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UQCRB and LBH are correlated with Gleason score progression in prostate 
cancer: Spatial transcriptomics and experimental validation☆
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A B S T R A C T

Prostate cancer (PCa) is a multifocal disease characterized by genomic and phenotypic heterogeneity within a 
single gland. In this study, Visium spatial transcriptomics (ST) analysis was applied to PCa tissues with different 
histological structures to infer the molecular events involved in Gleason score (GS) progression. The spots in 
tissue sections were classified into various groups using Principal Component Analysis (PCA) and Louvain 
clustering analysis based on transcriptome data. Anotation of the spots according to GS revealed notable simi
larities between transcriptomic profiles and histologically identifiable structures. The accuracy of macroscopic 
GS determination was bioinformatically verified through malignancy-related feature analysis, specifically 
inferred copy number variation (inferCNV), as well as developmental trajectory analyses, such as diffusion 
pseudotime (DPT) and partition-based graph abstraction (PAGA). Genes related to GS progression were identified 
from the differentially expressed genes (DEGs) through pairwise comparisons of groups along a GS gradient. The 
proteins encoded by the representative oncogenes UQCRB and LBH were found to be highly expressed in 
advanced-stage PCa tissues. Knockdown of their mRNAs significantly suppressed PCa cell proliferation and in
vasion. These findings were validated using The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) 
dataset, as well as through histological and cytological experiments. The results presented here establish a 
foundation for ST-based evaluation of GS progression and provide valuable insights into the GS progression- 
related genes UQCRB and LBH.

1. Introduction

Prostate cancer (PCa) is the most common malignancy and the 
leading cause of tumor-related mortality among men more than 50 years 
of age, with an estimated 299,010 newly diagnosed cases and 35,250 
associated deaths in the United States in 2024 [1]. Therefore, PCa rep
resents a serious health concern, and additional research is needed to 
clarify its underlying mechanism and make it possible to design defini
tive therapies.

PCa is a multifocal disease that is characterized by genomic and 
phenotypic heterogeneity within a single gland [2,3]. Recent studies 
indicate that the substantial intertumoral heterogeneity of PCa arises 
through the evolution of a monoclonal precursor [4–8] and that each 
lesion present in multifocal PCa represents a different developmental 
stage in the evolutionary process. Compared with that in primary PCa 
patients, a substantially greater percentage (19.3 % overall) of 

metastatic castration-resistant PCa (mCRPC) patients exhibit aberra
tions in homologous recombination repair-related genes such as BRCA1, 
BRCA2, and ATM [9], and aberrations of this type are linked to thera
peutic sensitivity to PARP inhibitors (olaparib) [10,11]. Therefore, 
exploration of the genetic differences among multiple PCa lesions can 
facilitate the identification of the origins of PCa and the triggers of PCa 
progression and thus may have clinical relevance.

Glandular epithelial (GE) cells, such as luminal cells and basal cells, 
are reported to be the cells of origin of PCa [12–18]. PCa cells are 
diffusely distributed in prostate tissue and form multiple foci, and 
certain regions of tissue include both tumor tissue and nonglandular 
[mainly anterior fibromuscular stroma (AFMS)] tissue. Because these 
foci lack clear visible boundaries with nontumor cells, accurately iden
tifying the gene expression patterns of GE cells is the main challenge in 
the transcriptomic analysis of PCa.

Single-cell analysis [19–24] and spatial transcriptomics (ST) [8, 
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25–27] have been used to detect drivers of PCa transdifferentiation to 
malignant stages. Although single-cell analysis provides transcriptome 
information at the cellular level, this approach does not provide infor
mation on spatial patterns and depends to a certain extent on inferences 
made via bioinformatics [28,29]. ST combines high-throughput RNA 
sequencing data with spatial dimensions [8,25–27,30] and makes it 
possible to quantify total mRNA in the spatial context of histological 
structures. Visium ST analysis offers high spatial resolution, employing 
spatial microarrays with 4992 spatially barcoded spots, each with a 
diameter of 55 μm within a capture area measuring 6.5 × 6.5 mm2 [8, 
27]. This high-resolution platform is highly effective for distinguishing 
between different histological structures by enabling precise spatial 
mapping of gene expression across tissue sections.

A fundamental prerequisite for analyzing the transcriptome-wide 
expression patterns that occur in multifocal PCa is defining criteria for 
the malignant staging of individual lesions using histological images. 
The Gleason grading system is extensively used in the pathological 
diagnosis of PCa, and it is the most reliable architectural grading system 
for evaluating disease severity; the assigned scores range from 1 to 5, 
representing well-differentiated to poorly differentiated GE cells 
[31–35]. The use of the Gleason grading system enables standardized 
risk assessment of PCa patients with different prognostic outcomes, 
exemplified by biochemical recurrence and overall survival [31,32, 
34–37]. The Gleason score (GS) is based on primary and secondary 
Gleason patterns and ranges from 1 + 1 to 5 + 5; PCa patients with GSs 
with sums ≥ 7 are considered to have aggressive disease with a high risk 
of extraprostatic extension and a poor prognosis [38,39].

In this study, Visium ST analysis was performed on PCa tissues, the 
transcriptome-wide expression patterns of different histological struc
tures of GE cells were comprehensively analyzed, and the molecular 
events involved in GS progression were inferred. We identified key genes 
that are positively associated with PCa malignancy, specifically encode 
ubiquinol–cytochrome c reductase-binding protein (UQCRB) and limb- 
bud and heart (LBH). These associations were validated using The 
Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset, 
as well as through histological and cytological experiments.

2. Materials and methods

2.1. Collection of prostate cancer (PCa) tissues

Forty-five PCa patients who underwent prostatectomy were 
recruited; their clinicopathological information is shown in Table S1. 
PCa and prostatic intraepithelial neoplasia (PIN) tissues from these pa
tients were embedded in paraffin for histological analysis. Two PCa 
tissues with GSs of 4 + 4 and 3 + 4 (obtained from Patient 2 and Patient 
1 in our previous study [27]) were subjected to Visium spatial tran
scriptome sequencing (Table S2). The extraction sites for analysis were 
determined by prostate magnetic resonance imaging (MRI) and patho
logical diagnosis of prostate needle core biopsy samples obtained before 
radical surgery. The fresh tissues were snap-frozen on dry ice, embedded 
in optimal cutting temperature (OCT) compound, and stored at − 80 ◦C 
until use.

2.2. Visium spatial transcriptomics (ST) (10x Genomics Visium)

Visium ST analysis was performed as previously described [8,27]. 
OCT-embedded tissue sections with RNA integrity numbers (RINs) ≥ 7 
were cryosectioned at a thickness of 10 µm and placed on Visium Spatial 
slide. Spatially barcoded cDNA derived from tissue sections was gener
ated using the Visium Spatial Gene Expression Slide & Reagent Kit (10 ×
Genomics, CA, USA). The tissue sections were prepared for methanol 
fixation and hematoxylin–eosin (H&E) staining and subsequently sub
jected to optimized permeabilization conditions (permeation time of 18 
min) using the Visium Spatial Tissue Optimization Slide & Reagent Kit 
(10 × Genomics). A library was constructed on the basis of the 10x 

Genomics Visium library preparation protocol and sequenced on the 
Illumina NovaSeq600 platform (Illumina, CA, USA). Splicing-aware 
alignment of the reads was performed by matching to a reference 
genome using the STAR aligner of Space Ranger (10 × Genomics).

2.3. Analysis of gene expression using OmniAnalyzer Pro

The transcriptome profiling data output from Space Ranger were 
analyzed via OmniAnalyzer Pro [Analytical BioSciences Limited (Abio
sciences), Beijing, China] as previously reported [27] to determine 
spatial gene expression patterns. OmniAnalyzer Pro is based on Scanpy 
and on the algorithms developed by Abiosciences. Following quality 
control measures such as spot filtering (with minimum count among all 
spots: 15.0, maximum count among all spots: 58,208.0, minimum 
number of detected genes per spot: 14, maximum percentage of mito
chondrial gene expression: 20.00 %), gene filtering (with minimum total 
expression count of all genes: 0.0, maximum total expression count of all 
genes: 560,533.0, minimum number of spots in which any gene is 
expressed: 0, maximum number of spots in which any gene is expressed: 
4,271), and identification of highly variable genes (HVGs) (with mini
mum mean value: 0.0125, maximum mean value: 3, minimum disper
sion: 0.5, and maximum dispersion: 1,000), the read count data were 
normalized to ensure uniform total expression across all spots. The data 
were subsequently transformed using the natural logarithm [ln (1 +
normalized value)] to increase the normality of the distribution and 
mitigate the impact of highly expressed genes. The image processing 
algorithm was applied to the capture area of the PCa section according 
to the spatial barcode information in the clean data and the reads for 
each spot.

2.3.1. Dimensionality reduction
To reduce the dimensionality of the various transcriptome features of 

PCa sections, principal component analysis (PCA) (https://scikit-learn. 
org/stable/modules/generated/sklearn.decomposition.PCA.html) was 
performed using HVGs with a minimum mean value of 0.0125, a 
maximum mean value of 3, a minimum dispersion of 0.5, and a 
maximum dispersion of 1,000. The pipeline uses a python imple
mentation of scipy.sparse.linalg ARPACK for singular value decompo
sition (SVD). Fifty components were identified from the PCA of the 
transcriptome profiling data. To visualize the data in a 2-dimensional 
space, the PCA-reduced data were subsequently passed to uniform 
manifold approximation and projection (UMAP). The spots were then 
divided into groups through Louvain clustering analysis. On the basis of 
this classification, the spots overlaid on the histological image were 
assigned different colors so that transcriptomic patterns could be 
simultaneously aligned with histological structures.

2.3.2. Inferred copy number variation (inferCNV) analysis
The acquisition of some genomic aberrations is correlated with PCa 

progression to advanced stages [4–9,40]. CNV analysis facilitates the 
prediction of clonal hierarchies and tumor malignancy [4–8,20,21]. In 
this study, somatic large-scale chromosomal CNVs were inferred via 
Python reimplementation of inferCNV using transcriptomic data from 
the ST analysis. The steps used for the inferCNV analysis were described 
previously (https://infercnvpy.readthedocs.io/en/latest/infercnv.html
). The intensity of expression of genes across positions in the whole 
genome was explored in comparison to a set of “normal” reference spots. 
Because of the absence of definite normal prostate gland cells in the PCa 
sections, we used cells with a GS of 3 + 3, which have been proposed to 
represent precancerous lesions [41,42], as a reference group because of 
their well-differentiated nature and low capacity for metastasis [43–45]. 
The CNV values of local genome fragments across 22 autosomes were 
visualized in a heatmap, and the median CNV signals in each cluster 
were illustrated in boxplots to determine the cell of origin [4–8] and 
malignancy-related features of each cluster [20,21].
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2.3.3. Diffusion pseudotime (DPT) analysis
DPT enables the reconstruction of the developmental progression of 

PCa cells in a biological process from snapshot data by illustrating 
geodesic distance along the graph [46], making it possible to identify 
branching decisions and differentiation endpoints [46]. It is imple
mented within Scanpy [47]; the computational algorithm of DPT was 
described previously [46] (https://scanpy.readthedocs.io/en/stable/ge 
nerated/scanpy.tl.dpt.html).

2.3.4. Partition-based graph abstraction (PAGA) analysis
PAGA is an extended version of DPT that reconciles clustering with 

trajectory inference through a topology-preserving map of single cells 
[48]. In ST analysis, an interpretable abstracted graph-like map (PAGA 
graph) of continuously connected and discrete disconnected spot-to-spot 
variations is generated. It consistently predicts developmental trajec
tories and gene expression changes using a transcriptomic dataset [48]. 
The relative algorithms used to obtain the PAGA were described in a 
previous study [48] (https://scanpy.readthedocs.io/en/stable/generat 
ed/scanpy.tl.paga.html).

2.3.5. Analysis of differentially expressed genes (DEGs)
DEG analysis in ST facilitates exploration of the heterogeneity of 

gene expression during the development of histological clusters. The 
DEGs in the comparisons between the specified clusters were identified 
through the Wilcoxon test, in which an absolute value of natural loga
rithm (ln) fold change (FC) (|ln FC|) > 0.1 and a Q value [the false 
discovery rate (FDR) as calculated by the Benjamini–Hochberg proced
ure] < 0.001 were used as the filtering thresholds. The distributions of 
the DEGs in various clusters were summarized and illustrated in volcano 
plots, Venn diagrams, and dot plots via OmniAnalyzer Pro and R soft
ware (4.3.1) with the “VennDiagram”, “grid”, “futile.logger”, and “for
matR” packages.

2.4. Enrichment analysis

The biological functions, signaling pathways, and diseases associated 
with the identified DEGs were identified via Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses 
using R software (4.3.1) with the “clusterProfiler” and “enrichplot” 
packages.

2.5. Bioinformatics analysis of The Cancer Genome Atlas Prostate 
Adenocarcinoma (TCGA-PRAD) dataset

The input genes were verified using the TCGA-PRAD dataset. The 
clinicopathological and follow-up phenotype files were downloaded 
from the Genomic Data Commons (GDC) Data Portal (https://portal. 
gdc.cancer.gov/) and the UCSC Xena website (https://xenabrowser. 
net/datapages/) [49]. The read count data of genes from TCGA-PRAD 
patients were transformed to transcripts per kilobase of exon model 
per million (TPM)-mapped read values, and the clinicopathological 
characteristics of the patients [GS, pathological T stage (pT), and TP53 
mutation status] were then compared via R software (4.3.1) with the 
“limma”, “reshape2”, and “ggpubr” packages. Kaplan–Meier survival 
curve analysis and Cox regression analysis were performed on the basis 
of the following prognostic outcomes: recurrence-free survival (RFS) 
and progression-free survival (PFS). The RFS and PFS data were 
extracted from the phenotype files as previously described [49,50]. 
Survival analysis was conducted via R software (4.3.1) with the “sur
vival” and “survminer” packages.

2.6. Immunohistochemistry (IHC)

Paraffin-embedded tissues were sectioned at 5 µm, subjected to an
tigen retrieval and incubated with primary antibodies against UQCRB 
and LBH and with the appropriate secondary antibodies. Information on 

these antibodies is presented in Table S3.
For statistical analysis, we selected representative files at 36.4 ×

magnification and assigned a staining intensity score (1, weak; 2, 
moderate; and 3, strong) and a staining percentage score (0, ≤ 5 % 
positive cells; 1, 6–25 % positive cells; 2, 26–50 % positive cells; 3, 
51–75 % positive cells; and 4, ≥ 76 % positive cells); we then calculated 
the staining index (SI, staining intensity score × staining percentage 
score) as previously described [51,52].

2.7. Cytological analysis

2.7.1. Cell culture
The C4–2, DU145, and PC3 cell lines [American Type Culture 

Collection (ATCC), Rockville, MD, USA] were cultured in RPMI-1640 or 
DMEM (Gibco, Grand Island, NY, USA) supplemented with 10 % fetal 
bovine serum (FBS) (HyClone, South Logan, UT, USA) and 1 % 
antibiotic-antimycotic (AA) (Gibco, Grand Island, NY, USA) in a hu
midified atmosphere at 37 ◦C and 5 % CO2.

2.7.2. Gene regulation in PCa cell lines
To stably knockdown the expression of UQCRB and LBH, PCa cells 

were infected with lentiviruses harboring short hairpin RNA (shRNA) 
sequences (GENECHEM, Shanghai, China) targeting specific genes in 
combination with 5 μg/ml polybrene and subsequently selected with 
1–2 μg/ml puromycin. The sequences of the shRNAs are shown in 
Table S4.

2.7.3. Reverse transcription (RT) and real-time quantitative polymerase 
chain reaction (qPCR) analysis

TRIzol™ reagent (Invitrogen, Carlsbad, CA, USA) was used to isolate 
total RNA. Complementary DNA (cDNA) synthesis and qPCR were 
conducted using One-Step gDNA Removal and cDNA Synthesis Super
Mix (TransGen Biotech, Beijing, China) with anchored oligo (dT) 
primers and Top Green qPCR SuperMix (TransGen Biotech) on an SDS 
7500 FAST Real-Time PCR system (Applied Biosystems, Foster City, CA, 
USA). Endogenous reference genes, such as GAPDH and 18S ribosomal 
RNA, were used for normalization. The sequences of primers used for the 
related genes are shown in Supplementary Table S5.

2.7.4. Cell viability assay
Cell Counting Kit-8 (CCK-8) [MedChemExpress (MCE), Monmouth 

Junction, NJ, USA] assay was used to determine cell viability according 
to the manufacturer’s instructions. A total of 2 × 103 cells were seeded in 
96-well plates, and cell viability was assessed at 48 h, 72 h, and 96 h.

2.7.5. Colony formation assay
A total of 2 × 103 cells per well were evenly seeded and cultured in 6- 

well plates for 2 weeks. The resulting colonies were stained with a 0.01 
% crystal violet solution (Beyotime, Shanghai, China) and fully 
decolorized.

2.7.6. Transwell invasion assay
Cell invasion was measured using Transwell chambers (Corning, NY, 

USA). A mixture of 20 % FBS in 500 μl of medium was added to the lower 
chamber to induce cell invasion. A total of 5 × 104 cells in serum-free 
medium were seeded in the upper chamber, the upper membrane of 
which was coated with Matrigel (BD Biosciences, San Jose, CA, USA). 
The cells were then incubated in the chambers for 2 days; unattached 
cells on the upper surface of the Transwell membranes were removed, 
and the remaining cells were stained with a 0.01 % crystal violet solu
tion (Beyotime, Shanghai, China).

2.8. Statistical analysis

Statistical analysis was conducted using OmniAnalyzer Pro, R 
(4.0.3), SPSS version 23 (IBM, Armonk, New York, USA), GraphPad 
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Prism 9.0.0 (GraphPad Software, La Jolla, CA, USA), and Microsoft Excel 
2019 (Microsoft Corp., Redmond, WA, USA). The Wilcoxon test, the 
Mann–Whitney U test, or Student’s t test with P- or Q-value calculations 
was used to analyze continuous data for comparisons between two 
groups. The Kruskal–Wallis test or one-way or two-way analysis of 
variance (ANOVA) followed by post hoc tests (Tukey’s test or Dunn’s 
multiple comparison test) was used to analyze continuous data for 
comparisons among ≥ 3 groups. Survival analysis was performed using 
Kaplan–Meier curves with the log-rank test and univariate Cox 
regression models with hazard ratios (HRs). P- or Q-values < 0.05 
indicated statistical significance.

3. Results

3.1. Study workflow

Visium ST analysis was performed on PCa tissues collected from 
patients (Fig. 1A). On the basis of the transcriptomic data obtained from 
the ST procedure, the spots were dimensionally reduced and classified 
into groups through PCA and Louvain clustering analysis. These groups 
were then annotated to various GSs for GE tissues and AFMS tissues 
(Fig. 1B-C). Subsequently, inferCNV, DPT, and PAGA analyses were 
conducted to assess the malignancy and developmental trajectories of 
the different histological clusters (Fig. 1D-E). Genes related to GS pro
gression were identified through DEG analysis by comparing the groups 
along a GS gradient (Fig. 1F). GO and KEGG enrichment analyses of the 
identified genes were performed to evaluate their biological functions 
during GS progression (Fig. 1G). The genes were further verified and 
screened using the TCGA-PRAD dataset (Fig. 1H). Finally, the selected 
genes, UQCRB and LBH, were validated through histological and cyto
logical analyses (Fig. 1I).

3.2. Transcriptomic heterogeneity of PCa tissue

GS heterogeneity is evident in multifocal PCa [53]. In the 
H&E-stained image of a selected PCa section (patient 2), we annotated 
the regions with GSs of 3 + 3, 5 + 4, (5 + 5)_1, and (5 + 5)_2 (Fig. 2A). 
The tissue sections were then classified into various groups through PCA 
and Louvain clustering analysis according to the transcriptome infor
mation. Overlaying the classified spots on the histological image 
revealed a notable correlation between the transcriptomic profiles and 
the histologically identifiable structures (Fig. 2B). Regions with a GS of 
3 + 3 have been proposed to represent precancerous lesions [41,42]
because of their good differentiation and low capacity for metastasis 
[43–45]. InferCNV analysis was performed using GS (3 + 3) as a refer
ence group, allowing the identification of clonal hierarchies and the 
degree of tumor malignancy [4–8,20,21]. The median inferCNV scores 
were estimated and found to be higher in regions with high GSs, i.e., GS 
(5 + 4), GS (5 + 5)_1, and GS (5 + 5)_2, than for the regions GS (3 + 3) 
(Fig. 2C). In the unsupervised hierarchical clustering analysis, the GS 
(5 + 5)_1 and GS (5 + 5)_2 groups were clustered together adjacent to 
the GS (5 + 4) group (Fig. 2D), indicating their similarity and mono
clonal origin.

3.3. Spatial transcriptome-wide expression patterns during GS progression

We then performed DPT and PAGA analyses to reconstruct the 
developmental trajectories of the classified clusters. The geodesic dis
tances of these clusters along the graph illustrate GS progression (from 
low to high). We also found that highly aggressive tumors in the GSs of 
5 + 4 and 5 + 5 groups were densely distributed and that they displayed 
a certain separation from those in the GS (3 + 3) group (Fig. 3A-B).

To investigate the molecular basis of GS progression, we analyzed 
DEGs among the comparisons of the following groups: GS (5 + 5)_1 vs. 
GS (5 + 4), GS (5 + 5)_2 vs. GS (5 + 4), and GS (5 + 4) vs. GS (3 + 3) 

Fig. 1. Study workflow. (A) Visium spatial transcriptome sequencing was performed using PCa tissues on the Visium Spatial Slide. The spatial microarrays contained 
4992 spatially barcoded spots, each with a diameter of 55 µm, in capture areas measuring 6.5 × 6.5 mm2. (B) The full transcriptome of each spot was captured via the 
Visium ST procedure. (C) The spots were divided into subgroups through PCA and Louvain clustering analysis. These subgroups were annotated to various GS or 
AFMS tissues on the basis of their histological structures. (D-E) The malignancy and developmental trajectories of the different histological clusters were assessed via 
inferCNV (D), DPT and PAGA (E) analyses. (F-G) Genes related to GS progression were identified through DEG analysis (F) and subsequently subjected to enrichment 
analyses (G) to evaluate their biological functions during GS progression. (H) The DEGs were verified and further screened using the TCGA-PRAD dataset. (I) The 
selected genes UQCRB and LBH were investigated through histological and cytological analyses.
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(Fig. 3C). This gradient of comparisons of GSs (from high to low) led to 
the identification of 63 genes (including JUN, KLK12, and NPY) that 
were positively associated with GS progression and 26 genes that were 
negatively associated with it (these genes had |ln FC| > 0.1 and Q values 
< 0.001 in the Wilcoxon test) (Fig. 3D-E).

We subsequently performed GO and KEGG enrichment analyses of 
the 89 genes to evaluate their biological functions during GS progres
sion. The most frequently enriched biological functions associated with 
these genes were immune-like metabolic processes, especially antigen 
processing and presentation (Fig. 3F).

3.4. LBH expression was positively associated with GS progression in 
Patient 2 and Patient 1

The same process used to analyze the tissue obtained from Patient 2 
was used to analyze the PCa tissue obtained from Patient 1. According to 
the pathological diagnosis after radical prostatectomy, the GS for Patient 
1 was 3 + 4 (Table S2); the tissue sample was further classified into 
histologically identifiable structures that were marked GSs of 3 + 3, 
3 + 4, and 4 + 3 through PCA and Louvain clustering analysis. The 
numbers of genes whose expression was simultaneously upregulated or 
downregulated during GS progression are listed (Fig. 4A). Only the LBH 
gene was found to be upregulated during GS progression in both Patient 
2 and Patient 1, suggesting that there is individual specificity of gene 
expression during GS progression in different patients (Fig. 4A).

3.5. Verification of GS progression-associated genes using the TCGA- 
PRAD dataset

We evaluated the 89 intersecting genes and identified 86 genes via 

genomic alignment of the TCGA-PRAD cohort, and we examined how 
the expression of these genes correlated with various clinicopathological 
characteristics of TCGA-PRAD patients. In the comparisons of tumor vs. 
normal tissues, GS > 7 regions vs. GS < 7 regions, and pathological T3 
(pT3) tissues vs. pT2 tissues, 61, 39, and 42 genes, respectively 
(including CRISP3, LBH, NPY, and UQCRB), were significantly differ
entially expressed (P < 0.05 in the Wilcoxon test) (Tables S6-S8). In 
PCa, TP53 mutation has been associated with shorter radiographic PFS, 
tumor metastasis, and time to CRPC [54]. In the comparison between 
the TP53 mutation group and the wild-type group of TCGA-PARD pa
tients, 24 genes were significantly differentially expressed (Table S9).

The prognostic impacts of the changes in the expression of the 86 
identified genes were evaluated through survival analysis. The TCGA- 
PRAD patients were divided into two groups according to the opti
mum threshold segmentation of gene expression, which was determined 
according to the lowest log-rank P value in the Kaplan− Meier analysis. 
The results revealed that 17 genes were significantly associated with RFS 
and that 17 genes were significantly associated with PFS (P value < 0.05 
in the Cox regression analysis); 13 and 12 of these genes, respectively 
(including CNKSR3, LSM8, and PPFIA2), were linked to a poor prognosis 
(HR > 1 and P value < 0.05 in the Cox regression analysis) (Tables S10 
and S11).

We subsequently analyzed the simultaneously dysregulated genes 
identified in the above comparisons (P < 0.05 according to the Wil
coxon test or Cox regression analysis) (Fig. 4B and Table S12). The re
sults revealed that genes such as CNKSR3, LSM8, UQCRB, and LBH were 
commonly upregulated as GS increased [from GS (3 + 3) to GS (5 + 5)] 
in the ST analysis and in advanced stages of the disease (in comparisons 
of tumor vs. normal tissues, GS > 7 vs. GS < 7, pT3 vs. pT2, TP53 mu
tation vs. wild-type, and HR > 1 in the RFS and PFS analysis in the 

Fig. 2. Transcriptomic heterogeneity of PCa tissue. (A) Four different histologically identifiable lesions within H&E-stained PCa sections were enlarged and an
notated with GSs of 3 + 3, 5 + 4, (5 + 5)_1, and (5 + 5)_2. (B) PCa sections were classified into various groups through PCA and Louvain clustering analysis and 
visualized via UMAP (left). The spots observed on the histological images were annotated as GE or AFMS tissues (right). (C) An inferCNV analysis was conducted, and 
the inferCNV scores for GE clusters are presented in a boxplot. The median CNV scores for individual GE clusters are marked in red, while the first and third quartiles 
are indicated in black. (D) The chromosomal landscape of inferCNV values for each cluster is shown in a heatmap. The unsupervised hierarchical clustering is shown 
on the right vertical axis.
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TCGA-PRAD dataset) (Fig. 4B-E, Fig. 5A, and Table S12). We also found 
different expression tendencies of some genes (represented by REPS2, 
AEBP1, C1QA, and C1QB) during GS progression in the ST analysis and 
in advanced stages in the TCGA-PRAD dataset. This discrepancy may be 
attributed to the histological atypia of tumor tissues extracted from 
patients with multifocal PCa, resulting in discordance between the 
transcriptome information and the actual pathological diagnosis re
ported in the TCGA-PRAD dataset.

We selected UQCRB and LBH for further verification through histo
logical and cytological experiments, as antibodies to the UQCRB and 
LBH proteins that can be used in IHC are commercially available. Bubble 
plots of gene expression, spatial activity maps, and PAGA graphs of the 
expression of the two genes in samples with different GSs revealed a 
pattern of gradual upregulation of their expression during GS progres
sion (Fig. 5A-C).

3.6. The UQCRB and LBH proteins are highly expressed in advanced- 
stage PCa tissues

The expression levels of the proteins encoded by UQCRB and LBH 
genes in prostatic intraepithelial neoplasia (PIN) and PCa tissues were 
assessed through IHC. Representative IHC images revealed that the 
expression of UQCRB and LBH proteins increased gradually during GS 
progression [from GS (3 + 3) to GS (5 + 4)] (Fig. 6A). The percentages 
of stained cells and the staining indices for UQCRB and LBH proteins 
were quantified in PCa tissues with different GSs (GS < 7, GS = 7, and GS 
> 7) and different pTs [pT2, pT3a and pT3b (pT3a/b), and pT4]. The 
results indicated that the expression of both proteins was positively 
associated with GS and pT progression (Fig. 6B).

3.7. Knockdown of UQCRB and LBH mRNAs suppresses PCa cell 
proliferation and invasion

To evaluate the effects of UQCRB and LBH gene expression on cell 
viability, we conducted cytological analyses using C4–2, DU145, and 
PC3 cells. UQCRB and LBH were knocked down in these cell lines, and 
the knockdown efficiency was assessed through qPCR analysis 
(Figs. S1A-B). The results of the CCK-8, colony formation, and Transwell 
assays indicated that downregulation of UQCRB and LBH expression 
significantly suppressed the proliferation and invasion of PCa cell lines 
(Fig. 7A-C).

4. Discussion

PCa cells are diffusely distributed and form multiple foci in prostate 
tissue. PCa most commonly originates from basal or luminal cells of the 
GE and is surrounded by nonglandular tissues, mainly AFMS [12–18]. 
For this reason, it is difficult to distinguish PCa tissues through visual 
assessment, making pathological diagnosis and sequencing analysis 
challenging.

Visium ST technology makes it possible to quantify the entire tran
scriptome at high spatial resolution; it can be used to precisely deter
mine the gene expression patterns in specific histological structures and 
is therefore particularly appropriate for analyzing multifocal PCa.

Few studies have focused on the ST analysis of PCa [8,25–27]. Ber
glund et al. published spatial maps of PCa transcriptomes in different 
histological structures [25]. However, they used conventional 
low-resolution ST (spatial microarrays with 1007 spots); thus, it was 
difficult to precisely determine the histological structures and cell fea
tures [25]. Erickson et al. observed gene copy number alterations during 
PCa progression through Visium ST analysis. Their work focused on 

Fig. 3. Spatial transcriptome-wide expression patterns during GS progression. (A) DPT analysis was performed, and appropriate coordinates of the GE clusters of 
different GSs were constructed (top). A diffusion map of dpt_pseudotime (bottom) was used to infer the developmental path. (B) The GS developmental trajectories 
were inferred through PAGA analysis and are illustrated as a static PAGA plot in which the GE subclusters (left) and each spot (right) are retained. (C) The DEGs in the 
comparisons among GS (5 + 5)_1 vs. GS (5 + 4), GS (5 + 5)_2 vs. GS (5 + 4), and GS (5 + 4) vs. GS (3 + 3) were visualized via volcano plots. Crucial DEGs (including 
UQCRB and LBH) are highlighted in these plots. (D) The numbers of genes that were significantly and simultaneously upregulated (left) or downregulated (right) in 
the above comparisons are shown in Venn diagrams. (E) The average expression patterns of these genes in each GS subcluster are shown in a bubble plot. (F) The 
intersecting genes were subjected to GO (up) and KEGG (down) enrichment analyses and are shown in dot plots. BP: biological process; CC: cellular component; MF: 
molecular function.
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genome integrity during tumor evolution and did not include analysis of 
transcriptome-wide expression patterns [8]. Watanabe et al. performed 
Visium CytAssist ST analysis and revealed the gene expression patterns 
of neuroendocrine prostate carcinoma (NEPC) [26]. However, their 
study screened DEGs between androgen receptor pathway-positive 
prostate carcinoma (ARPC) and NEPC without elucidating the devel
opmental trajectories from ARPC to NEPC [26]. We also previously 
analyzed the transcriptome-wide expression patterns of PCa lesions with 
different GSs through Visium ST analysis [27]; PCA was performed on 
the whole genome, but the screened GS progression-related genes were 
not validated through histological experiments [27].

To analyze the transcriptome-wide expression patterns that occur 
during the evolutionary process, it is important to determine the cell 
origin and the relationships among disparate lesions within the same 
gland. Acquired specific genetic changes have been reported to accu
mulate during the progression of PCa to advanced stages [4–9,40]. 
While such additional genomic instabilities trigger the formation of 
distinct subclonal phenotypes, they are distinct from the dominant 
conserved genomic alterations that are necessarily shared by all lesions. 
High-resolution genome-wide analysis has shown that separate foci from 
the same patient always trace to a single genomically aberrant PCa cell 
whose macrogenomic CNV values stably replicate with each cell division 
[4,5,8], suggesting that multifocal PCa has a monoclonal origin [4–8].

On the basis of the above theory, we consider that the multiple le
sions present in multifocal PCa represent relative developmental stages 
that evolve from the same initial PCa precursor. A previous study using 
ST analysis on PCa tissue sections revealed that PCA based on the 500 
most variable genes clearly distinguished the different histological 
structures in PCa [25,27]. In the PCA conducted in our study, we used 

HVGs rather than all genes, as in our previous study [27]. HVGs exhibit 
highly dynamic patterns of expression across several biological condi
tions, and these patterns enable the precise identification of different 
histological structures [55]. Consistent with our expectations, the clas
sified subgroups overlaid on H&E-stained histological images closely 
mirrored structures with GSs of 3 + 3, 5 + 4, and 5 + 5.

We subsequently assessed the reliability of the PCA-determined 
histological characteristics through bioinformatic analysis. The 
average inferCNV value was used as the criterion for identifying ma
lignant stages of PCa [20,21]. We found that the median inferCNV value 
was significantly greater for aggressive lesions with GSs of 5 + 4 and 
5 + 5 than for lesions with GS (3 + 3), a finding that confirms the ac
curacy of macroscopically identified GS when verified through malig
nant criteria. The nearest clonal hierarchies of lesions whose GSs 
indicated aggressiveness in the inferCNV clustering analysis provided 
additional evidence of their histological similarities and monoclonal 
origin. We then evaluated the biological processes associated with the 
identified subgroups by predicting their developmental trajectories 
through DPT and PAGA analyses. The geodesic distances along the 
graph illustrated that the progression patterns of the classified GE re
gions matched those of the GS regions. The results of all these analyses 
confirmed the agreement between the results of visual assessment of 
histological structures and transcriptome-wide expression pattern 
analysis.

After preliminarily defining our annotated GS clusters as groups of 
lesions representing tumors that exhibit different degrees of malignancy 
and are at different stages of progression, we performed pairwise com
parisons of groups along a GS gradient to investigate GS progression- 
related genes. We discovered 89 DEGs that were dysregulated during 

Fig. 4. Verification of GS progression-associated genes using the TCGA-PRAD dataset. (A) The numbers of genes that were significantly upregulated (top) or 
downregulated (bottom) during GS progression in Patient 2 and Patient 1 are shown in Venn diagrams. LBH gene expression was upregulated during GS progression 
in both patients. (B) The 86 genes screened by ST analysis were verified through comparisons of tumor vs. normal, GS > 7 vs. GS < 7, pT3 vs. pT2, and TP53 mutation 
vs. wild-type tissues, and survival analysis (RFS and PFS) in the TCGA-PRAD dataset. The numbers of dysregulated genes in these comparisons are shown in a Venn 
diagram. Representative commonly dysregulated genes (CNKSR3, LSM8, UQCRB, and LBH) are shown in the corresponding regions. (C-D) Distributions of the 4 
genes in the comparisons of tumor tissue vs. normal tissue (C) and tissues with various GSs (GS < 7 vs. GS = 7 vs. GS > 7) (top of D) and pT stages (pT2 vs. pT3 vs. 
pT4) (bottom of D) are shown in boxplots. Each box represents the median ± interquartile range. The P value obtained via the Wilcoxon test is shown. (E) 
Kaplan− Meier survival analysis of RFS (top) and PFS (bottom) was performed for patients grouped according to the optimum cutoff value for each gene (lowest log- 
rank P value). The Kaplan− Meier survival curves with log-rank P values and the number of patients at risk are shown in the graph.
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GS progression and found that these genes were enriched in immune- 
like metabolic processes such as antigen processing and presentation. 
Recent studies have shown that the immune checkpoint molecule B7-H3 
(CD276) is correlated with GS progression and poor outcomes in pros
tatectomy cohorts [56] and is a potential therapeutic target in advanced 
PCa [57,58]. However, arguably due to the presence of immunosup
pressive mechanisms [24,59–61], the efficacy of immune checkpoint 
inhibitor monotherapy is still controversial [62]. Therefore, novel 
therapeutic targets need to be identified through further study of GS 
progression-related genes.

By verifying the associations of the identified 86 DEGs with clini
copathological parameters and prognosis in the TCGA-PRAD dataset, we 
found that genes such as CNKSR3, LSM8, UQCRB, and LBH were 
commonly and consistently upregulated during progression to advanced 
stages in both the ST analysis and the TCGA-PRAD dataset analysis. The 
changes in the expression of UQCRB and LBH were particularly appro
priate for histological and cytological verification because of the feasi
bility of antibody acquisition and RNA interference. Further 

experiments confirmed a progressive increase in the expression of the 
proteins encoded by UQCRB and LBH as GS and pT stage advanced, as 
well as the suppressive effects of mRNA knockdown of these genes on 
PCa cell proliferation and invasion.

UQCRB is a functional nuclear gene that encodes a 13.3-kDa subunit 
of mitochondrial complex III [63]. To our knowledge, no study has 
elucidated the role of UQCRB in PCa. In breast and colon cancer cells, 
silencing UQCRB expression reversed the epithelial–mesenchymal 
transition (EMT) and autophagic flux by blocking the production of 
mitochondrial reactive oxygen species (ROS) [64,65]. In glioblastoma 
stem‑like cells, knockdown of UQCRB significantly inhibited cancer 
stem cell-like phenotypes, as well as the expression of stemness markers, 
by blocking the mitochondrial ROS/HIF‑1α/c‑Met pathway [66]. A 
study revealed that mitochondrial UQCRB positively regulates VEGFR2 
signaling in endothelial cells (ECs) and that the UQCRB-targeting agent 
terpestacin could be applied in new therapeutic approaches for human 
cancer [67].

LBH is a highly conserved and novel transcription cofactor that plays 

Fig. 5. Expression patterns of UQCRB and LBH during GS progression. (A) The expression patterns of four genes (CNKSR3, LSM8, UQCRB, and LBH) are shown in a 
bubble plot. (B) The expression levels of UQCRB and LBH are shown in spatial activity maps. (C) The distribution and expression levels of UQCRB and LBH are shown 
in PAGA plots based on the GE subclusters (left) and spots (right).
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important roles in heart and limb development in vertebrates [68]. LBH 
is dysregulated by DNA hypomethylation, and its expression is corre
lated with WNT activation in multiple cancers [69,70]; LBH expression 
also indicates a poor prognosis and promotes gastric cancer cell prolif
eration and invasion by activating the integrin/FAK/Akt pathway [71]. 
In triple-negative [ER (-), PR (-), and HER2 (-)] breast cancer (TNBC) 
cells, blocking LBH expression disrupts genome integrity by inducing 
replicative stress and activating the ATR/CHK1 DNA damage response 
pathway [72]. In human glioma, LBH promotes angiogenesis via 
VEGFA-mediated ERK signaling under hypoxia; this process is tran
scriptionally regulated by HIF-1 and results in a self-reinforcing cycle 
[73]. However, LBH is reported to inhibit cell proliferation and invasion 

in nasopharyngeal carcinoma by inducing G1/S cell cycle arrest and 
downregulating αB-crystallin expression [74,75]. Therefore, owing to 
the various functions of LBH in different cancers, further studies are 
needed to clarify its role in the development of PCa.

Several limitations of this study need to be addressed in future in
vestigations. First, most of the genes identified in the ST analysis in this 
study were derived from one PCa patient, which is a potential source of 
error due to individual heterogeneity. Second, the identification of two 
distinct GS (5 + 5) clusters with different transcriptome expression 
patterns suggests that relying solely on visual GS classification may have 
limited value due to the inherent imperfections of histological classifi
cation. The optimal analysis requires precisely categorizing PCa sections 

Fig. 6. Expression patterns of UQCRB and LBH proteins in PCa tissues stratified by various clinicopathological features, i.e., GS and pT stage. (A) Representative 
images showing IHC staining for UQCRB (left) and LBH (right) proteins in PCa tissues with PIN and different GSs [GS (3 + 3), GS (3 + 4), GS (4 + 4), and GS (5 + 4)]. 
(B) Quantitative analysis of the staining percentage and staining index of regions with various GSs (top) and at various pT stages (bottom) are shown in the his
tograms. The mean ± standard error of the mean (SEM) is shown in each column. ns, P > 0.05; * , P < 0.05; * *, P < 0.01; * ** , P < 0.001.

Fig. 7. Knockdown of UQCRB and LBH mRNAs suppresses PCa cell proliferation and invasion. (A-C) UQCRB and LBH were knocked down in C4–2, DU145, and PC3 
cells via lentiviral transduction. CCK-8 (A), colony formation (B), and Transwell (C) assays were conducted to assess PCa cell proliferation and invasion. Ctrl, the 
parental cells; sh_NC, negative control cells; sh_UQCRB or sh_LBH, UQCRB or LBH stably downregulated cells.
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based solely on their Gleason grades (e.g., Gleason pattern 3 to Gleason 
pattern 5), a task that is challenging to accomplish. Finally, further 
research is needed to clarify the roles of the identified genes (such as 
UQCRB and LBH) in the molecular mechanisms and signaling pathways 
that are active during GS progression in PCa.

5. Conclusions

In this study, we analyzed the transcriptome-wide expression pat
terns of GE cells with different GSs using Visium ST technology. Diverse 
histological structures corresponding to different GSs were observed 
across spots subgrouped through PCA and Louvain clustering analysis, 
alongside bioinformatics analysis linked to their respective malignant 
developmental stages. We discovered crucial oncogenes, two of which 
are UQCRB and LBH, whose expression gradually increased during GS 
progression; the carcinogenic properties of these genes were verified 
using the TCGA-PRAD dataset, as well as through histological and 
cytological experiments. In summary, the results of this PCa spatial 
analysis establish a foundation for ST-based studies of GS progression 
and provide valuable insights into the GS progression-related genes 
UQCRB and LBH.
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[32] Vis AN, Roemeling S, Kranse R, Schröder FH, van der Kwast TH. Should we replace 
the Gleason score with the amount of high-grade prostate cancer? Eur Urol 2007; 
51:931–9. https://doi.org/10.1016/j.eururo.2006.07.051.

[33] Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep 1966; 
50:125–8.

[34] Andrén O, Fall K, Franzén L, Andersson SO, Johansson JE, Rubin MA. How well 
does the Gleason score predict prostate cancer death? A 20-year followup of a 
population based cohort in Sweden. J Urol 2006;175:1337–40. https://doi.org/ 
10.1016/s0022-5347(05)00734-2.

[35] Egevad L, Granfors T, Karlberg L, Bergh A, Stattin P. Prognostic value of the 
Gleason score in prostate cancer. BJU Int 2002;89:538–42. https://doi.org/ 
10.1046/j.1464-410x.2002.02669.x.

[36] Dong F, Wang C, Farris AB, Wu S, Lee H, Olumi AF, et al. Impact on the clinical 
outcome of prostate cancer by the 2005 international society of urological 
pathology modified Gleason grading system. Am J Surg Pathol 2012;36:838–43. 
https://doi.org/10.1097/PAS.0b013e3182486faf.

[37] Popiolek M, Rider JR, Andrén O, Andersson SO, Holmberg L, Adami HO, et al. 
Natural history of early, localized prostate cancer: a final report from three decades 
of follow-up. Eur Urol 2013;63:428–35. https://doi.org/10.1016/j. 
eururo.2012.10.002.

[38] Eggener SE, Scardino PT, Walsh PC, Han M, Partin AW, Trock BJ, et al. Predicting 
15-year prostate cancer specific mortality after radical prostatectomy. J Urol 2011; 
185:869–75.

[39] Kozminski MA, Tomlins S, Cole A, Singhal U, Lu L, Skolarus TA, et al. 
Standardizing the definition of adverse pathology for lower risk men undergoing 
radical prostatectomy. e411-416 Urol Oncol 2016;34:415. https://doi.org/ 
10.1016/j.urolonc.2016.03.019.

[40] Ruiz C, Lenkiewicz E, Evers L, Holley T, Robeson A, Kiefer J, et al. Advancing a 
clinically relevant perspective of the clonal nature of cancer. Proc Natl Acad Sci 
USA 2011;108:12054–9. https://doi.org/10.1073/pnas.1104009108.

[41] Eggener SE, Berlin A, Vickers AJ, Paner GP, Wolinsky H, Cooperberg MR. Low- 
Grade Prostate Cancer: time to stop calling it cancer. J Clin Oncol: J Am Soc Clin 
Oncol 2022;40:3110–4. https://doi.org/10.1200/jco.22.00123.

[42] Labbate CV, Paner GP, Eggener SE. Should Grade Group 1 (GG1) be called cancer? 
World J Urol 2022;40:15–9. https://doi.org/10.1007/s00345-020-03583-4.

[43] Ross HM, Kryvenko ON, Cowan JE, Simko JP, Wheeler TM, Epstein JI. Do 
adenocarcinomas of the prostate with Gleason score (GS) ≤6 have the potential to 
metastasize to lymph nodes? Am J Surg Pathol 2012;36:1346–52. https://doi.org/ 
10.1097/PAS.0b013e3182556dcd.

[44] Donin NM, Laze J, Zhou M, Ren Q, Lepor H. Gleason 6 prostate tumors diagnosed 
in the PSA era do not demonstrate the capacity for metastatic spread at the time of 
radical prostatectomy. Urology 2013;82:148–52. https://doi.org/10.1016/j. 
urology.2013.03.054.

[45] Kweldam CF, Wildhagen MF, Bangma CH, van Leenders GJ. Disease-specific death 
and metastasis do not occur in patients with Gleason score ≤6 at radical 
prostatectomy. BJU Int 2015;116:230–5. https://doi.org/10.1111/bju.12879.

[46] Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ. Diffusion pseudotime 
robustly reconstructs lineage branching. Nat Methods 2016;13:845–8. https://doi. 
org/10.1038/nmeth.3971.

[47] Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data 
analysis. Genome Biol 2018;19:15. https://doi.org/10.1186/s13059-017-1382-0.

[48] Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Göttgens B, et al. PAGA: graph 
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