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The sodium channel Nav1.6, encoded by the gene SCN8A, is one of the major
voltage-gated channels in human brain. The sequences of sodium channels have been
highly conserved during evolution, and minor changes in biophysical properties can have a
major impact in vivo. Insight into the role of Nav1.6 has come from analysis of spontaneous
and induced mutations of mouse Scn8a during the past 18 years. Only within the past
year has the role of SCN8A in human disease become apparent from whole exome and
genome sequences of patients with sporadic disease. Unique features of Nav1.6 include
its contribution to persistent current, resurgent current, repetitive neuronal firing, and
subcellular localization at the axon initial segment (AIS) and nodes of Ranvier. Loss of
Nav1.6 activity results in reduced neuronal excitability, while gain-of-function mutations
can increase neuronal excitability. Mouse Scn8a (med ) mutants exhibit movement
disorders including ataxia, tremor and dystonia. Thus far, more than ten human de
novo mutations have been identified in patients with two types of disorders, epileptic
encephalopathy and intellectual disability. We review these human mutations as well as
the unique features of Nav1.6 that contribute to its role in determining neuronal excitability
in vivo. A supplemental figure illustrating the positions of amino acid residues within the
four domains and 24 transmembrane segments of Nav1.6 is provided to facilitate the
location of novel mutations within the channel protein.
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INTRODUCTION
SCN8A encodes one of the major voltage-gated sodium channels
that regulate the initiation and propagation of action potentials
in the nervous system. The sodium channel transmembrane pro-
teins were first purified 30 years ago (Hartshorne and Catterall,
1981; Tamkun and Catterall, 1981) and cDNA clones were iso-
lated shortly thereafter (Noda et al., 1986). The Scn8a gene,
encoding the sodium channel Nav1.6, was identified in 1995 by
positional cloning of the mouse neurological mutant motor end-
plate disease (med) (Burgess et al., 1995) and by isolation of a
novel sodium channel cDNA from rat brain (Schaller et al., 1995).
SCN8A is a member of the gene family comprised of nine evolu-
tionarily related sodium channels with specific roles in neurons
and in skeletal muscle and cardiac muscle (Lopreato et al., 2001;
Meisler and Kearney, 2005; Meisler et al., 2010; Zakon et al., 2011;
Zakon, 2012).

Human SCN8A was mapped to chromosome 12q13 in 1998
(Plummer et al., 1998). The role of SCN8A in human disease
was initially investigated by screening for mutations in fami-
lies segregating inherited disorders such as ataxia, dystonia, and
tremor (Trudeau et al., 2006; Sharkey et al., 2009a). These anal-
yses identified only one family with an inherited mutation of
SCN8A (Trudeau et al., 2006). Recently, the ability to sequence
the entire exome or genome from an individual patient has made
it possible to identification of de novo mutations in patients who
do not have a family history of disease (Bamshad et al., 2011;

Doherty and Bamshad, 2012; Need et al., 2012; Rauch et al.,
2012). Using this technology, more than ten mutations of SCN8A
have been described during the past year, in patients with epilep-
tic encephalopathy and intellectual disability. This rapid progress
indicates that mutations of SCN8A are a previously unrecognized
cause of these and possibly other neurological disorders. Here we
describe the recently discovered patient mutations and review the
unique features of Nav1.6 as a framework for understanding the
pathological consequences of human mutations.

MUTATIONS OF SCN8A IN PATIENTS WITH EPILEPTIC
ENCEPHALOPATHY
The first de novo mutation in SCN8A was discovered in 2012 by
whole genome sequencing of a child with an early onset, debil-
itating epileptic encephalopathy. The clinical picture included
developmental delay, features of autism, intellectual disability and
ataxia (Veeramah et al., 2012). Afebrile seizures began at 6 months
of age, and by 5 years EEG recordings detected short bursts of
frontocentrally predominant generalized spike-wave activity, and
bifrontal and multifocal spikes. Neither the parents nor an unaf-
fected sibling carried the de novo mutation, p.Asn1768Asp, that
was detected in the patient. The biophysical properties of the
mutant channel include increase in persistent sodium current,
incomplete channel inactivation, and a depolarizing shift in the
voltage dependence of steady-state fast-inactivation (Veeramah
et al., 2012). Current tracings of cells transfected with mutant
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channels reveal as much as 20% of maximal current remain-
ing after 100 ms, compared with only 1% in cells transfected
with wild-type channel (Figure 1). The elevated persistent cur-
rent increases the likelihood of premature firing of neurons
after subthreshold depolarization. Transfection of mouse hip-
pocampal neurons with the mutant cDNA resulted in increased
spontaneous and induced firing characteristic of neuronal hyper-
excitability, consistent with the dominant expression of seizures
in the heterozygous patient. Increased persistent current is also
a common feature of mutations in the channel SCN1A that
cause the epileptic encephalopathy Dravet Syndrome (Meisler and
Kearney, 2005). Increased activity of Nav1.6 has also been impli-
cated in the seizure-prone Celf4−/− mouse mutant (Sun et al.,
2013) and suggested in fibroblast-derived neurons from patients
with Dravet syndrome (Liu et al., 2013).

A second missense mutation, SCN8A-p.Leu1331Val, was iden-
tified by targeted resequencing of 65 candidate genes in 500
individuals with epileptic encephalopathy (Carvill et al., 2013).
The proband presented with epileptic encephalopathy at 18
months of age, and the mutation was inherited from a mosaic
father. Two additional mutations were identified in this study,
p.Arg662Cys and p.Arg1872Gln, but family data regarding inher-
itance was not available (Carvill et al., 2013). The mutation,
SCN8A-p.Arg223Gly, was recently identified in child that pre-
sented with epileptic encephalopathy at 6 months of age (Kovel
et al., submitted). In a screen for de novo mutations in 264
patients with infantile spasms or Lennox-Gastaut syndrome, the
SCN8A mutation p.Leu876Gln was found in a child with Lennox-
Gastaut (Epi4K Consortium and Epilepsy Phenome/Genome
Project, 2013). The locations of the epilepsy-associated mutations
are indicated in Figure 2.

MUTATIONS OF SCN8A IN INTELLECTUAL DISABILITY
In 2006, we described the heterozygous loss-of-function muta-
tion P1719RfsX1724 that segregated with cognitive deficits in a
small family (Trudeau et al., 2006). Heterozygous children in this

FIGURE 1 | Increased persistent current in SCN8A-p.Asn1768Asp

mutant channel. Wildtype and mutant cDNAs were transiently transfected
into the neuronal cell line ND7/23. At 100 ms after induction of an action
potential, cells expressing the mutant cDNA had 20% persistent current
compared with 1% in the wildtype. Cells were held at −120 mV, and a
family of step depolarizations (−80 to +60 mV in 5 mV increments) were
applied every 5 s. Insets show persistent inward currents (normalized by
maximal transient peak currents) from WT and p.Asn1768Asp channels at
the end of a 100 ms step depolarization to −80 mV (black, control) and
+20 mV (red). [reprinted from Veeramah et al. (2012), with permission].

family were enrolled in special education classes, and heterozy-
gous adults were unable to live independently. In 2012, Rauch
and colleagues sequenced the exomes of 51 individuals with severe
non-syndromic intellectual disability (Rauch et al., 2012). These
patients were offspring of healthy, non-consanguineous parents
and presented with intellectual disability, grossly normal motor
function, and lack of syndrome-specific abnormality. The de novo
missense variant p.Arg1617Gln in the voltage-sensing transmem-
brane segment of domain 4 of SCN8A was identified in one
patient (Figure 2). Four additional de novo missense mutations
in SCN8A have been discovered by exome sequencing of patients
with intellectual disability (Figure 2). The limited functional data
suggest that mutations causing increased channel activity are
associated with seizures, while heterozygous loss-of-function of
SCN8A predisposes to intellectual disability (Figure 2).

MUTATIONS OF Scn8a IN THE MOUSE
Over the past 18 years, fifteen mutant alleles of mouse Scn8a have
been characterized. These include six spontaneous mutants, eight
ENU-induced mutations, and one random transgene insertion
(Figure 3) (Meisler et al., 2004). Several of these are null muta-
tions with complete loss of Scn8a function. Homozygous null
mice exhibit motor defects at 2 weeks of age, including ataxia
and tremor, and do not survive beyond 3 weeks (Burgess et al.,
1995; Kohrman et al., 1995). Homozygosity for severe hypomor-
phic alleles such as medJ and nmf58 is viable, but results in ataxia

FIGURE 2 | Mutations of human SCN8A. The positions of twelve recently
identified mutations of SCN8A are indicated on the backbone of the channel
structure. The four homologous domains are labeled with the pore domains
in green, the voltage-sensing transmembrane segments (S4) in blue, and
the inactivation gate in red. Filled circles, mutations identified in patients
with epilepsy. Open circles, mutations identified in patients with cognitive
deficits. Unpublished mutations are shown in their approximate positions.
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FIGURE 3 | Mutations of mouse Scn8a. Fourteen allelic mutations are
shown on the channel backbone as described in Figure 2. Amino acids are
numbered according to Genbank AF049617. Filled circles, null alleles; open
circles, hypomorphic alleles.

and tremor with progression to muscle weakness and dystonia.
Homozygosity for five mildly hypomorphic alleles (medjo, jolt-
ing2J, tremorD, clth, 9J) results in tremor, ataxia and reduced
body size. These observations suggest that mutations of human
SCN8A may be found in the future in patients with move-
ment disorders. Nav1.6 is expressed at a low level in cardiac
myocytes, and null mice have prolonged cardiac action poten-
tials, suggesting a possible role in cardiac arrythmias (Noujaim
et al., 2012). Homozygous knockout of Scn8a in Purkinje cells
results in impaired learning in Morris Water Maze and eyeblink
conditioning tests (Woodruff-Pak et al., 2006).

Mice that are heterozygous for loss-of-function mutations
exhibit minor abnormalities such as spike-wave discharges sug-
gestive of absence epilepsy (Papale et al., 2009), disrupted sleep
architecture (Papale et al., 2010), and behavioral deficits including
anxiety (McKinney et al., 2008). Haploinsufficiency of Nav1.6 also
reduces susceptibility to genetic- and chemically-induced seizures
(Martin et al., 2007, 2010). Scn8amed/+ and Scn8amed−jo/+ het-
erozygotes have reduced susceptibility to flurothyl and kainic acid
induced seizures, and the combination of one mutant allele of
Scn8a with Nav1.1 heterozygous or homozygous null mice results
in extended lifespan and reduced seizure susceptibility. These
observations suggest that reduced expression of Scn8a protects
against seizures by decreasing neuronal excitability.

LOSS OF Nav1.6 REDUCES NEURONAL EXCITABILITY IN
MUTANT MICE
Direct evidence for the in vivo role of Nav1.6 has been advanced by
recordings from neurons from several different lines of Scn8a null

and conditional null mice developed in our laboratory (Burgess
et al., 1995; Levin and Meisler, 2004; Levin et al., 2006) (Table 1).
Reduced repetitive firing is consistently observed in cerebellar
Purkinje cells, granule neurons, trigeminal mesencephalic neu-
rons, and retinal ganglion cells from Scn8a mutant mice (Raman
and Bean, 1997; Raman et al., 1997; Van Wart and Matthews,
2006; Aman and Raman, 2007). Reduced persistent and resur-
gent current was observed in several types of neurons by multiple
investigators (Table 1). In addition to induced firing, sponta-
neous firing is reduced in Purkinje neurons isolated from null
mice (Khaliq et al., 2003). Overall, the work summarized in
Table 1 demonstrates that Scn8a is a key determinant of neuronal
excitability in vivo.

UNIQUE BIOPHYSICAL PROPERTIES OF Nav1.6
The role of Scn8a in regulating neuronal excitability may be
related to three properties of Nav1.6: its role in persistent and
resurgent current, its voltage dependence of activation, and its
subcellular localization at the axon initial segment (AIS), the site
of initiation of action potentials. Persistent current is a steady-
state sodium current that persists after firing and is involved in
action potential initiation at membrane voltages near the thresh-
old of firing (Crill, 1996; Smith et al., 1998; Rush et al., 2005;
Osorio et al., 2010). Persistent current is important for gener-
ation of repetitive firing in neurons such as cerebellar Purkinje
cells. In cerebellar Purkinje cells isolated from Scn8a null mice,
persistent current was reduced by 70% compared with wild-type
littermates (Raman et al., 1997). In tsA-201 kidney cells, the per-
sistent current generated by Nav1.6 is five-fold higher than that
generated by Nav1.2 (Chen et al., 2008). The differences in mag-
nitude of persistent current in different types of neurons suggests
that this property is modulated by neuron-specific factors (Rush
et al., 2005; Chen et al., 2008). Mutations that further increase
Nav1.6 persistent current result in epileptogenesis (e.g., Figure 1)
(Veeramah et al., 2012).

Resurgent current is a voltage- and time-dependent property
in which depolarization after the initial action potential elicits
a small, transient current (Hille, 2001). This rapidly reversible
form of inactivation allows neurons to fire quickly and repeti-
tively. Resurgent current is thought to contribute to spontaneous
firing and multi-peaked action potentials in cerebellar Purkinje
cells that are compromised in mutants lacking Nav1.6 (Raman
and Bean, 1997; Raman et al., 1997). The β4 sodium channel
subunit is involved in generating resurgent current in cerebel-
lar Purkinje neurons and cerebellar granule cell neurons, but the
blocking factor appears to vary by neuron type (Raman and Bean,
2001; Grieco et al., 2005; Bant and Raman, 2010).

In transfected DRG neurons, there is a 15 mV leftward shift
in voltage dependence of fast activation of Nav1.6 compared to
Nav1.2, meaning that Nav1.6 is more activated earlier during
depolarization (Rush et al., 2005). Nav1.6 is also less likely to inac-
tivate at higher stimulation frequencies (20–100 Hz) (Rush et al.,
2005). In transfected HEK-tsA-201 cells, Nav1.6 displayed a more
positive voltage dependence of slow inactivation, passing ∼10%
more current in the −35 to −25 mV range than Nav1.2 (Chen
et al., 2008). These features of Nav1.6 contribute to the positive
effect of Nav1.6 on neuronal excitability.
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Table 1 | Reduced activity of neurons from Scn8a null mice.

Neuron Mutant mouse Neuronal activity References

1 Cerebellar Purkinje cells med-tg, med Reduced repetitive firing, reduced resurgent
current (−70%), reduced transient current
(−50%)

Raman et al., 1997;
Aman and Raman, 2007

2 Cerebellar granule cells Conditional knockout Reduced persistent current, reduced firing rate Osorio et al., 2010

3 Trigeminal-mesencephalic med Reduced repetitive firing reduced resurgent
current (−40%), reduced persistent current
(−75%),

Enomoto et al., 2007

4 Retinal ganglion med-tg Reduced repetitive firing Van Wart and Matthews, 2006

5 Cerebellar nucleus med No significant changes Aman and Raman, 2007

6 DRG large and small diameter med-tg Reduced resurgent current (−100%) Cummins et al., 2005

7 Subthallamic med Reduced resurgent current, altered firing Do and Bean, 2004

8 Prefrontal cortical pyramidal med-tg Reduced resurgent current Maurice et al., 2001

9 Hippocampal CA1 med (Stock No. 003798) Reduced persistent, reduced resurgent,
significant elevation of spike threshold, altered
spike initiation, reduced spike gain

Royeck et al., 2008

10 Motor neurons med-J Reduced conduction velocity Kearney et al., 2002

11 Globus pallidus neurons med-tg Impaired pacemaking, impaired capacity for
fast spiking

Mercer et al., 2007

Nav1.6 IN THE AXON INITIAL SEGMENT
The AIS is the membrane domain at the proximal end of the
axon in which sodium channels are highly concentrated, electrical
signals from the soma and dendrites are summed, and the thresh-
old for action potential initiation is lowest (Royeck et al., 2008).
The channel composition of the AIS appears to determine the fir-
ing threshold for different types of neurons (Lorincz and Nusser,
2008). Nav1.6 is highly concentrated in the distal half of the AIS
in many neurons, including cerebellar granule cells and cerebel-
lar Purkinje cells (Van Wart and Matthews, 2006; Lorincz and
Nusser, 2008; Royeck et al., 2008). In the absence of Nav1.6, there
is relocation of Nav1.1 and Nav1.2 to occupy the distal AIS (Van
Wart and Matthews, 2006; Xiao et al., 2013). Cultured hippocam-
pal CA1 pyramidal cells from Scn8a-null mice exhibit a 5 mV
depolarizing (rightward) shift in the voltage dependence of acti-
vation, 60% reduction in persistent current, and 75% reduction in
resurgent current (Royeck et al., 2008). This combination renders
Scn8a null neurons less excitable than their wild type counter-
parts, as demonstrated by an 8 mV depolarizing shift in the spike
threshold (Royeck et al., 2008).

In cortical pyramidal neurons, action potentials initiate at
the distal part of the AIS, where sodium channel concentrations
are highest (Van Wart et al., 2007; Kole and Stuart, 2008; Kole
et al., 2008). The distal AIS in these cells contains predomi-
nantly Nav1.6, while the proximal AIS contains predominantly
Nav1.2 (Hu et al., 2009). Step-depolarizations of patched neu-
rons revealed that the activation threshold in the distal AIS
was −55 mV, while the activation threshold in the proximal AIS

closest to the soma was −43 mV (Hu et al., 2009), consistent with
a role for Nav1.6 in lowering the threshold of action potential
initiation.

Action potentials are primarily directed down the axon, away
from the soma, but backpropagation into the soma occurs at low
frequency (Hu et al., 2009). Current injection into the distal AIS
does not produce backpropagation, while current injection at the
proximal AIS leads to detectable action potentials in the soma
(Hu et al., 2009). Thus, localization of Nav1.6 to the distal AIS
is associated with a lower threshold for action potential initiation
and direction of the action potential away from the soma. Overall,
membranes containing Nav1.6 are more excitable than those con-
taining only Nav1.1 and Nav1.2, and loss of Nav1.6 results in a
higher threshold for initiation of action potentials (Van Wart and
Matthews, 2006).

MOLECULAR FEATURES OF SCN8A
The SCN8A gene is located on human chromosome 12q13.13
(Plummer et al., 1998) and mouse distal chromosome 15 (Burgess
et al., 1995). The 27 exons of SCN8A span 170 kb and encode a
protein of 1980 residues (GenBank AF050736). The location of
the amino acid residues within the 4 homologous domains and
24 transmembrane segments of Nav1.6 is shown in Figure S1.
Nav1.6 protein is concentrated ∼1,000-fold in two membrane
domains, the AIS and the nodes of Ranvier of myelinated axons
(Schaller and Caldwell, 2000; Boiko et al., 2001, 2003; Van
Wart and Matthews, 2006; Van Wart et al., 2007; Lorincz and
Nusser, 2008, 2010). Nav1.6 is also present at lower abundance in
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non-myelinated axons, neuronal soma, and dendrites (Krzemien
et al., 2000; Lorincz and Nusser, 2010). The full-length SCN8A
transcript is highly expressed throughout the brain, with concen-
tration in the cerebellum and olfactory bulb of the rat (Schaller
and Caldwell, 2000).

Transcriptional regulation of sodium channel genes is not
well characterized. The transcription start sites for Scn8a are
located in noncoding exons 70 kb upstream of the translation
initiation site (Drews et al., 2005). Exon 1c is highly conserved
through evolution and includes potential binding sites for neu-
ronal transcription factors Pou6f1/Brn5, YY1, and REST/NRSF
(Drews et al., 2007). Exon 1c and upstream sequences are suf-
ficient to drive neuron-specific expression of LacZ in transgenic
mice (Drews et al., 2007).

SCN8A contains two pairs of mutually exclusive, alternative
coding exons whose splicing regulates channel function. Exons
5N/5A and 18N/18A encode the S3–S4 transmembrane segments
of domain I and domain III, respectively (Plummer et al., 1997).
Exon 18N contains an in-frame stop codon and is only expressed
in non-neuronal cells (Plummer et al., 1997) including glia
(O’Brien et al., 2012a). The neuronal splice factors RBFOX1 and
RBFOX2 can activate inclusion of exon 18A in neurons, result-
ing in neuron-specific expression of the full length, active channel
(Gehman et al., 2012; O’Brien et al., 2012a; Zubovic et al., 2012).
Splice enhancers and silencers in exons 18A and 18N also con-
tribute to temporal and spatial regulation (Zubovic et al., 2012).
Alternative polyadenylation sites are located 4 and 6.5 kb down-
stream from the translation termination site of Scn8a, generating
full-length coding transcripts of 9 and 12 kb (Drews et al., 2005).
Transcripts with the shorter and longer 3′ UTR are equally rep-
resented in brain RNA and are not known to be associated with
specific functions.

PHARMACOLOGY OF Nav1.6
The pharmacology of compounds that target voltage-gated
sodium channels has recently been reviewed (Eijkelkamp et al.,
2012). The epileptic encephalopathies described in this review
could in principle be treated with specific inhibitors of Nav1.6.
However, the extensive sequence conservation among the neu-
ronal and muscle sodium channels has made it difficult to
develop drugs with specificity for a single channel. Two com-
pounds with preferential effects on Nav1.6 have been described.
The tetrodotoxin derivative 4,9-anhydrotetrodotoxin inactivates
Nav1.6 expressed in Xenopus oocytes at concentrations that have
minimal effects on six of the other channels (Rosker et al.,
2007). The beta-scorpion toxin Cn2 also binds Nav1.6 specifically
(Schiavon et al., 2006); this compound enhanced resurgent cur-
rent inducing a hyperpolarizing shift in voltage dependence of
channel activation in Purkinje slices, indicative of channel acti-
vation, while in HEK cells the effect was inhibitory. We have
generated a mouse model of epileptic encephalopathy carrying
the SCN8A-p.Asn1768Asp mutation that may be useful for future
evaluation of drug specificity and effectiveness in vivo.

PROTEIN INTERACTIONS OF Nav1.6
Voltage-gated sodium channels are components of large, multi-
protein complexes that vary between neurons and at specific

subcellular domains. The known sites of protein interaction with
Nav1.6 are indicated in Figure 4. The N-terminus of Nav1.6
interacts with the light chain of microtubule-associated protein
Map1b (Mtap1b), and co-transfection increases current density
in transfected cells via increased trafficking of Nav1.6 to the cell
surface (O’Brien et al., 2012b). Phosphorylation of Nav1.6 by the
stress-activated MAP kinase p38 facilitates binding of E3 ubiq-
uitin ligases and channel degradation (Sudol and Hunter, 2000;
Zarrinpar and Lim, 2000; Gasser et al., 2010). Protein kinases
PKA and PKC have only a small effect on channel activity (Chen
et al., 2008). Ankyrin G binds to the first intracellular loop of
Nav1.6 and other neuronal sodium channels (Srinivasan et al.,
1988; Davis et al., 1996; Hill et al., 2008), and is essential for
targeting and localization of Nav1.6 to nodes of Ranvier (Gasser
et al., 2012).

The intracellular fibroblast growth factors FGF11-FGF14
interact with Nav1.6 and other voltage-gated sodium channels
(Wittmack et al., 2004; Laezza et al., 2009; Shakkottai et al.,
2009; Xiao et al., 2013). FGF13 interacts with the C-terminus
in an isoform-dependent manner (Wittmack et al., 2004), which
may allow specific sub-populations of neurons to fine-tune fir-
ing properties via alternative splicing of FGF13. Fgf14 null
mice develop ataxia and ∼80% of their cerebellar Purkinje
cells lack repetitive firing (Shakkottai et al., 2009). The abun-
dance of Nav1.6 in the AIS is reduced in cerebellar Purkinje
cells from Fgf14 null mice, suggesting that FGF14 plays a key
role in the organization of a subunits in the AIS (Xiao et al.,
2013).

The sodium channel subunits β1 to β4 are small single-
transmembrane cell-adhesion molecule proteins that modulate
current and surface expression of the α subunit (Patino and Isom,
2010). Studies of mice null for the β1 subunit (Scn1b−/−) suggest
that interaction between β1 and Nav1.6 is required for function
of Nav1.6 at the distal AIS (Brackenbury et al., 2010). The β4 sub-
unit has been implicated in the generation of resurgent Nav1.6
current in Purkinje neurons (Grieco et al., 2005; Aman et al.,
2009), but resurgent current was not generated by co-transfection
of β4 and Nav1.6 in HEK cells (Chen et al., 2008; Aman et al.,
2009).

The calcium responsive protein calmodulin binds the IQ motif
located in the C-terminus of Nav1.6 (residues 1902–1912). Apo-
calmodulin accelerates inactivation and Ca2+ increases excitabil-
ity of Nav1.6 (Herzog et al., 2003). The E3 ubiquitin ligase Nedd4

FIGURE 4 | Locations of protein interactions with Nav1.6. Filled circles
represent binding sites that have been localized to specific residues of
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also binds to the C-terminus of Scn8a at a PXY motif (residues
1943–1945), and the PXpS/pTP motif in the first cytoplasmic
loop (residues 551–554) (Abriel et al., 2000; Sudol and Hunter,
2000; Fotia et al., 2004; Ingham et al., 2004; van Bemmelen
et al., 2004; Rougier et al., 2005). Both sites are necessary for
Nedd4 binding and internalization of Nav1.6 (Gasser et al., 2010).
Ubiquitination of Nav1.6 by Nedd4 is thought to target Nav1.6 for
degradation and may be part of the neuronal stress response.

These interactions are relevant to the genetics of neurologi-
cal and psychiatric disorders, since proteins that bind Nav1.6 may
be considered candidate genes for the same disorders caused by
mutations of Nav1.6. Further, common variants of the interacting
proteins may act as modifiers of the severity of SCN8A mutations
in patients (Meisler et al., 2010; Meisler and O’Brien, 2012).

CONCLUSION
Nav1.6 is a major sodium channel in human brain. The features
of Nav1.6 that influence neuronal excitability include contribu-
tions to persistent and resurgent neuronal currents, low threshold
for excitation, and concentration in the AIS. Mutations of Scn8a
in the mouse result in movement disorders including ataxia, dys-
tonia, and tremor. Within the past year, de novo mutations of
human SCN8A detected by exome sequencing have revealed a
role for Nav1.6 in epilepsy and intellectual disability. Hypoactivity
and hyperactivity of Nav1.6 are both pathogenic, but with dif-
ferent outcomes: haploinsufficiency is associated with impaired

cognition (Trudeau et al., 2006; McKinney et al., 2008; Rauch
et al., 2012) while hyperactivity can result in epilepsy (Veeramah
et al., 2012). Analysis of additional mutants in the near future
should provide insight into structure-function relationships of
Nav1.6 and the mechanisms of pathogenesis in neurological
disease.
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