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Streptococcus suis is ubiquitous in swine, and yet, only a small percentage of pigs

become clinically ill. The objective of this study was to describe the distribution of

serotypes, virulence-associated factor (VAF), and antimicrobial resistance (AMR) genes

in S. suis isolates recovered from systemic (blood, meninges, spleen, and lymph node)

and non-systemic (tonsil, nasal cavities, ileum, and rectum) sites of sick and healthy

pigs using whole-genome sequencing. In total, 273 S. suis isolates recovered from 112

pigs (47 isolates from systemic and 136 from non-systemic sites of 65 sick pigs; 90

isolates from non-systemic sites of 47 healthy pigs) on 17 Ontario farms were subjected

to whole-genome sequencing. Using in silico typing, 21 serotypes were identified with

serotypes 9 (13.9%) and 2 (8.4%) as the most frequent serotypes, whereas 53 (19.4%)

isolates remained untypable. The relative frequency of VAF genes in isolates from

systemic (Kruskal–Wallis, p < 0.001) and non-systemic (Kruskal–Wallis, p < 0.001) sites

in sick pigs was higher compared with isolates from non-systemic sites in healthy pigs.

Although many VAF genes were abundant in all isolates, three genes, including dltA

[Fisher’s test (FT), p < 0.001], luxS (FT, p = 0.01), and troA (FT, p = 0.02), were more

prevalent in isolates recovered from systemic sites compared with non-systemic sites

of pigs. Among the isolates, 98% had at least one AMR gene, and 79% had genes

associated with at least four drug classes. Themost frequently detected AMR genes were

tetO conferring resistance to tetracycline and ermB conferring resistance to macrolide,

lincosamide, and streptogramin. The wide distribution of VAFs genes in S. suis isolates in

this study suggests that other host and environmental factors may contribute to S. suis

disease development.
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INTRODUCTION

Streptococcus suis is a Gram-positive opportunistic bacterial
pathogen responsible for meningitis and other diseases in pigs
and occasionally capable of zoonotic infections (1). S. suis is
ubiquitous in pigs, and although only a small percentage of
pigs become clinically ill (2–4), the disease can cause significant
economic losses to swine producers.

The routine use of antimicrobials to control S. suis infection
also presents a serious problem in the development of
antimicrobial resistance (AMR) (5). AMR in S. suis has been
documented worldwide with high rates of phenotypic resistance
to tetracyclines, lincosamides, and macrolides reported (6–11).
Although in lower frequencies, resistance to other antimicrobials
including beta-lactams (12–14), trimethoprim–sulfamethoxazole
(11, 13, 15), aminoglycosides (6, 10, 11), fluoroquinolones (10,
16–18), and chloramphenicol (19) has also been reported. Over
time, there has been a global trend of increased resistance
to tetracycline, aminoglycosides, fluoroquinolones, macrolides,
and cephalosporins (8, 20, 21) in S. suis. Recent metagenomic
studies have also supported the trend of increased resistance and
broad distribution of AMR-associated genes globally (20, 22, 23).
Recombination plays a key role in the evolutionary history of S.
suis (24), and it has been suggested that S. suis has the potential
to act as an AMR reservoir (8).

Currently, 29 S. suis serotypes are recognized, with serotypes 1,
1/2, 2, 3, 5, 7, and 14 being the most frequent serotypes associated
with clinical infections in North America (20). Globally, the
key serotypes associated with clinical infections consist primarily
of serotypes 1/2, 2, and 3 (20), with serotype 2 being the
most prevalent and well-characterized in human and pig clinical
infections. Recently, serotype 9 has shown increased importance
in S. suis clinical pig infections globally with increased prevalence
in many European countries, including Spain, Netherlands,
Germany, and Belgium (5, 20, 25), as well as in China (26) and
Canada (27, 28).

Serotyping of S. suis is traditionally conducted by slide co-
agglutination test using antibodies directed against the capsular
polysaccharide (CPS) (29). However, over the last two decades,
multiplex polymerase chain reaction (PCR) assays based on
conserved genes and cps gene clusters have also been developed
as alternatives to serotyping S. suis (30–32). Co-agglutination
and PCR methods have been unable to distinguish certain
serotypes from each other, namely between serotypes 1 and
14 and serotypes 2 and 1/2. Furthermore, both methods often
result in a proportion of isolates being untypables, i.e., unable
to be assigned to any of the currently known serotypes. The
serotypes that previously could not be distinguished (ex. 1 and
14; 2 and 1/2) can now be identified based on single-nucleotide
polymorphisms (SNPs) in the cps genes either by mismatch
amplification mutation assay (33) or through in silico methods
using whole-genome sequencing (WGS) data (34).

Multilocus sequence typing (MLST) is also commonly used
for subtyping S. suis strains. The MLST for S. suis was first
established by King et al. (35), who developed the model that
assigns a sequence type (ST) based on the allele combinations
of seven housekeeping genes (recA, aroA, thrA, cpn60, mutS,

dpr, and gki). The serotype 2 strains have been extensively
characterized by MLST, and ST1 has been shown to be the most
frequently associated with disease in both humans and pigs in
Europe, Asia, Africa, and South America (20, 35, 36). Conversely,
in North America, ST25 has a high prevalence and association
with disease in pigs and humans (20, 37, 38).

The exact virulence mechanisms of S. suis are not well-
understood. Numerous virulence-associated factors (VAFs) have
been suggested to be involved in S. suis pathogenesis. The most
studied VAFs include the CPS (39, 40), muramidase-released
protein (MRP) (41, 42), extracellular protein factor (EPF) (43),
and suilysin (SLY) (44). However, the actual involvement of
many VAFs in S. suis disease development remains controversial
(45). Three key VAFs have been characterized as important for
virulence in serotype 2 isolates (EPF, SLY, and MRP); however,
virulent S. suis strains that do not produce or carry genes
encoding these proteins are regularly reported in the literature
(45). Furthermore, several VAFs, including LysM (46), EsxA (47),
SrtR (48), 5′-nucleotidase (ssadS) (49), and antigen I/II (50), have
been found to be associated with clinical serotype 9 strains but
not serotype 2 strains.

The objectives of this study were to analyze the WGS data of
S. suis isolates recovered from systemic and non-systemic sites
of sick and healthy pigs from multiple farms to determine the
serotype of the S. suis isolates using an in silico method and
identify the distribution of VAFs and AMR genes across the
different serotypes, farms, and disease status in those isolates.

MATERIALS AND METHODS

Streptococcus suis Isolates
The isolates used in this study were recovered from nursery pigs
with clinical signs of S. suis infection and from age-matched
healthy animals on the same farm whenever possible on Ontario
farms between 2013 and 2018 (27, 51). The identities of S. suis
isolates were considered confirmed if glutamate dehydrogenase
(gdh) (32) and recombination protein N (recN) (52) were both
detected by PCR (27, 51). A total of 294 S. suis isolates were
subjected to WGS, but 21 isolates were excluded due to contig
N50 values < 10,000 and/or contamination in the final assembly.
The isolates were recovered from systemic (blood, meninges,
spleen, and lymph node) and non-systemic (tonsil, nasal, ileum,
and rectal) sites of 112 pigs on 17 farms: 183 isolates from
65 sick pigs and 90 isolates from 47 healthy pigs. Sick pigs
displayed one or more S. suis infection clinical signs such as
ataxia, paralysis, shaking, paddling, opisthotonos, convulsions,
nystagmus, and/or incoordination.

The isolates were grouped into four different categories:
Systemic—confirmed (SC), non-systemic—confirmed (NSC),
non-systemic—probable (NSP), and non-systemic—healthy
(NSH) (Table 1). The SC (n = 47) and NSC (n = 65) isolates
were recovered from systemic and non-systemic sites of 32
pigs, respectively, that were both symptomatic and confirmed to
have S. suis recovered from at least one systemic site. The NSP
(n = 71) isolates were obtained from non-systemic sites of 33
symptomatic pigs, for which S. suis was not recovered from any
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TABLE 1 | Distribution of 273 isolates recovered from sick and healthy pigs into

isolate groups.

Isolate group Number (%)

of isolates

Isolation sites Clinical signs of

S. suis infection

Systemic—confirmed

(SC)

47 (17) Blood, meninges,

spleen, lymph

node

Yes

Non-systemic—

confirmed

(NSC)

65 (24) Tonsil, nasal

cavities, ileum,

rectum

Yes

Non-systemic—

probable

(NSP)

71 (26) Tonsil, nasal

cavities, ileum,

rectum

Yes

Non-systemic—healthy

(NSH)

90 (33) Tonsil, nasal

cavities, rectum

No

systemic site. The NSH isolates (n = 90) were recovered from 47
healthy pigs.

Whole-Genome Sequencing
The S. suis isolates were plated on phenylethyl alcohol agar
and incubated at 35◦C with 5% CO2 for 48 h. Then, DNA was
extracted using Qiagen DNeasy Blood and Tissue kit (Qiagen,
Hilden, Germany) according to the protocol provided by the
manufacturer. WGS of 294 isolates was done by HiSeqX PE150
(242 isolates) or NovaSeq6000 (36 isolates) by Genome Quebec
(Montreal, QC, Canada), and 16 isolates were sequenced using
MiSeq by the Laboratory Services at the University of Guelph
(ON, Canada).

In silico Serotyping
The S. suis sequences were typed through the pipeline
SsuisSerotyping_pipeline (34) (https://github.com/streplab/
SsuisSerotyping_pipeline). Conflicting serotype assignments for
an isolate between PCR and in silico serotyping outputs were
addressed by comparisons of the cps genes as described by Athey
et al. (34) (Supplementary Figure 1), and the synteny of the cps
loci of isolates to reference loci was visualized using easyFig (53).

Genome Assembly
WGS raw reads for each isolate were trimmed with Trimmomatic
0.39 (54) using recommended parameters for Illumina paired-
end reads with a minimum sequence length of 100 bp. The
trimmed reads were checked for sequence quality with FastQC
0.11.8 (55). The trimmed sequences were then assembled de novo
with the genome assembly program SPAdes 3.13.1 (56) with the
“—careful” flag. Assemblies with contig N50 values lower than
10,000 were excluded (N = 21, from 294 total isolates to 273 final
isolates). The quality of the assemblies was assessed using BUSCO
(57) with the Lactobacillales database to check for missing
data, duplication, and fragmentation. Furthermore, potential
contaminants were assessed by determining the identities of
contig assemblies against a bacterial genome database with
Kraken2 (58) with default parameters.

Multilocus Sequence Typing
MLST was determined using SRST2 0.2.0 (59) using the
trimmed read sets for each isolate. The S. suis MLST database
used was from PubMLST (https://pubmlst.org/) accessed in
December 2020.

Annotation and Gene Presence/Absence
The assembled genomes were annotated with Prokka 1.14.6 (60).
Annotation with Prokka used a curated local reference database
of published S. suis strains (Supplementary Table 1). The S.
suis P1/7 serotype 2 strain annotation was set as the highest
priority reference genome. The gene product labels for VAFs
within the reference sequence file input for Prokka weremanually
annotated to confirm consistency with published gene products
(61). Annotated contigs were used as inputs into ROARY 3.13.0
(62) to determine gene presence, which was used further for
downstream analyses.

Virulence-Associated Factors
The VAFs of interest in this study were putative proteins
involved in S. suis pathogenesis reviewed by Fittipaldi et al.
(40). Additionally, five VAFs found to play important roles in
the virulence of S. suis serotype 9 strains were included in the
analysis: LysM (46), EsxA (47), SrtR (48), 5′-nucleotidase (ssadS)
(49), and antigen I/II (50).

The isolates were also classified into eight different unique
genotypes based on the presence of three classical virulence genes
(mrp, sly, epf, and epf∗) mainly associated with serotype 2 (63).
The gene epf∗ is a larger variant of epf that was reported to be less
virulent in pigs (64).

Confirmation of Gene Presence
TBLASTN from the BLAST+ 2.10.1 suite (65) was used to
compare VAF gene protein sequences with all the assembled
genomes to confirm the presence of VAF genes. A gene was
considered present if a positive hit was identified with >80%
percent protein identity and >80% sequence coverage. Further
confirmations of individual genes were performed by mapping
of reads using bowtie2 2.4.1 (66) and samtools 1.11 (67) on VAF
genes of interest.

Antimicrobial Resistance
CARD’s Resistance Gene Identifier (RGI, 5.1.1) (68) software
was used to determine the presence of AMR genes using CARD
database version 3.1.0. The analysis used three models supported
by RGI, including CARD’s protein homolog models, protein
variant models, and ribosomal RNA mutation models. The cut-
off was set to include only perfect and strict paradigms. SNP
screening was not included in the analysis.

Statistical Analysis
RStudio 1.2.1335 and R 3.6.1 were used for downstream analysis,
visualization, and statistical analysis. McNemar’s test, using the
function “mcnemar.test” from the base R package, was used
to determine if there was a significant difference between the
assigned serotypes by PCR and in silico. To compare the overall
distribution patterns of VAFs between and within isolate groups
(SC, NSC, NSP, and NSH), relative frequency (RF) for each gene
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was calculated at the group level as previously described by

Weinert et al. (24). RF was defined as RF =
Fgroup
Ftotal

, where Fgroup
is the proportion of isolates carrying the gene within an isolate
group and the Ftotal is the proportion of isolates carrying the
gene out of the isolates from all four groups. An RF > 1 would
indicate a higher frequency of the gene in the group compared
with its overall frequency within the data set (all groups) and
is interpreted as gene overrepresentation within that group.
Kruskal–Wallis rank-sum test of mean relative frequencies, using
the R base function kruskal.test(), was used to compare the mean
RF of VAF genes among the isolates in two different ways—(i)
VAF RF between isolate groups and (ii) VAF RF compared with
the RF of all non-VAF genes carried by isolates within each isolate
group. The same approach was also taken in testing differences in
the distribution of AMR genes between the four isolate groups.

Fisher’s Exact Test for Count Data, using the R function
fisher.test(), was used to test whether there was a significant
difference between proportions of isolates that carried prevalent
VAF genes between isolate groups. If a gene was found to have a
significantly higher frequency in SC isolates, the potential effects
of farm and serotype in its frequency were investigated through
mixed-effect logistic regression using the “lme” function from
R package “lme4” and restricted maximum likelihood method.
The presence and absence of the gene were the outcomes of the
model with isolate groups (SC, NSC, NSP, and NSH) as predictor
variables and farm source and serotypes as random variables. The
NSH group was set as the reference for the isolate groups. The p-
values were adjusted using the base R function “p. adjust” with
the method set as “BH” (Benjamini–Hochberg procedure). The
significant effects of each random effect variable to the regression
model were determined using the “rand” function from the R
package “lmerTest.”

Non-metric multidimensional scaling (NMDS) analysis was
used to determine if the isolates from specific serotypes are
clustered based on their VAF gene profiles. Only serotypes with
a frequency >5% (2, 3, 9, 16, 29, and untypable isolates) were
included, whereas other serotypes below 5% frequency were
grouped under the category “others.” The NMDS was performed
using the function metaMDS from the “vegan” package. The
distance matrix used for the NMDS was calculated using the
Jaccard similarity index based on the presence and absence of
VAF genes in each isolate.

An association plot, using the function “assoc” fromR package
“vcd,” was used to visualize a contingency table of the presence
of AMR genes within serotypes. The formula parameter was left
at default to using Pearson’s chi-squared test of independence.
AMR genes found in less than five isolates were excluded. The
plot highlighted cases when the observed number of an AMR
gene within a serotype differed from the expected values (either
lower or higher), under the assumption that the presence of
the AMR gene was independent of serotype. Higher observed
number indicated a potential association of an AMR gene with
a serotype(s) within the entire data set. To determine if the
association of a gene to a serotype is valid, a chi-squared test
was performed on a separate AMR gene presence and absence
contingency table for said serotype.

RESULTS

In silico Serotyping
Twenty-one serotypes were identified using in silico typing
(Figure 1). The most common serotypes recovered were serotype
9 (38/273, 14%), serotype 2 (23/273, 8%), serotype 16 (16/273,

FIGURE 1 | In silico serotype of 273 S. suis isolates in four classified groups based on disease status (confirmed, probable infection, and healthy) and isolation

source. Systemic sites included blood, meninges, spleen, and lymph node. Non-systemic sites included tonsil, nasal cavities, ileum, and rectal sample.
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6%), and serotype 29 (20/273, 7%), whereas 19% (53/273)
of isolates remaining untypable. The isolates recovered from
systemic sites of confirmed cases (SC) belonged to 14 serotypes
with serotypes 2 (15%) and 9 (30%) as most prevalent, whereas
the NSH isolates consisted of 18 serotypes with serotypes 2 and
9 together accounting for only 9% of isolates. However, 27% of
isolates recovered from non-systemic sites of healthy pigs (NSH)
were untypable compared with only 8.5% of untypable isolates in
the SC group.

There were significant differences in the serotyping results
by PCR and in silico serotyping (McNermar’s test, p < 0.001,
Supplementary Figure 3). PCR and in silico serotyping assigned
the same serotype to an isolate at a rate of 72% (197/273). PCR
could not distinguish 1/2 and 2, but 92% (22/24) of those isolates
were classified into serotype 2 and 8% (2/24) as serotype 1/2
through in silico analysis. Of the remaining isolates, 6% were
assigned to a different serotype by both methods and needed
to be resolved by comparison of their cps loci to references
with confirmed serotype. In addition, the number of isolates
that were untypable by PCR was reduced by ∼41% (87 to
53 isolates) through in silico serotyping. The PCR-untypable
isolates were assigned by in silico into serotypes 2, 4, 8, 9,
15, 16, 21, 29, and 30. Most of the PCR-untypable isolates
that were reclassified were found to be serotype 9 (9%, 8/87)
and 21 (10%, 9/87).

Relative Frequency of
Virulence-Associated Factors Between
Isolate Groups
The relative frequencies of VAF genes compared with other genes
carried by S. suis isolates are shown in Figure 2. There was no
significant difference between the mean relative frequencies of
VAF genes in SC and NSC isolates [Kruskal–Wallis (KW), n =

112, p = 0.28]. However, there was an increased RF of VAF
genes in both SC isolates (KW, n = 136, p < 0.001) and in
NSC isolates (KW, n = 151, p < 0.001) compared with NSH
isolates. Interestingly, the RF of VAF genes inNSPwas also higher
compared with NSH isolates (KW, n = 161, p < 0.001) but was
not different from NSC isolates (KW, n= 161, p= 0.37).

Relative Frequency of
Virulence-Associated Factor Genes
Relative to Non-virulence-associated
Factor Genes Within Isolate Groups
There was a higher RF for VAF genes relative to other genes in
SC (KW, n = 47, p < 0.001), NSC (KW, n = 65, p < 0.001),
and NSP (KW, n= 71, p < 0.001) isolates. Conversely, there was
a significant pattern of VAF genes having lower RF and being
underrepresented in NSH isolates relative to non-VAF genes
(KW, n= 90, p < 0.001).

FIGURE 2 | Distribution of virulence-associated factor genes and other genes carried by 273 S. suis isolates. Density plots of relative frequencies of known/putative

VAF genes (red) against all other genes (gray) carried by each isolate. A relative frequency > 1 denotes a higher prevalence of gene within isolate group; (A) isolates

recovered from systemic sites of pigs with confirmed infections (SC), (B) isolates recovered from non-systemic sites of pigs with confirmed infections (NSC), (C)

isolates recovered from probable infections (NSP), (D) isolates recovered from non-systemic sites of healthy pigs (NSH).
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Frequency of Individual
Virulence-Associated Factor Genes
The frequencies of individual VAF genes in 273 S. suis isolates
in SC, NSC, NSP, and NSH are shown in Table 2 and
Supplementary Table 2. Only three VAF genes including dltA
[Fisher’s test (FT), p < 0.001], luxS (FT, p = 0.011), and troA
(FT, p = 0.019) had higher frequency in SC relative to NSH
isolates. The dltA, luxS, and troA genes were present in 89, 96,
and 96% of SC isolates, respectively, and these genes were further
investigated using mixed-effect logistic regression method with
farm and serotype as random effects (Supplementary Table 3).
The gene dltA was found to have a higher probability of being
present in SC (p < 0.001) and NSP (p= 0.010) isolates compared
with NSH isolates. Compared with NSH isolates, the gene luxS
was more likely to be present in NSP (p < 0.001) as well as in
SC (p = 0.069) and NSC (p = 0.069) but borderline significant.
Similar to luxS, the troA gene was also found to have a higher
probability of being present in NSP isolates (p = 0.006) as well
as a tendency to be increased in SC (p = 0.077) and NSC (p
= 0.077) isolates. Serotype had a significant influence on the
probability of each of the three genes being present (p < 0.001)
within the isolate groups, but only the presence of the dltA gene
was significantly influenced by the farm. Interestingly, all three
genes were carried by all SC serotype 2 and 9 isolates, but not
all NSH serotype 2 and 9 isolates carried the three genes. Of the
three genes, luxS and troA were carried by all eight NSH serotype
2 isolates, and dltA was carried by two isolates. Among the six
NSH serotype 9 isolates, 16% (1), 83% (5), and 83% (5) of isolates
were carriers of dltA, luxS, and troA, respectively. Both luxS and
troA generally had high rates of carriage by isolates regardless
of the farm the isolate was recovered from. However, dltA was
not as prevalent as luxS and troA and carried by 44% (84/190) of
isolates on two farms—where mostly serotypes 9 and 2 isolates

were recovered. Additionally, dlta had higher frequency in SC
serotype 9 (FT, p < 0.001) and serotype 2 (FT, p < 0.025) isolates
compared with their NSH counterparts.

Muramidase-Released Protein, Suilysin,
Extracellular Factor Genotypes
The mrp, sly, epf, and epf ∗ gene were carried by 24% (66),
28% (69), 10% (27), and 7% (18) of 273 isolates, respectively
(Table 3). None of the serotype 2 isolates carried epf or sly
genes. Furthermore, all the serotype 9 isolates except for one
mrp+ isolate belonged to the mrp−sly−epf− genotype. Overall,
62% (168/273) of the isolates, 58% (106/183) of SC, NSC,
and NSP isolates collectively, and 69% (62/90) of NSH isolates
belonged to themrp−sly−epf − genotype. Themrp+sly+epf+ and
mrp+sly+epf

∗
+ genotypes were only identified in 8% (21/273)

and 2% (5/273) of the isolates, respectively. Twenty-four isolates
with mrp+sly+epf+/epf

∗
+ genotypes belonged to serotypes 3, 4,

7, 11, 15, 28, 30, and 31; two untypable NSC isolates (recovered
from rectal samples) had the mrp+sly+epf+ genotype. Nine of
these 24 isolates withmrp+sly+epf+ / epf

∗
+ genotypes (serotypes

3, 7, 11, 28, and 30) were recovered from non-systemic sites of
healthy pigs (NSH).

Virulence-Associated Factor Profiles of
S. suis Serotypes
The VAF gene profiles in serotypes 2 and 9 in SC, NSC,
NSP, and NSH isolate group are demonstrated in Figure 3 and
Supplementary Figures 4, 5. Clustering analysis using NMDS of
VAF genes presence and absence data showed that most typable
isolates clustered together (Figure 4). The serotype 2, 3, 9, 16,
and 29 isolates formed their own clusters within the cluster of
typeable isolates, and there were a few divergent strains that were
mostly untypable isolates.

TABLE 2 | Distribution of individual virulence-associated factor (VAF) genes in 273 S. suis isolates in SC, NSC, NSP, and NSH groups.

VAF/genes Product Number (%) of isolates

Total

(n = 273)

SC

(n = 47)

NSC

(n = 65)

NSH

(n = 90)

NSP

(n = 71)

Ser 9

(n = 38)

Ser 2

(n = 23)

Unt

(n = 53)

AgI/II Antigen I/II 70 (26) 16 (34) 23 (35) 24 (27) 7 (10) 23 (61) 0 (0) 8 (15)

apuA Amylopullulanase 266 (97) 46 (97) 64 (98) 87 (97) 69 (97) 38 (100) 23 (100) 48 (90)

dltA* D-alanine–D-alanyl carrier

protein ligase

190 (70) 42 (89) 46 (71) 53 (59) 49 (69) 21 (55) 15 (65) 25 (47)

epf Extracellular protein factor 27 (10) 5 (11) 4 (6) 6 (7) 12 (16) 0 (0) 0 (0) 2 (4)

guaA GMP synthase 262 (96) 44 (94) 64 (98) 85 (94) 69 (97) 38 (100) 23 (100) 46 (87)

luxS* S-ribosylhomocysteine lyase 243 (89) 45 (96) 59 (91) 71 (79) 68 (96) 37 (97) 23 (100) 34 (64)

mrp Muramidase-released

protein

65 (24) 15 (32) 19 (29) 17 (19) 14 (20) 0 (0) 15 (65) 2 (4)

pgdA Peptidoglycan

N-deacetylase

245 (90) 44 (94) 60 (92) 74 (82) 67 (94) 37 (97) 23 (100) 34 (64)

sly Suilysin 77 (28) 13 (28) 20 (31) 22 (24) 22 (31) 1 (2) 0 (0) 4 (8)

troA* Metal binding lipoprotein

TroA

245 (90) 45 (96) 60 (92) 73 (81) 67 (94) 37 (97) 23 (100) 34 (64)

SC = isolates from systemic sites in pigs with confirmed infections; NSC = isolates from non-systemic sites in pigs with confirmed infections; NSP = isolates from non-systemic sites

in symptomatic pigs, which had no S. suis recovered from their systemic sites; NSH = isolates from non-systemic sites in healthy pigs; Total = SC + NSC + NSH + NSP. *Higher

frequency in SC compared with NSH (p < 0.05).
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TABLE 3 | S. suis genotypes based on classical virulence markers (40, 42–44).

Genotype Number (%) of Isolates

All (N = 273) Ser 9 (n = 38) Ser 2 (n = 23) Unt (n = 53)

T SC NSC NSP NSH SC NSC NSP NSH SC NSC NSP NSH SC NSC NSP NSH

mrp−sly−epf− 168

(62)

23

(49)

38

(58)

45

(63)

62

(69)

14

(100)

9

(100)

9

(100)

5

(83)

– 1

(50)

2

(33)

5

(50)

4

(100)

7

(78)

14

(88)

24

(100)

mrp+sly−epf− 28

(10)

11

(23)

7

(11)

4

(6)

6

(7)

– – – – 7

(100)

1

(50)

4

(67)

3

(50)

– – – –

mrp−sly+epf− 21

(8)

2

(4)

5

(8)

8

(11)

6

(7)

– – – 1

(17)

– – – – – – 2

(13)

–

mrp+sly+epf+ 21

(8)

2

(4)

4

(6)

9

(13)

6

(7)

– – – – – – – – – 2

(22)

– –

mrp−sly+epf*+ 13

(5)

4

(8)

3

(5)

1

(1)

5

(6)

– – – – – – – – – – – –

mrp+sly+epf− 11

(4)

2

(4)

6

(9)

1

(1)

2

(2)

– – – – – – – – – – – –

mrp−sly+epf+ 6

(2)

2

(4)

– 3

(4)

– – – – – – – – – – – – –

mrp+sly+epf*+ 5

(2)

– 2

(3)

– 3

(3)

– – – – – – – – – – – –

Total 273 47 65 71 90 14 9 9 6 7 2 6 8 4 9 16 24

–epf* = large variant extracellular factor protein; Ser, Serotype; Unt, Untypables; SC = isolates from systemic sites in pigs with confirmed infections; NSC = isolates from non-systemic

sites in pigs with confirmed infections; NSH = isolates from non-systemic sites in healthy pigs; NSP = isolates from non-systemic sites in symptomatic pigs, which had no S. suis

recovered from their systemic sites; Percentage in each column (per subset) is out of the total number indicated in the last row.

Of 53 different VAF genes identified in serotype 9 isolates in
the SC group, only 45 of those genes were carried by all isolates.
All except one serotype 2 isolate in the SC group carried the same
51 VAF genes. There were some VAF genes that were carried
only by serotype 2 and not serotype 9 isolates in the SC group,
which included the genes virA, srtF, sadP, ofs, neuB, mrp, and
IgA1. Similarly, srtR, rgg, lysM, fur, esxA, endoD, and AgI/II were
identified in serotype 9 isolates in the SC group but were not
found in serotype 2 isolates in the SC group.

The srtR gene was found in 13% of serotype 9 and was also
found in some isolates of 15 other different serotypes in the SC
isolate group. The gene AgI/II was only found in serotype 9 (75%,
12/16) and two serotype 29 isolates among the SC isolate but was
also found in other serotypes (9, 16, 21, 28, 29, and 30) in the
NSC and NSH isolate groups (Table 2). Interestingly, lysM and
esxA were rarely found in SC serotype 9 (5%, 1/21) and were
found in 6 (3, 7, 8, 9, 10, and 16) and 8 (3, 9, 10, 11, 15, 21,
28, and unt) serotypes, respectively, in the NSC and NSH isolate
groups. The gene ssadS was identified in isolates belonging to all
22 serotypes (87%, 238/273). Among the SC isolates, ssadS was
detected in all serotype 9 (14) and serotype 2 (7) isolates and was
also detected in 67% (4/6) and 100% (8) of NSH serotype 9 and 2
isolates, respectively.

Multilocus Sequence Typing
The serotype 2 isolates in this study were distributed among seven
different STs. All serotype 2 isolates in the SC group, one isolate
in the NSC group, and three isolates in the NSH group were
determined to be ST25, which explains their similar VAF profiles

(Supplementary Figure 6). However, the remaining serotype 2
isolates in the NSC, NSP, and NSH groups belonged to six
different STs—three isolates in the NSP group were ST28, and the
rest of the isolates from the NSC and NSH groups were assigned
to five distinct novel STs. There was only in one pig where ST25
was recovered from both systemic and non-systemic sites. In
addition, the three ST25 in the NSH isolate group were isolated
from pigs on the same farms that the SC ST25 isolates were
recovered from. The serotype 9 isolates showed higher diversity
with isolates belonging to 13 novel STs and ST621. Among the
serotype 9 isolates, 12 of 14 isolates in the SC group and 5 of
11 isolates in the NSC group belonged to one novel ST; the
remaining two isolates in the SC groupwere assigned to two other
novel STs, one NSH isolate was identified as ST621, and the rest,
along with other isolates in the NSC, NSH and NSP groups, were
spread among 12 novel STs. Five isolates sharing the same ST
among the SC and NSC groups were recovered from the same
respective pigs.

Antimicrobial Resistance
There were 38 different genes encoding resistance to 15
antibiotic drug classes detected in 273 S. suis isolates (Figure 5,
Table 4). Overall, 98% (267/273) of isolates carried at least
one AMR gene, and 79% (217/273) of isolates carried
genes associated with resistance to at least four drug classes
(Supplementary Tables 5, 6). The four major drug classes to
which resistance genes were found included tetracycline in 98%
(267/273), lincosamides in 96% (263/273), macrolide in 90%
(247/273), and streptogramin in 90% (247/273) of isolates. The
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FIGURE 3 | Virulence-associated factor gene distribution among isolates in SC, NSC, NSP, and NSH groups. Darker shades show a higher proportion of isolates of a

serotype carrying a particular gene. White indicates an absence of gene in that serotype. (A) Isolates recovered from systemic sites of pigs with confirmed infections

(SC), (B) isolates recovered from non-systemic sites of pigs with confirmed infections (NSC), (C) isolates recovered from probable cases (NSP), and (D) isolates

recovered from non-systemic sites of healthy pigs (NSH).
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FIGURE 4 | NMDS clustering based on virulence-associated factor gene

presence and absence profiles of S. suis isolates. Ordination was based on a

Jaccard distance matrix generated using VAF gene presence and absence

data. Ellipses represent clusters within a 95% confidence level for each isolate

group. Serotypes with prevalence below 5% were grouped together as “other”.

mel or IsaE gene encoding resistance to pleuromutilin antibiotics
was identified in 20% (47/273) of isolates. The genes encoding
resistance to penam and cephalosporin were detected only in
2.6% (7/273) and (1.7% (4/273), respectively.

There was no significant difference between the RF of AMR
genes carried by isolates in the SC and NSC groups (KW, n
= 112, p = 1.00). However, there was a higher RF of AMR
genes in NSH isolates compared with SC and NSC isolates,
collectively (KW, n = 202, p = 0.008). Furthermore, there were
28 AMR genes identified in NSH isolates compared with 22
AMR genes in SC and NSC isolates, collectively (Figure 5). There
were seven genes found in NSH isolates that were absent in
SC and NSC isolates, including cat (2 isolates, chloramphenicol
resistance), PEDO-3 (1 isolate, carbapenem resistance), ermG
(1 isolate, MLS), ermK (1 isolate, MLS), ceoB (1 isolate,
fluoroquinolone and aminoglycoside resistance), AAC(6′)-If (1
isolate, aminoglycoside resistance), and AAC(2′)-IIa (1 isolate,
aminoglycoside resistance). There were eight AMR genes present
in >20% of isolates (Table 5). Most of the prevalent AMR genes
had similar distributions across all four isolate groups; however,
the ermB gene encoding MLS resistance was detected in higher
frequency in SC isolates (98%) than in NSH isolates (81%) (FT,
p = 0.009). Interestingly, all the serotype 2 isolates carried genes
encoding resistance to tetracycline (tetO). Serotype 2 isolates in
the NSH group also carry other genes such as tet(W/N/W) and
tet(45) encoding tetracycline resistance.

The observed proportion of isolates that carries AMR genes
tet(45), tet(40), lsaE and ANT(6)Ia, tet(W/N/W), ermT, and tetO
was different than expected within specific serotypes (Figure 6).
The only AMR gene found to be underrepresented was tetO in
untypable isolates. The genes tet(45) and tet(W/N/W) were each
found in 2 (9%) serotype 2 isolates. The genes tet(40) and ermT
were identified in 18% (7/38) and 8% (3/38) of serotype 9 isolates.

However, most serotype 9 isolates did not carry these two genes,
and therefore, the genes are not associated with serotype 9. The
presence of lsaE was positively associated with serotype 21 [Chi-
squared (X2), p = 0.011]; however, 83% (5/6) of the serotype 21
isolates carrying lsaE were from the same farm. Similarly, the
presence of ANT(6)-Ia was positively associated with serotype 4
isolates (X2, p= 0.020), recovered from the same farm.

DISCUSSION

This study used WGS data to type S. suis isolates and examine
the association of disease status and the presence of VAF and
AMR genes in a collection of isolates recovered from sick
and healthy pigs. There are numerous VAFs reported with a
possible association with S. suis disease development (40, 45).
However, there have not been many studies that investigated the
distribution of these VAFs within a large collection of S. suis
isolates from sick and healthy pigs.

In this study, WGS data were used for serotyping S. suis
isolates using in silicomethod. The classification of S. suis isolates
is key to the development of control and prevention measures
of S. suis disease in pigs. S. suis serotyping can be done through
multiple methods, including slide co-agglutination test (29),
PCR serotyping (30–33), and in silico (34). The present study
compared PCR with in silico serotyping and found a lack of
agreement between the twomethods. The observed disagreement
was mostly attributed to the differentiation of serotypes 1/2 and
2 by in silico method, as well as serotyping of more than 40%
of PCR-untypable isolates. The inability of PCR to distinguish
between serotypes 1 and 14, and 2 and 1/2 is a result of the
high similarity within the cps gene clusters of the two pairs
of serotypes (31, 70). Furthermore, PCR fails to serotype some
strains potentially because they carry a novel cps gene cluster
or a mutant cps gene cluster (30, 71). Similar to PCR, the slide
co-agglutination test also does not distinguish between pairs of
serotypes due to shared antigenic determinants (5) and cannot
classify isolates with novel CPS (72). However, in silico serotyping
is able to distinguish between serotypes 1 and 14 and 2 and 1/2
and classified untypable strains by directly comparing serotype-
specific SNPs within the cps sequences (34). Recently, a new PCR-
based technique called mismatch amplification mutation assay
(33) has been developed targeting these SNPs to discriminate
between serotypes 1 and 14 and 2 and 1/2. Therefore, except for
untypable isolates, S. suis can now be accurately classified through
combinations of multiple PCR assays. Both PCR and in silico
typing methods are therefore a great resource when working with
high number of isolates. Additionally, in comprehensive studies,
in silico serotyping may be able to provide more information by
typing the strains that could not be serotyped by PCR or slide co-
agglutination method. It is important to keep in mind, however,
that the in silico pipeline by Athey et al. (34) may not identify all
novel isolates recovered since 2015.

There are numerous VAFs characterized and reported to play
important roles in S. suis virulence (40, 45). The present study
found a tendency for S. suis isolates recovered from sick pigs
to carry a higher number of VAF genes, which is in accordance
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FIGURE 5 | Antimicrobial resistance genes distribution in 267 S. suis isolates from SC and NSC and NSP and NSH groups. Darker shades show a higher proportion

of isolates of serotypes carrying a particular gene. White indicates an absence of gene in that serotype.

with previous analysis of frequencies of the same set of VAFs
in S. suis isolates conducted by Weinert et al. (24). Additionally,
there was no significant difference between the carriage of VAFs
by isolates from systemic and non-systemic sites of pigs with

confirmed infections. This indicates the potential of isolates
recovered from non-systemic sites to cause systemic infection.
In line with this observation, it was previously described that
some carrier piglets develop clinical signs due to dissemination
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TABLE 4 | AMR genes detected in 273 S. suis isolates in SC, NSC, NSP, and NSH groups.

Drug Class Number (%) of isolates Genes/Proteins

Total

(n = 273)

SC

(n = 47)

NSC

(n = 65)

NSP

(n = 71)

NSH

(n = 90)

Aminoglycosides 111 (41) 10 (21) 23 (35) 35 (49) 43 (48) ANT(6)-Ia, AAC(2′)-IIa, aad(6),

APH(3′)-IIIa, AAC(6′)-Ie-APH(2′′)-Ia,

amrB, AAC(6′)-If, APH(3′)-IIb,

APH(3′)-Ib, APH(2′′)-IIIa

Carbapenems 3 (<1) 1 (1) 1 (1) 0 (0) 1 (1) PEDO-3,IND-4

Diaminopyrimidines 1 (<1) 0 (0) 1 (1) 0 (0) 0 (0) dfrK

Glycopeptides 1 (<1) 0 (0) 0 (0) 1 (1) 0 (0) vanTC

Lincosamides 72 (26) 7 (15) 17 (26) 15 (21) 33 (37) lnuB, lnuC

Mupirocin 1 (<1) 0 (0) 0 (0) 1 (1) 0 (0) mupA

Nucleosides 14 (<1) 0 (0) 1 (1) 6 (8) 7 (8) SAT-4

Penams 4 (<1) 0 (0) 2 (2) 0 (0) 2 (2) mecD, AER-1

Phenicols 2 (<1) 0 (0) 0 (0) 0 (0) 2 (2) SS_cat

Tetracycline 267 (98) 47 (100) 63 (97) 70 (99) 87 (97) tetO, tet(45), tet(W/N/W), tetM, tet(L),

tet(40)

MULTIDRUG RESISTANCES

Aminoglycoside, cephalosporin,

cephamycin, penam

2 (<1) 1 (1) 0 (0) 0 (0) 1 (1) smeB

Carbapenem, cephalosporin, penam 1 (<1) 0 (0) 0 (0) 1 (1) 0 (0) CGB-1

Cephalosporin, cephamycin, penam 1 (<1) 1 (1) 0 (0) 0 (0) 0 (0) MOX-7

Fluoroquinolone, aminoglycoside 1 (<1) 0 (0) 0 (0) 0 (0) 1 (1) ceoB

Macrolide, fluoroquinolone, rifamycin 1 (<1) 0 (0) 0 (0) 1 (1) 0 (0) efrA

Macrolide; lincosamide;

streptogramin (MLS)

245 (90) 47 (100) 54 (83) 69 (97) 75 (83) ermB, ermG, ermT, ermK

MLS, tetracycline, oxazolidinone,

phenicol, pleuromutilin

57 (<1) 4 (9) 18 (28) 14 (20) 19 (21) mel, IsaE

SC = isolates from systemic sites in pigs with confirmed infections; NSC = isolates from non-systemic sites in pigs with confirmed infections; NSP = isolates from non-systemic sites

in symptomatic pigs, which had no S. suis recovered from their systemic sites; NSH = isolates from non-systemic sites in healthy pigs.

of S. suis from non-systemic sites such as tonsils and other
mucosal surfaces to systemic sites (1, 73). The higher frequency of
VAFs in NSC isolates relative to NSH isolates could indicate that
there are environmental or host-associated factors that benefit
isolates carrying these genes and, therefore, could lead to a higher
likelihood of disease development. However, as the NSH isolates
in the current study were obtained from the same farms as the
sick pigs, farm-level environmental or management factors may
be less of a factor than animal-level variations for pathogen
success. For instance, we detected ST25 strains in isolates from
healthy pigs on the same farm where ST25 strains were detected
in isolates from systemic sites of sick pigs indicating that
host- and environment-associated factors are likely involved
in disease development. Further epidemiological studies are
required before any concrete conclusions can be made.

This present study also determined that most of the individual
VAFs did not have a significant correlation with disease status
despite the higher RF of VAFs in sick animals. It is possible
that VAFs generally increase the fitness of S. suis strains and
are favored for colonization but are not necessarily causing
the illness, or it could indicate that combinations of different
VAFs can contribute to disease development. The VAF genes
with significantly higher frequencies in SC isolates in this

study were dltA, luxS, and troA. Similarly, a previous study
on virulent serotype 9 and 2 strains from Spain and Canada
also reported that dltA and luxS were present in all 30 isolates
analyzed (7). All the genes detected in higher frequencies play
key roles in environmental adaptation and survival in S. suis.
LuxS plays critical roles in quorum sensing and regulation of
expression of other VAFs (74). TroA is involved in the uptake
of manganese used by S. suis for counteracting oxidative stress
(75). The gene dltA is involved in the survival of S. suis
in blood, as it plays a role in escaping neutrophil-mediated
immune responses (76). The gene dltA has also been found to
play key roles in the virulence of other Gram-positive bacteria,
including Streptococcus agalactiae (77), Streptococcus aureus (78),
Streptococcus pyogenes (79), and Listeria monocytogenes (80).
Further studies aimed at characterizing and understanding the
specific advantages that these three VAFs provide in S. suis
pathogenesis would be useful.

The three virulence markers including mrp, epf, and sly have
previously been used as indicators of high virulence in serotype 2
strains (45). The detection of mrp in all serotype 2 isolates from
systemic sites in the current study supports the previous finding
that mrp may play a role in adherence of serotype 2 strains to
host cells and survival in the blood (41). In the present study,
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TABLE 5 | Distribution and frequency of most prevalent antimicrobial resistance genes in 273 S. suis isolates in SC, NSC, NSP, and NSH groups.

AMR Genes Drug Class Number (%) of isolates

Total

(n = 273)

SC

(n = 47)

NSC

(n = 65)

NSH

(n = 90)

NSP

(n = 71)

Ser 9

(n = 38)

Ser 2

(n = 23)

Unt

(n = 53)

ermB* Macrolide; lincosamide;

streptogramin

237

(87)

46

(98)

53

(82)

73

(81)

65

(92)

34

(89)

19

(83)

45

(85)

APH(3′)-IIIa Aminoglycosides 20

(7)

1

(2)

2

(3)

8

(9)

9

(13)

0

(0)

0

(0)

10

(19)

tet(L) Tetracycline 29

(11)

2

(4)

3

(5)

15

(17)

9

(13)

5

(13)

0

(0)

9

(17)

lnuB** Lincosamides 70

(27)

7

(15)

17

(26)

32

(36)

14

(20)

11

(29)

7

(30)

27

(51)

tetO Tetracycline 247

(91)

46

(98)

57

(88)

80

(89)

64

(90)

38

(1)

23

(100)

42

(79)

lsaE Pleuromutilin;

lincosamides;

streptogramin

38

(14)

3

(6)

14

(22)

14

(16)

7

(10)

1

(3)

1

(4)

7

(13)

tet(W/N/W) Tetracycline 27

(10)

2

(4)

8

(12)

14

(16)

3

(4)

0

(0)

8

(35)

9

(17)

ANT(6)-Ia Aminoglycosides 66

(23)

7

(15)

20

(31)

23

(26)

16

(8)

6

(16)

8

(35)

18

(34)

SC = isolates from systemic sites in pigs with confirmed infections; NSC = isolates from non-systemic sites in pigs with confirmed infections; NSH = isolates from non-systemic sites

in healthy pigs; Total = SC + NSC + NSH + NSP.

*Higher frequency in SC compared with NSH (p < 0.05).

**Higher frequency in NSH compared with SC (p < 0.05).

more than half of the isolates recovered from systemic isolates
and all serotype 9 strains from healthy and sick pigs were mrp
negative. Fittipaldi et al. (38) have also shown the absence ofmrp
in serotype 2 isolates recovered from pigs with clinical disease
from Canada and the United States. The absence of mrp was
also observed for most serotype 9 strains in sick pigs in previous
studies (69, 81). The absence of mrp in S. suis isolates recovered
from sick pigs supports the explanation that VAFsmay be favored
for their roles in colonization but not necessarily in causing
disease (82).

Similar to the current study, previous analyses of serotype
2 and 9 strains also noted rare detection or absence of epf
(7, 69, 81). Notably, none of the serotype 2 and 9 isolates in
this study carried either sly or epf, although these genes are
involved in important virulence mechanisms in S. suis. Although
not essential, SLY is very important in the invasion and survival
of S. suis in its host (83). The absence of this and other classical
markers in most isolates suggests that the virulence potential of
the S. suis isolates in this study is likely lower than isolates from
other countries such as Spain, where a higher prevalence of sly
andmrp has been reported (7). Our results mirror that of a recent
study on pathogenic indicators in S. suis in the United States—
where they have also found that these three classical markers
are not strong predictors of pathogenic S. suis isolates (84).
The absence of important VAFs in some isolates from systemic
sites in the present study may highlight that many VAFs play
similar roles (40). The presence of all three markers in isolates
recovered from healthy pigs in this study may also suggest that
important VAFs are not exclusive to pathogenesis but likely
play other essentials roles in the protection and propagation of
S. suis. Furthermore, just presence of VAFs genes may not be

sufficient to develop the disease, and it needs to be accompanied
by other factors such as farm management, diet, pig flow, pig
density, and presence of other diseases. Other factors such as host
genetics and interactions with other members of the microbiota
may also have important influences in the virulence mechanisms
of each serotype, and each may have serotype-specific genetic
determinants (85). Alternatively, it might also be possible that
these genes in healthy isolates are not expressed.

It has previously been shown that serotype 9 isolates were
generally less virulent compared with serotype 2 isolates (86, 87).
This suggests that there might also be differences in the genetic
bases of their virulence. In this study, serotype 9 and 2 isolates
from systemic sites carried additional VAFs that were distinct
from each serotype. For example, srtR and AgI/II, which were
predominantly present in SC serotype 9 isolates in this study,
have previously been reported as important VAFs in serotype
9 pathogenesis. SrtR was reported to be involved in stress
tolerance (48), and AgI/II (50) was reported to be involved in the
survival and development of systemic disease. Furthermore, in
our NMDS analysis, isolates from the most prevalent serotypes
formed clusters within a bigger cluster of typable isolates
indicating similarities in VAF genes carried among the well-
characterized serotypes despite differences in gene carriage for
individual serotypes. This supports the possibility that virulence
mechanisms of each serotype may have slight differences, but
there are not enough representative isolates within each serotype
in the current study to determine distinct sets of VAFs per
serotype. The recent increase in the prevalence of disease
caused by serotype 9 isolates globally requires more attention to
understanding the pathogenesis mechanisms that may be unique
to each serotype.
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FIGURE 6 | Association plot for presence of AMR genes in 273 S. suis isolates belonging to different serotypes. Generated using Pearson’s chi-squared test of

independence of multi-way contingency table. Shade represents a degree of departure from expected values; blue for higher and red for lower.

There was a high rate of carriage of AMR genes in S. suis
isolates in this study, and similar to previous S. suis genotypic
AMR studies globally (20, 22, 23), most of the isolates carried
genes associated with resistance to tetracycline, lincosamides,
and macrolides. Consistent with those studies, tet(O) was the
most prevalent tetracycline resistance gene detected in the S.
suis isolates. In the present study, tet(45) and tet(W/N/W)
were identified in several serotypes, including several serotype
2 isolates, which have not been previously described. However,
tetM, which was frequently associated with S. suis serotype
2 strains from patients in China and Vietnam (88, 89) was
absent in all serotype 2 strains in this study. Previous studies
have also demonstrated that clindamycin and chloramphenicol
resistance was associated with serotype 2 (90). In the present
study, none of the serotype 2 isolates carried genes associated
with chloramphenicol resistance, whereas the genes associated
with lincosamides resistance were common in all serotypes and
not just serotype 2. In this study, AMR genes were found in
higher diversity and frequency in healthy pigs compared with
isolates from sick pigs. The difference in frequency within the
S. suis collection of this study may be attributed to the higher

diversity of isolates detected within healthy pigs. The SC isolates
consisted mostly of genotypically related isolates, particularly
those of serotypes 2 and 9, with each group of related isolates
carrying a similar set of AMR genes. The presence of some AMR
genes was statistically associated with specific serotypes, but it
was more likely seen in a group of isolates recovered from pigs on
the same farm. Previous findings suggest that resistance patterns
in S. suis can vary with pig health, geographic location, serotypes,
and different farm practices such as the use of different antibiotics
(8, 10), which likely contributed to the presence of the same AMR
genes on a specific farm. Notably, in the current study, the isolates
were not evaluated for phenotypic resistance, and therefore,
further studies are needed to compare the presence of AMR genes
in S. suis isolates with confirmed phenotypic resistance.

This study has shown that in silico serotyping can improve the
classification of S. suis and its contributions in comprehensive
genomic S. suis studies. It also highlighted that the presence
of VAFs is not the sole indicator of disease development. A
large number of S. suis serotypes and the prevalence of many
of them in clinical infections globally increase the importance
of understanding the differences and, more importantly, the
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shared factors involved in the pathogenesis of each serotype—
in developing a universal solution. The results in this study
showed differences in virulence factors between serotypes, and
there is a need to expand research on the virulence mechanism
of clinically prevalent S. suis serotypes other than serotype 2 and
develop a more holistic understanding of S. suis pathogenesis.
With such considerations, a future study incorporating a much
larger global data set to investigate shared genetic determinants
and other factors should be very interesting and insightful in
efforts such as vaccine development. The high frequency of AMR
genes in this study suggests that consistent surveillance of AMR
in S. suis is crucial. Future studies on the potential mobility of
these AMR genes among S. suis and other bacterial populations
are imperative in the infection control efforts. Further research
into the distribution patterns of VAF and AMR genes may give
insight into the development of methods and guidelines for
S. suis control.
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