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Background: Hematologic malignancies, such as acute promyelocytic

leukemia (APL) and acute myeloid leukemia (AML), are cancers that start in

blood-forming tissues and can affect the blood, bone marrow, and lymph

nodes. They are often caused by genetic and molecular alterations such as

mutations and gene expression changes. Alternative polyadenylation (APA) is a

post-transcriptional process that regulates gene expression, and dysregulation

of APA contributes to hematological malignancies. RNA-sequencing-based

bioinformatic methods can identify APA sites and quantify APA usages as

molecular indexes to study APA roles in disease development, diagnosis, and

treatment. Unfortunately, APA data pre-processing, analysis, and visualization

are time-consuming, inconsistent, and laborious. A comprehensive, user-

friendly tool will greatly simplify processes for APA feature screening and

mining.

Results: Here, we present APAview, a web-based platform to explore APA

features in hematological cancers and perform APA statistical analysis. APAview

server runs on Python3 with a Flask framework and a Jinja2 templating engine.

For visualization, APAview client is built on Bootstrap and Plotly. Multimodal

data, such as APA quantified byQAPA/DaPars, gene expression data, and clinical

information, can be uploaded to APAview and analyzed interactively.

Correlation, survival, and differential analyses among user-defined groups

can be performed via the web interface. Using APAview, we explored APA

features in two hematological cancers, APL and AML. APAview can also be

applied to other diseases by uploading different experimental data.
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1 Introduction

In the diagnosis and treatment of hematological cancers,

genetic abnormalities at different levels have been used as

biomarkers for subtyping, prognosis, and targeted therapy. 1)

At a genomic level, typical abnormalities in the chromosomal

karyotype and structure, such as gene fusions, structural variants,

and copy number variants, have been shown to be correlated with

the occurrence and development of hematological malignancies

(Kerbs et al., 2021). Somatic mutations of genes such as

CHEK2 and DDX41 have also been found to be pathogenic in

hematological cancers (Yang et al., 2021). 2) At a transcriptional

level, RNA sequencing technology has revealed that gene

expression changes in hematological malignancies are related

to drug resistance. For example, the high expression of ITGB2 is

accompanied by high drug resistance and poor prognosis in acute

myeloid leukemia (AML) (Wei et al., 2021). Using machine

learning methods, it is possible to build assistant systems for

the accurate diagnosis and treatment of hematological

malignancies based on key genes (Lee et al., 2021). Recent

studies on post-transcriptional mechanisms have shown that

alterations in splicing, RNA editing, and m6A modification

were found in hematological cancers (Alessandro et al., 2000;

Li et al., 2017).

Alternative polyadenylation (APA) is an important post-

transcriptional regulation process that often occurs in introns

or 3′UTR to form the 3′ end of mature mRNA. APA in the

intronic region leads to truncation of mature mRNA. In chronic

lymphocytic leukemia, loss of DICER and FOXN3 functions was

due to intronic APAs which led to truncated protein products

(Lee et al., 2018). APA occurring in 3′UTR changes the length of

3′UTR, which affects mRNA stability, subcellular localization,

and translation efficiency (Zhang et al., 2021). The advancements

in transcriptomic sequencing (e.g., 3′RACE, PolyA-Seq, and

TRENDseq (Ogorodnikov and Danckwardt, 2021)) have

allowed for the establishment of APA and polyadenylation site

signal (PAS) databases such as polyA DB3 (Wang et al., 2018),

APAatlas (Hong et al., 2020), and TREND-DB (Marini et al.,

2021). In addition, algorithms such as QAPA (Ha et al., 2018)

and DaPars (Xia et al., 2014) were developed to identify and

quantify APA based on RNA sequencing data.

With the discovery of APA differences across tissues, more

and more studies have focused on identifying APA roles in

cancers. Using TCGA RNA sequencing data, TC3A (Feng

et al., 2018) calculated the percentage of distal PolyA site

usage index (PDUI) using DaPars and found a widespread

shortening of 3′UTR across cancers. SNP2APA used PDUIs

as quantitative traits to analyze effects of SNPs on APA in

different TCGA tumors (Yang et al., 2020). In hematological

malignancies, the APA regulator FIP1L1 was found to block cell

differentiation (Davis et al., 2021). Through an analysis of AML

single-cell RNA sequencing data, researchers have found APA

dynamics in different cell types, suggesting a potential

relationship between APA and hematological cell

abnormalities (Ye et al., 2019). These studies have provided

new avenues for hematological cancer intervention from the

level of post-transcriptional modification.

The different output formats of current RNA-sequencing-

based APA identification tools have made it difficult to obtain

reliable APA loci frommultiple methods for subsequent analysis.

Additional data preprocessing is needed to unify the results,

which could be complicated, time-consuming, and laborious. In

order to facilitate the study of APA effects on hematological

malignancies, we developed a web-based platform called

APAview to analyze APA data from QAPA and DaPars. The

platform can: 1) provide correlation analysis between the APA

usage index and gene/transcript expression; 2) compare the APA

usage index and gene/transcript expression differences between

groups; 3) identify genes with shortened/lengthened 3′UTR
between groups based on the APA usage index; 4) carry out

APA-based survival analysis; 5) annotate genes and APA sites

using databases such as UCSC and polyA DB3; and 6) visualize

gene structures, APA sites, and related motifs. All results can be

downloaded from the APAview web pages.

2 Methods

APAview consists of three major sections, as depicted in

Figure 1. First, APAs are quantified using QAPA and DaPars.

Second, APAs can be queried and analyzed in APAview. Third,

data and analysis results are visualized. The workflow is described

in detail in Sections 2.1–2.4.

2.1 Data preprocessing

APAview first extracts 3′UTR APA position and usage

information from QAPA and DaPars. The basic process for

producing appropriate input to APAview in the human

genome using RNA sequencing raw data (Fastq files) is shown

in Figure 1A, which runs on Linux.

For RNA sequencing data, alignment tools such as HISAT2

(Kim et al., 2015) and STAR2 (Dobin et al., 2013) map reads to

human hg19/hg38 reference genome. PCR duplicates generated

during sequencing can be removed from Bam files using GATK

MarkDuplicate (McKenna et al., 2010) or sambamba markdup

(Tarasov et al., 2015) commands.

In the quantification of APA usage, QAPA uses Salmon

(Patro et al., 2017) to quantify the expression of

34,978 transcripts with PolyASite database (Herrmann et al.,

2020) and GENCODE APA sites annotation (Harrow et al.,

2006). Then, PolyA site usage (PAU) is calculated as the

proportion of the transcript expression among the gene,

which ranges from 0 to 1. A PAU closer to 1 represents more

transcripts using the APA site, and a PAU closer to 0 represents
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FIGURE 1
Flow chart of APAview. (A) Data preprocessing for APA quantification. Taking QAPA and DaPars as examples, APA quantification processes
taking RNA sequencing raw data as input are shown. QAPA uses APA site annotation in PolyA site and GENCODE to construct transcripts 3′UTR and
calculate TPM and PAU. DaPars takes wig files produced after alignment as input, normalizes library sizes using the number of mapping reads, and
calculates PDUI for each gene. (B)Query and functional analysis of APA. Taking APA quantification, gene/transcript expression, and clinical data
as input, APAview provides APA query and visualization in the Query module. In the Analysis module, APAview achieves correlation analysis, survival
analysis, differential analysis, and lengthening/shortening gene identification. Features between user-defined groups can be compared. (C) Storage
and display structures of APAview. APAview stores data in SQLite and NetCDF4 files. Python, Flask, and Jinja2 are used to build the interactive web
platform. APA data are shown as tables using Bootstrap-Table; analysis results are shown using Plotly; gene structure and APA-related motifs are
shown using IGV. JS. PAU, PolyA site usage; PDUI, percentage of distal PolyA site usage index; TPM, transcripts per kilobase million.
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less APA site usage. In addition to Bam files, QAPA also accepts

Fastq files as input for APA quantification. The output contains

information on gene IDs, gene symbols, transcript IDs,

chromosomes, APA IDs, start and end position of 3′UTR and

last exons, length of 3′UTR, number of APA sites, transcripts per

kilobase million (TPM) expression, and PAU, among which the

expression column is identified by “TPM” suffix and the PAU

column by “PAU” suffix.

Compared with QAPA, DaPars does not depend on APA site

annotation. It uses a regression model to identify and quantify

dynamic APA events in a set of samples and only keeps one

major proximal APA site for one transcript. DaPars measures the

usage proportion of distal APA sites (or PDUI), which also

ranges from 0 to 1. A value of 1 indicates that all transcripts

of the gene use the distal APA site instead of the proximal site.

DaPars uses Wig files as input and corrects APA quantitative

results based on the alignment depth, which can be obtained

from Bam files using the BEDTools genomeCoverageBed

(Quinlan and Hall, 2010) command and SAMtools flagstat (Li

et al., 2009) command, respectively. The output information of

DaPars includes columns of chromosomes, gene ID, APA sites,

3′UTR, and PDUI. Since the results of DaPars do not contain

transcript expression, they can be inferred by using

featureCounts (Liao et al., 2014) or Salmon.

In order to extend the usage of APAview, we also allow users

to upload APA data identified by other methods. The acceptable

APA data format is described in detail on the “Help” page of

APAview.

2.2 Analysis of alternative polyadenylation
data

APAview integrates APA, gene expression, and clinical data

to provide data query and analysis functions for convenient APA

feature mining in hematological cancers (Figure 1B). Specifically,

APAview provides correlation analysis, survival analysis,

differential analysis, and lengthening/shortening gene

identification modules to study APA differences between user-

defined groups and their effects on gene expression.

Differential APA usage can indicate differential 3′UTR
lengths. Therefore, APAview provides a differential module to

compare PAU/PDUI among groups through theMann–Whitney

test or Kruskal–Wallis test. PAU/PDUI distribution is shown in a

density plot. The trend of 3′UTR lengthening and shortening

caused by APA is represented by ΔPAU/ΔPDUI, which is

calculated as the difference between the mean value of PAU/

PDUI in two groups. Also, the differential module could compare

gene expression between groups. Differential analysis results are

displayed in box plots.

Correlation analysis in APAview is used to study the linear

relationship between APA indexes and gene expression. It can be

performed for all samples, or within user-defined groups. In

addition, we provide correlation analysis between expressions of

the two specified genes to evaluate regulation between genes. The

analysis results are interactively visualized using dot plots and

regression analysis curves with a 95% confidence interval.

Survival analysis is commonly used to assess relationships

between molecular features and prognosis. APAview provides

survival analysis based on APA indexes. For a specific gene, the

median of the APA index is used as a threshold to divide samples

into two groups. Survival comparison between groups is

implemented using the log-rank method and visualized using

KM curves.

2.3 Web server design

APAview is a web-based system developed using open-

source technologies (Figure 1C). The server runs on Python3

(https://www.python.org/), Jinja2 (https://jinja.palletsprojects.

com/), and Flask (https://flask.palletsprojects.com/) for the

query and analysis of APA data. The browser aspect is built

upon Bootstrap (https://getbootstrap.com/), Bootstrap-Table

(https://bootstrap-table.com/), and Plotly (https://github.com/

plotly/plotly.py). It provides the user interface for visualizing

and interacting with APA information and analysis results.

Statistical methods such as linear regression, Mann–Whitney

test, Kruskal–Wallis test, and survival analysis are implemented

in Python using the libraries NumPy (Harris et al., 2020), SciPy

(Virtanen et al., 2020), and Statsmodels (Seabold and Perktold,

2010). An SQLite database (https://www.sqlite.org) is used to

store APA site information. The NetCDF4 format file is used to

store expression data and read to the APAview server by the

library xarray (Hoyer and Hamman, 2017). A genome browser

based on IGV. JS (Robinson et al., 2011) is integrated into

APAview to display gene structure, APA sites, and molecular

features.

2.4 Workflow

APAview provides a user-friendly web interface for APA

query, analysis, and display. By compressing APA,

expression, and clinical data into a file, APAview produces

an SQLite database via script and uploads it to the server.

APAview provides a “Query” page for APA details and

visualization, and an “Analysis” page for APA-related

analysis (Figure 2).

On the “Query” page (Figure 2A), users can retrieve APA

information using fields such as gene ID, gene name, and

transcript ID. Since APAview provides built-in ID mappings,

ID types that are not contained in raw data can also be used as

search keys. In advanced search, APAview also accepts gene lists

and specific ranges in chromosomes. Annotated information on

genes from NCBI (https://www.ncbi.nlm.nih.gov/) is provided
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along with gene IDs. The scatter diagram and regression curve in

the “Plot” column show the correlations between PAU/PDUI

and gene expression in all samples. IGV plots contain six tracks

that display gene structures and molecular features, including

APA sites and 3′UTR extracted from the input data, PASs from

polyA DB3 database, RBP from ENCODE (Luo et al., 2020),

miRNA from TargetScanHuman 7.2 (Agarwal et al., 2015), and

human hg19/hg38 genome.

On the “Analysis” page (Figure 2B), users can group samples

based on clinical information and apply differential, correlation, and

survival analyses. Clinical data is displayed in a “Case table” and

users can show and hide columns of interest. Box plots, dot plots,

and KM curves are displayed on the site and are downloadable. All

plots have legends to label groups and show statistical results. Users

can interactively examine data summary information, check

samples’ information, and choose visible elements on plots.

In addition, the “Help” page provides instructions for using

the APAview platform. Any questions and suggestions can be

reported through the email address on the “Contact” page.

3 Results

Two hematological cancer datasets were analyzed to illustrate

the usage of APAview. The first dataset was downloaded from

GSE172057 (Lin et al., 2021). This dataset contained RNA

sequencing data for 323 acute promyelocytic leukemia (APL)

patients. QAPA was used to quantify APA usage, and the PAU

FIGURE 2
Web interface of APAview. (A)On the “Query” page, gene/transcript symbols can be inputted (a), and the retrieved APA information is shown in
table (b). APA sites, 3′UTR, PASs, RBP-, miRNA-binding, and gene structures are shown by IGV (c). Gene annotation from NCBI is provided (d). PAU/
PDUI distribution (e) and the correlation between PAU/PDUI and gene expression (f) are shown in interactive plots. (B) On the “Analysis” page,
samples could be filtered (g) and grouped (h) based on clinical information. Results of correlation (i), differential (j), and survival analyses (k) are
shown in interactive plots. PAS, PolyA signal; RBP, RNA-binding protein; PAU, PolyA site usage; PDUI, percentage of distal PolyA site usage index.
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was calculated as an APA index. Clinical information such as age,

gender, and prognostic risk was collected from the original

research. The second dataset is from the TC3A database

(http://tc3a.org). APA data of 144 AML samples were

quantified by DaPars. Gene expression and clinical

information were downloaded from TCGA and were analyzed

in conjunction with APA data in APAview.

3.1 Acute promyelocytic leukemia case
study

The stratification of APL is mainly based on white blood cell

count and platelet count (Lin et al., 2021). Precise molecular

markers may help reduce early death and recurrence of patients.

The original study of the APL dataset constructed an APL

stratification index and reported 155 mutated genes associated

with patient prognosis. Using APAview, these APL genes were

assessed at a post-transcriptional level.

For the 155 APL-related genes, APA information was queried

by gene symbols using APAview. Eighty-two genes had APA sites

constituting transcripts with 3′UTR of different lengths. For

example, Janus Kinase I (JAK1) had two QAPA-annotated

APA sites with coordinates chr1: 64833213 and chr1:

64834454, constituting 3′UTRs with lengths of 1348bp and

107bp, respectively (Figure 3A). We defined the former as the

distal APA and the latter as the proximal APA.

APAview analysis showed a negative correlation between

PDUI and JAK1 expression, i.e., there was a decrease in gene

expression with an increase in distal APA usage (Figure 3B).

Comparing JAK1 expression between the top 30 samples and the

bottom 30 samples of PDUI values, expression of the JAK1 gene

was significantly less in the high-PDUI group (Figure 3C).

According to polyA DB3 database information, there was a

FIGURE 3
(A) IGV plot of JAK1. The tracks from top to bottom are APA sites extracted from input data, PASs annotated by polyA DB3, RBP-binding regions
annotated by ENCODE, miRNA-binding regions annotated by TargetScanHuman 7.2, 3′ UTR constructed by APA sites, and human genome from
UCSC. (B)Correlation analysis result of JAK1 PDUI and gene expression. The X-axis represents PDUI of the distal JAK1 APA site; the Y-axis represents
the expression of JAK1. Each dot in the scatter plot represents an APL sample. The red line is the regression curve, and the gray region shows its
95% confidence interval. (C) Box plots of gene and transcript expression of JAK1 in the high-PDUI group (blue) and low-PDUI group (red). “JAK1_1_D”
represents the transcript with the distal APA, and “JAK1_2_P” represents the transcript with the proximal APA. **** p-value < 0.0001. ns p-value >
0.05. PDUI, percentage of distal PolyA site usage index; PAS, PolyA site signal; RBP, RNA-binding protein; TPM, transcripts per kilobase million.
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canonical PAS AATAAA located 40 nt upstream of the distal site,

but there was no PAS for the proximal site, leading to a higher

distal APA site usage (Figure 3A). APA cleavage at the distal site

leads to the downregulation of the shorter transcript in the high-

PDUI group. Biological experiments can be designed for further

validation of the hypothesis.

Genes that may interact with JAK1 were extracted from the

STRING database (Szklarczyk et al., 2019), and their correlation

in APL was analyzed with APAview. The results showed that the

expressions of genes such as STAT1, STAT3, GRB2, SOCS5,

PTPN11, and MDM2 were positively correlated with JAK1

(p-value < 0.05) (Table1, Supplementary Figures S1–S14).

These interacted genes were enriched in the JAK-STAT

signaling pathway through KEGG pathway enrichment

analysis. Previous studies have shown that the activation of

the JAK-STAT pathway is required to induce differentiation

of the APL cell line HT93A (Uchino et al., 2015). Therefore,

the decreased expression of JAK1 through decreasing proximal

APA usage might lead to cell differentiation block and affect the

occurrence and development of APL.

Unfortunately, the survival information for these APL

samples is yet to be released, so the role of JAK1 in patients’

survival will be completed in later studies.

3.2 Acute myeloid leukemia case study

A previous study on APA data from TCGA samples

demonstrated that CFIm25-mediated 3′UTR shortening

promotes glioma growth (Masamha et al., 2014), suggesting that

APA might serve as a novel prognostic biomarker. Here, we used

APAview to identify potential AML-related APA features.

TABLE 1 Gene expression correlation between JAK1 and STRING-reported genes in APL.

Gene symbol Description r p-value

STAT3 Signal transducer and activator of transcription 3 0.6853 3.95e-46

IL6ST Interleukin 6 cytokine family signal transducer 0.3677 8.87e-12

MDM2 MDM2 proto-oncogene 0.5611 3.48e-28

INSR Insulin receptor 0.4997 8.29e-22

STAM2 Signal-transducing aaptor molecule 2 0.5357 2.21e-25

GRB2 Growth factor receptor-bound protein 2 0.6533 1.09e-40

PTPN11 Protein tyrosine phosphatase non-receptor type 11 0.5658 9.96e-29

STAT5B Signal transducer and activator of transcription 5B 0.4360 2.04e-16

SOCS5 Suppressor of cytokine signaling 5 0.7399 3.23e-57

IL4R Interleukin 4 receptor 0.3250 2.22e-09

STAT1 Signal transducer and activator of transcription 1 0.6954 5.54e-48

STAT5A Signal transducer and activator of transcription 5A 0.3845 8.02e-13

CSF2RB Colony-stimulating factor 2 receptor subunit beta 0.4402 9.74e-17

IFNGR1 Interferon gamma receptor 1 0.3459 1.65e-10

TABLE 2 Gene expression correlation between PCM1 and APA regulatory factors in AML.

Gene symbol Description r p-value

CPSF2 Cleavage and polyadenylation specific factor 2 0.5432 2.00e-12

CPSF3 Cleavage and polyadenylation specific factor 3 0.6081 6.28e-16

CPSF6 Cleavage and polyadenylation specific factor 6 0.6356 1.15e-17

CSTF1 Cleavage stimulation factor subunit 1 0.5035 1.26e-10

CSTF2 Cleavage stimulation factor subunit 2 0.4697 2.86e-09

CSTF3 Cleavage stimulation factor subunit 3 0.6124 3.47e-16

PCF11 PCF11 cleavage and polyadenylation factor subunit 0.5538 6.03e-13

CSTF2T Cleavage stimulation factor subunit 2 Tau variant 0.6041 1.10e-15

WDR33 WD repeat domain 33 0.6508 1.05e-18

FIP1L1 Factor interacting with PAPOLA and CPSF1 0.6318 2.05e-17

NUDT21 Nudix hydrolase 21 0.6919 7.90e-22
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FIGURE 4
(A) Correlation analysis result of PCM1 PDUI and gene expression. The X-axis represents PDUI of PCM1; the Y-axis represents expression of
PCM1. Each dot in the scatter plot represents an AML sample. The red line is the regression curve, and the gray region shows its 95% confidence
interval. (B) Box plot of PCM1 expression and density plot of PCM1 PDUI in the high-PDUI group (blue) and low-PDUI group (red). Dashed lines
represent mean values of PDUI in groups. *** p-value < 0.001, **** p-value < 0.0001. (C) KM curve of PCM1 low-PDUI and high-PDUI groups in
AML. Groups are divided by the median of PCM1 PDUI. Survival time is shown by days. (D) KM curve of PCM1 low-expression and high-expression
groups in AML. Groups are divided by themedian of PCM1 expression in AML. The plot is downloaded fromGEPIA2. Survival time is shown bymonths.
(E) IGV plot of PCM1. The tracks from top to bottom are APA sites extracted from input data, PAS annotated by polyA DB3, RBP-binding regions
annotated by ENCODE, miRNA-binding regions annotated by TargetScanHuman 7.2, 3′ UTR constructed by APA sites, and human genome from
UCSC. The dashed box showed the PAS sequence upstream of the distal APA site of PCM1. PDUI, percentage of distal PolyA site usage index; MST,
median survival time; PAS, PolyA site signal; RBP, RNA-binding protein; TPM, transcripts per kilobase million; HR, hazard ratio.
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On the “query” page, APA information for 209 AML-related

genes was queried. Twelve genes were found to have significant

correlations between PDUIs and gene expression (|r| > 0.3 &

p-value < 0.05), among which the expression of pericentriolar

material 1 (PCM1) increased with the lengthening of 3′UTR of

gene transcript NM_006197 (Figure 4A). AML samples were

divided into two groups based on their PDUI of PCM1. Using

the differential analysis modules on the “Analysis” page, PCM1 was

found to be overexpressed in the high-PDUI group (Figure 4B).

Patients in the high-PDUI group had better survival rates

(Figure 4C). In contrast, TCGA AML patients did not show a

survival difference between groups divided using the median of

PCM1 expression inGEPIA2, a web server for expression analysis of

TCGAdata (Figure 4D) (Tang et al., 2019). This indicates a potential

prognostic role of PCM1 APA site preference in AML.

According to cleavage motifs annotated in polyA DB3, there is

an AATAAAmotif 40 nt upstream of the PCM1 proximal APA site,

and AATAAA and TGTA elements 100 nt upstream of the distal

APA site (Figure 4E). APAview showed interesting correlations

between PCM1 and 11 cleavage and polyadenylation factors

(Table 2, Supplementary Figures S15–S25). Among which,

CPSF2, CPSF3, FIP1L1, and WDR33 are subunits of cleavage

and polyadenylation specificity factor (CPSF); CSTF1, CSTF2,

CSTF3, and CSTF2T are part of the cleavage stimulation factor

(CSTF); CPSF6 and NUDT21/CPSF5 constitutes the cleavage factor

I (CFI); and PCF11 is a subunit of cleavage factor II (CFII). CPSF

interacts with the AATAAA motif through FIP1L1 and WDR33.

CFI, in conjunction with NUDT21, binds to the TGTA element

(Tian and Manley, 2017). TGTA elements were found around the

APA sites of PCM1. A previous study has reported that

FIP1L1 might be an important mediator of APA alterations in

AML (Davis et al., 2018). The analysis results fromAPAview suggest

a relationship between APA factors and PCM1 APA site preference.

Additional studies are needed to validate this relationship.

4 Discussion

The increase of data availability for hematological cancers

provides a large repertoire of RNA sequencing data that can be

used to find prognostic markers, therapy targets, and classification

indicators. Although allogeneic stem cell transplant, chemotherapy,

immunotherapy, hypomethylating agents, and targeted small

molecules have been widely used in the treatment and subsequent

post-remission therapy of hematological cancers, high relapse rates

and drug resistance are still tricky challenges to prolonging survival

time, especially for patients at high risk. Efficient biomarkers

identified from different genetic levels are urgently needed. In this

study, we introduce APAview, a web-based platform that allows the

analysis of post-transcriptional APA features in hematological

malignancies. Users can upload data to APAview and perform

APA-related information retrieval, analysis, and visualization. The

ability to define user-based analyses increases the flexibility and

freedom of the platform. To our knowledge, APAview is the first

interactive tool focused on APA features mining.

As shown by two case studies, APAview can be used to rapidly

reveal relationships between APA and gene expression, patient

survival, and molecular binding. The entire process can be

performed interactively with a web interface without any

additional scripts. At present, APAview can automatically

recognize fields from outputs of QAPA and DaPars, but data from

other methods are also accepted. Its seamless compatibility with other

methods will be developed in future versions. In addition, modules for

batch processing of multi-genes will be added for more general

analyses. Since there are many algorithms for APA quantification,

and most of them are time-consuming and memory-consuming, we

did not integrate the preprocessing in APAview; however, we provide

guidelines and resources for users to quantify APA.

In conclusion, APAview specializes in the analyses of APA

features in diseases, simplifies the process of APA data mining,

and provides interactive visualization results. The study of APA

features will contribute to the discovery and practice of disease

intervention at the RNA level and improve the understanding of

pathogenic mechanisms.
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