an ancestral sequence when

the ancestral sequence was estimated from a small number of taxa.

Taxa Selection for Ancestral State Reconstruction
We have studied the taxon selection problem for ancestral state

reconstruction under the assumption that the true phylogeny is

given. In earlier studies [31] and [32], k taxa with the largest

additive divergence are selected to detect single-site conservation.

Such a widely-discussed criterion makes good sense [39]. Consider

an ultrametric phylogeny in which substitution rate is constant. The

k taxa selected based on this criterion induce a k-leaf subtree with

the largest total branch length. Since each root-to-leaf path has the

same length, the internal branches close to the root are short and

hence in such a tree, the lineages are less dependent, giving high

reconstruction accuracy. Does a subset of k taxa with the largest

additive divergence give the optimal reconstruction accuracy? The

answer to this question is negative in general. When the Fitch

method is used, k-taxa with the largest additive divergence is not

necessarily the best selection in terms of reconstruction accuracy.

For instance, in the phylogeny presented in Figure 1, for k~4, taxa

a,b,e,d has the largest additive divergence, but their reconstruction

accuracy is lower than that of species a,b,e,i. When the marginal

ML method is used, our numerical computation indicates that the k
species with the largest additive divergence often give nearly-

optimal reconstruction accuracy. Over an arbitrary phylogeny, the

situation is much more complicated. It is not clear whether the taxa

with the largest or smallest additive divergence should be selected.

As such, we investigate the taxa selection problem with the

algorithmic approach.

We proposed two heuristic methods for taxon selection. These

methods have their origin in the linear regression study and can be

applied to any reconstruction methods. We tested them for the

Fitch and ML methods on random phylogenies generated under a

Yule model as well as on random ultrametric trees. The

experiment results show that, in most of the cases, the accuracy

of reconstructing the root state from the k taxa selected by each

method is comparable to the accuracy of the best reconstruction

from the same number of taxa; it is also comparable to, if not

better than, the accuracy of using all taxa in a phylogeny when the

number of selected taxa is medium or large as shown in Figure 6.

In summary, the forward selection is straightforward, but the

backward selection is more effective. The C++ programs for these

two methods are available upon request.

Reconstructing Boreoeutherian Ancestor Genome
Our experiments suggest that the reconstruction accuracy

increases rapidly when taxon sampling size is small and becomes

stable when 10 or more taxa are used. Hence, little is gained when a

few taxa are added into or removed from the reconstruction when

the number of used taxa is 10 or more. This is consistent with earlier

studies [25,31]. A positive aspect of this observation is that ancestral

states can be well estimated from about a dozen taxa in a phylogeny.

This suggests that reconstructing an ancestral protein sequence or

genome that existed millions of years ago is feasible.

Most modern mammalian lineages originated in a burst of

speciation events around 80–100 million years ago [38]. This

makes the boreoeutherian ancestor an ideal target for ancestral

genome reconstruction. Reconstructing the boreoeutherian ances-

tral sequence is important for decoding the molecular basis for the

extraordinary diversity of mammalian forms and capabilities.

Blanchette et al. successfully reconstructed a genomic region

covering about 1.1 million bases around the CFTR locus from 16

extant sequences with 96.8% accuracy at the nucleotide level

including indel events, as estimated by computer simulation [25].

From the data presented in Table 1, we can see that the

reconstruction of the boreoeutherian ancestor genome from a

subset of 10 or more selected species has nearly-identical accuracy

as from all 24 taxa for bases that are not involved in indel events.

The 10 species that are most useful for the reconstruction are

marmost, treeshrew, squirrel, rabbit, alpaca, dolphin, dog, megabast,

armadillo, and sloth. Unfortunately, most of these genomes are not

completely sequenced in high coverage and resolution yet. With

more and more species in the list being sequenced in high quality,

the boreoeutherian ancestral genome should be reconstructed with

high resolution in the near future.

In this paper, we focus on the taxon selection problem for

inferring ancestral states. In reconstructing the boreoeutherian

ancestor genomic sequence, we did not consider insertion and

deletion events. Inferring the insertion and deletion events on a

phylogeny is extremely challenging [40,41]. When the insertion

and deletion events are considered, the definition of reconstruction

accuracy presented in the method section is no longer valid. How

to incorporate insertion and deletion events into the study of taxon

selection is another important problem for future research in

ancestral sequence reconstruction.

Materials and Methods

Reconstruction Accuracy
The problem of reconstructing ancestral states is to find the true

state of a character in an ancestral species from the states in a set of

extant taxa that evolve from that ancestral species. Let T be a

phylogeny with root r. We use L(T) to denote the set of the extant

taxa on T . For a taxon subset L(L(T), we say D is a state

assignment for L if it associates a state with each taxon in L. We

use S(L) to denote the set of all possible state assignments for L.

For a state a and a state assignment D[S(L), Pr½Djsr~a� is used

to denote the probability that a at the root evolves into the states

specified in D. Such a probability can be calculated recursively

given a Jukes-Cantor model (for example, see [42] and [43]).

Consider a reconstruction method M. The accuracy of M for

reconstructing the ancestral state of a character at the root r from

the states of the taxa of L is defined as the expected probability

that M correctly reconstructs the root state, i.e.,

AM(L)~
X

a

pa Pr½̂ssr~ajsr~a�, ð1Þ

where ŝsr denotes the state reconstructed at the root and pa is the

prior probability of state a at the root.

For a state a and a state assignment D[S(L), we write

Pr½State a is at r jStates in D are observed in the

corresponding taxa �,
ð2Þ

as Pr½sr~ajD� and call it the likelihood of the state a given state

assignment D. By the law of total probability,

Pr½̂ssr~ajsr~a�~
X

D[S(L)

Pr½̂ssr~a,Djsr~a�

for any state a. Since the state output by M depends only on D,
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Pr½̂ssr~a,Djsr~a�

~ Pr½̂ssr~ajD,sr~a�Pr½Djsr~a�

~ Pr½̂ssr~ajD�Pr½Djsr~a�

ð3Þ

In practice, one infers the root state from some state assignment.

Since the inference of a state a byM from a state assignment D is

correct only if the states in D are evolved from a. Combining Eqn

(1) and Eqn (3), we obtain

AM(L)~
X

D[S(L),a

pa Pr½Djsr~a�Pr½̂ssr~ajD�, ð4Þ

where Pr½̂ssr~ajD� is the probability thatM outputs a as the root

state on D.

As a parsimony reconstruction method, the Fitch method

assigns to each internal node those states that allow for the smallest

number of substitutions posed on all branches of a phylogeny over

the given taxa [6]. The assignment to each node is computed by

considering the assignments previously obtained at the node’s

children one by one downward in the phylogeny, starting with the

taxa. For each taxon, the observed state forms the state subset.

Assume A is an internal node with children B and C. The

following rule is used to compute the state subset SA from the state

subsets SB and SC :

SA~
SB|SC if SB\SC~w,

SB\SC if SB\SC=w:

�

The state subset output by the Fitch method at the root

contains all the possible states that are equally parsimonious

candidates as the root state. We say that the Fitch method

unambiguously reconstructs a state a at the root r if the state

Figure 6. Comparison of the accuracies of reconstructing the root state of a character from the 12 taxa selected by a greedy
approach, the best subset of 12 taxa and all 16 taxa, respectively, on a random phylogeny. The graphs are drawn using the accuracy data
collected on 1000 random trees generated in a Yule model. In each figure, the 1000 tree samples are arranged in ascending order of the accuracy of
reconstructing the root state from the best subset of 12 species. (a) and (b) The conservation probability p on each branch is set to be 85% and the
method is the forward and backward greedy method respectively. (c) and (d) p~95% and the method is the forward and backward greedy method
respectively.
doi:10.1371/journal.pone.0008985.g006
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subset Sr contains only a and ambiguously reconstructs a state a
if Sr contains a and other states. When Sr contains more than

one state, we simply pick one of them as the root state. Thus, for

a state assignment D of a taxon subset in the given phylogeny, the

probability that the Fitch method outputs a state a from D is set

to be

Pr½̂ssr~ajD�~
0 a 6[Sr,

1

Srj j
a [ Sr

8<
: ð5Þ

where jSrj is the number of states in the subset Sr computed from

D.

Given a phylogeny and a Jukes-Cantor model, the accuracy of

reconstructing the root state from a subset of leaf states in a

phylogeny can be calculated by using a recurrence system (see [42]

or [43]).

To reconstruct the root state more accurately, the marginal

maximum likelihood (ML) method selects the state that has the

maximum likelihood given D, which is defined in Eqn (2),

breaking tie by choosing one arbitrarily. For the marginal ML

method, we have that

Pr½̂ssr~ajD�~
1

k
Pr½sr~ajD� is maximal,

0 otherwise

8<
: ð6Þ

where k is the number of states that have the same likelihood as a.

By Eqn (4),

AML(L)~
X

D[S(L)

X
a

pa Pr½Djsr~a�Pr½̂ssr~ajD�
 !

~
X

D[S(L)

max
a
fpaPr½DjSr~a�g

ð7Þ

For any reconstruction method M, by Eqn (4), its accuracy of

reconstructing the root state from a taxon subset L in a phylogeny

is bounded as

AM(L)~
X

D[S(L)

X
a

pa Pr½̂ssr~ajD�Pr½Djsr~a�

ƒ

X
D[S(L)

max
a
fpa Pr½Djsr~a�g

X
a

Pr½̂ssr~ajD�
 !

~
X

D[S(L)

max
a
fpa Pr½Djsr~a�g:

Noting that the right-hand side of the above inequality is the

accuracy of the marginal ML method, we conclude that the

marginal ML method has the highest accuracy of reconstructing

the root state from the leaf states in a phylogeny.

Randomly Generated Phylogenies
We generated phylogenies using a Yule model, which is a pure

birth Markov speciation model. The tree generation procedure

starts with a single taxon. In each step, the taxa in the generated

phylogeny are equally likely to speciate. When a taxon is selected

to speciate, two taxa are attached below it. The procedure stops

when the generated phylogeny has the required number of taxa.

We also investigated taxa sampling in ultrametric phylogenies in

which all taxa have the same height (which is the sum of the

branch lengths from the root to a taxon). We generated

ultrametric trees using Evolver in PAML (http://abacus.gene.

ucl.ac.uk/software/paml.html). We set the parameters of the

birth-death process with species sampling as birth-rate = 10, death-

rate = 5, sampling-fraction = 1, and tree-height = 0.1, 0.2, 0.5, 1, 2,

5. Here, the tree-height denotes the expected number of

substitutions in each path from the root to a taxa.

Genomic Sequences in the CFTR Region
We used the genomic segment that harbors the cystic fibrosis

transmembrane conductance regulator (CFTR) gene across 24

species, including outgroup species Armadillo and Sloth, for our

validation test. The multiple alignment, created by MULTIZ [44],

was downloaded from UCSC Genome Browser [45]. We then

selected the columns in the multiple alignment where each species

has a base, ignoring positions that are involved in insertion or

deletion events.

Supporting Information

Figure S1 The box-and-whisker plot of the difference of the

accuracies of reconstructing the root state from an arbitrary subset

of k taxa and from all 16 taxa, respectively, in a random phylogeny

in which the conservation probability on each branch is set to 0.85

when the Fitch method was used. The bottom and top of the box

are the 25th and 75th percentile; the bar inside the box indicates

the median; and the red crosses are outliers. The average

difference between the accuracies of reconstruction with the k

taxa selected by the forward (backward, respectively) greedy

algorithm and the all the 16 taxa is indicated by a circle (triangle)

for each k. The reconstruction accuracies of using the taxa selected

by the forward and backward greedy methods are quite close.

Found at: doi:10.1371/journal.pone.0008985.s001 (0.88 MB EPS)

Figure S2 The box-and-whisker plot of the difference of the

accuracies of reconstructing the root state from an arbitrary

subset of k taxa and from all 16 taxa, respectively, in a random

phylogeny in which the conservation probability on each branch

is set to 0.95 when the Fitch method was used. The bottom and

top of the box are the 25th and 75th percentile; the bar inside the

box indicates the median; and the red crosses are outliers. The

average difference between the accuracies of reconstruction with

the k taxa selected by the forward (backward, respectively) greedy

algorithm and the all the 16 taxa is indicated by a circle (triangle)

for each k. The reconstruction accuracies of using the taxa

selected by the forward and backward greedy methods are quite

close.

Found at: doi:10.1371/journal.pone.0008985.s002 (0.54 MB EPS)
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