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Brno, Czech Republic, 8University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria, 9The Abdus Salam ICTP,
Strada Costiera 11, 34151 Trieste, Italy.

Collapse models provide a theoretical framework for understanding how classical world emerges from
quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems,
while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to
test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of
interference, while environmental noises are engineered carefully. Here we investigate a different approach:
We study systems that naturally oscillate–creating quantum superpositions–and thus represent a natural
case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how
spontaneous collapses affect their oscillatory behavior, and will compare them with environmental
decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be
tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead,
chiral molecules can offer promising candidates for testing collapse models.

A
great variety of important physical phenomena can be effectively described in a two-dimensional Hilbert
space, when the system’s dynamics effectively involves only two relevant states. The most common
examples include oscillatory, decaying and/or relaxation effects in: elementary particles (e.g., neutrino

and kaon oscillation1,2), atoms (e.g., Rabi oscillation and spontaneous emission3), molecules (e.g., tunnelling in
double-well potentials, like Ammonia inversion4–6), and crystals (e.g., spin relaxation7,8).

In such systems, oscillations occur because the relevant states are not eigenstates of the system’s Hamiltonian.
To be definite, and without loss of generality within the two dimensional formalism, let us take the eigenstates j1æ
and j2æ of the ŝz operator as the relevant states, and Ĥ0~vxŝx=2 as the Hamiltonian, where vx is the char-
acteristic oscillating frequency (for example, for Ammonia, vx 5 24 GHz is the inversion frequency). If we start
from any eigenstate of ŝz , we observe the coherent oscillation between j1æ and j2æ with frequency vx. In this
idealised situation, temporal oscillations remain coherent in time, with a constant amplitude. However, in
practice they lose coherence and decay more or less rapidly, because the system is exposed to external noises.
Such environmental effects can be effectively described by Lindblad-type master equations9–11.

Oscillations become of great conceptual importance when the two relevant states j1æ and j2æ become ‘‘macro-
scopically’’ distinct. This is the typical situation with chiral molecules, as we will see. The observation of oscilla-
tions between two such states is directly connected with the highly-debated problem (both theoretically and
experimentally) of the quantum-to-classical transition: how linear quantum mechanics copes with macroscopic
classical variables, where ‘‘classical’’ implies no superposition9–12. The fundamental question is whether such
‘‘macroscopic oscillations’’ persist when the system increases in size (and assuming that environmental sources of
noise are kept under control) as predicted by quantum mechanics, or alternatively if they unavoidably decay in
time because of intrinsic nonlinear effects in the dynamics. This second possibility is predicted by collapse
models12–27.

Collapse models have been extensively studied in the literature. There has been also a rapid progress in
experimental searches of nonlinear effects predicted by collapse models23, in particular by delocalizing large
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massive objects with matter-wave interferometry and optomechani-
cal techniques28–33. In order to motivate further experimental
searches of such nonlinear effects, here we follow a different
approach by studying how collapse affects naturally oscillating
quantum systems. In these cases, it is not necessary to create the
superpositions in the laboratory, as they appear spontaneously from
the dynamics.

Collapse models add stochastic and nonlinear terms to the
Schrödinger dynamics, which induce the collapse of the wave func-
tion. In the most well-studied collapse models (CSL16, QMUPL20), a
noise-field is nonlinearly coupled to the spatial degrees of freedom of
any massive system, inducing the suppression of spatial coherence.
These models are discussed later in the text. Here it suffices to say
that, when restricting to a 2D Hilbert space, where the states j1æ and
j2æ describe two different spatial configurations, then the collapse
dynamics takes the form34:

d yti~j {i
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ŝxdtz
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with Wt a standard Wiener process, and l the collapse rate depend-
ing on the size of system and the nature of oscillation. The last two
terms of Eq. (1) induce the collapse of the wave function either to j1æ
or j2æ, according to the Born probability rule. In experimental situa-
tions, only averages over the noise are relevant. These can be com-
puted from the density matrix r̂t:E ytij yt jh½ �, where E :½ � denotes
the stochastic average. It is not difficult to prove that r̂t obeys the
following Lindblad-type equation34:

d
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r̂t~{i
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2
ŝx,r̂t½ �{ l

2
ŝz, ŝz,r̂t½ �½ �, ð2Þ

Quantum linearity (manifested by the oscillatory behavior) is well
preserved when vx ? l, while nonlinearity (i.e., no quantum super-
position) becomes dominant when l ? vx. In this way collapse
models provide a quantitative description for the transition from
the microscopic quantum world to the macroscopic classical one.

For any given physical system, one has to derive l from the full
collapse dynamics, in the same way in which the characteristic fre-
quency vx can be deduced, at least in principle, from the complete
Hamiltonian of the system. In the next sections, we will compute l
for three different types of oscillatory systems: neutrinos, neutral
mesons, and chiral molecules. We will show that, contrary to what
previously predicted35, collapse models cannot be tested with neut-
rinos. The collapse effect is stronger for neutral mesons, but still
beyond experimental reach. Instead, chiral molecules offer prom-
ising candidates for testing collapse models.

Eq. (2) has the same form as that describing an oscillatory system
under environmental noises9–11. This means that, in analysing the
effect of collapse models on oscillating systems, one has to consider
also environmental effects, which tend to mask the collapse effects,
by damping oscillations in a similar way. In each case, we will com-
pare predictions of collapse models with decoherence effects.

Results
We present the analysis of how collapse models modify the oscillat-
ory behavior of neutrinos, neutral mesons and chiral molecule. We
will use the mass-proportional Continuous Spontaneous Locali-
zation (CSL) model23; details of CSL dynamics are explained in
Methods section. The representation of the collapse dynamics in
the position-basis predicts the following collapse rate for the off-
diagonal elements of the density matrix of a generic system consist-
ing of N nucleons:

lCSL~
L

2

XN

i,j~1

F x’i{x’j
� �

zF x’’i{x’’j
� �

{2F x’i{x’’j
� �� �

, ð3Þ

where L^10{9 (see Methods), N is the number of nucleons in the
spatial superposition, F rð Þ~exp {r2

�
4r2

C

� �
with rC 5 1025 cm, and

x’if g, x’’if g are distinct positions of nucleons in spatial superposition.
The connection between the full characterization of lCSL, given by

Eq. (3), with the two-dimensional one given by Eq. (2) is not always
straightforward. It depends on the system under study, and some-
times needs careful analysis and lengthy calculations, as we will show.

In applying collapse models to experiments, one has always to take
decoherence effects into account, as they produce apparently similar
effects. For neutrinos and chiral molecules, collisions are the
dominant source of decoherence. Using collisional decoherence
theory9–11, we exploit the phenomenological formula: lDEC , n v
sDEC (with v the relative velocity, n the density of bath particles,
and sDEC the decoherence scattering cross section) in order to estim-
ate the decoherence rate. For mesons, we provide upper bounds on
lDEC using available experimental data.

Neutrino oscillation. Effective description of neutrino oscillations.
The flavour eigenstates of neutrinos jnaæ (with a 5 e, m, t for
electronic, muonic and tauonic neutrinos) are linear combinations
of mass eigenstates: naij ~

P3
j~1 Uaj nj

	

 , with Û the unitary mixing
matrix. Therefore, for a neutrino in an initial flavour eigenstate, the
transition probability between different flavour eigenstates shows an
oscillatory behaviour in the course of time1,2. This oscillation may be
damped either by environmental interactions, or by nonlinearities in
the dynamics such as those predicted by collapse models. Neutrinos
are the lightest massive particles, therefore it seems unlikely that they
show any spontaneous collapse effect. However, they can travel very
long distances through space, and there could be enough time during
the flight, for collapse effects to build up appreciably. Therefore, it is
not clear beforehand whether neutrinos can play any role in testing
spontaneous collapses.

The collapse rate in neutrino oscillations. The effect of collapse models
on neutrino oscillation was first elaborated by Christian35, using the
Diósi-Penrose (DP) gravity-induced collapse model18,19,21. Gravity is
fundamentally nonlinear, therefore when properly taken into
account, it induces a nonlinear modification of the Schrödinger equa-
tion. According to the analysis of Christian (see also36), the predicted
magnitude of the oscillation damping (lt) is between , 1022 and , 1
for cosmogenic neutrinos. This value is strong enough to be tested
with high-precision techniques. However, this strong predicted effect
is questionable, for the following reason. For point-like constituents,
like neutrinos, gravitational self-energy diverges, implying a diver-
gence in DP model. To avoid this problem, Diósi18,19 originally intro-
duced a cutoff for small lengths, equal to the nuclear size. However,
Ghirardi, Grassi and Rimini37 showed that a much larger cutoff
(, 1027 m) is needed, in order for the model to be consistent with
known experimental data. On the other hand, the effective size of the
neutrinos, as introduced by Christian, is , 10230 m, well beyond any
reasonable cutoff. Therefore the result cannot be trusted.

We compute the collapse effect on neutrino oscillations using the
CSL model, which is free from the divergences contained in the DP
model (apart from standard quantum field theoretical ones, which
can be treated with usual renormalization techniques). The dynamics
of neutrino oscillation is phenomenologically described in a 3D–
Hilbert space of flavour, while the CSL collapse occurs in space.
Therefore, the major task is to link the spatio-temporal description
of Eq. (8) to the 3D–dynamics neutrino oscillations. Since the CSL
model is a field theoretical model, this can be properly done by
resorting standard quantum field theoretical techniques. Treating
the noise as perturbation, for the collapse rate we obtain36:
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where m0 5 1 amu, mj are the eigenvalues of mass-eigenstates, and
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with pi the momentum. In the relativistic

regime, as appropriate for neutrinos, one has E jð Þ
i ^pic. By taking

the largest mass difference in Eq. (4), one finds the following upper
bound:

lijt ƒ 7|10{36 t=t0

E=E0ð Þ2
, t0~1 s, E0~1 eV, ð5Þ

where the energy (E) and the time of flight (t) of the neutrinos depend
on the type of neutrinos under study. In Table I, this damping factor
has been computed for neutrinos originating from three different
sources. The CSL collapse effect is very tiny and non detectable with
present-day technology, the reason being that neutrinos are too light,
although they can travel long distances.

Decoherence effects in neutrinos. We also analyze decoherence effects
on neutrino oscillations due to the scattering with particles (mainly
leptons), during their flight through space. The experimental value of
the relevant scattering cross section, sDEC, are known in the literat-
ure38,39. The average density of electrons in outer space and in the
atmosphere are respectively nOUT

e *1=m3 and nATM
e *2|

1026=m3, while the average density of neutrinos is about nn , 108/
m3 everywhere (electrons and neutrinos are the two main sources of
decoherence36). Assuming the neutrino velocity v equal to the velo-
city of light in vacuum, we get:

lOUT
DEC*10{43 E=E0ð ÞHz, lATM

DEC *10{20 E=E0ð ÞHz, ð6Þ

with l
OUT ATM½ �
DEC the decoherence rate in the out-space [atmosphere].

Neutrinos travel through the atmosphere within , 1024 s, the
remaining time being spent in traveling through outer space.

Taking both contributions from atmosphere and outer space into
account, and using data listed in Table I, the decoherence damping
factor for cosmogenic neutrinos (CN) turns out to be: lCNt , 1025.
For solar neutrinos (SN) instead, one gets: lSNt , 10218, which is
hardly detectable, in agreement with well-known experimental
results2,40.

This analysis shows that, since environmental decoherence on
neutrino oscillations is much stronger than the CSL collapse effect
(and comparable with that–overestimated–predicted by Christian35),
even if technology were able in principle to discriminate collapse
effects on neutrino oscillations, these effects would be masked by
unavoidable decoherence effects.

Neutral mesons. Effective description of neutral mesons oscillations.
As a second example of oscillating quantum systems, we consider
neutral mesons. Differently from neutrinos, they offer the advantage
that decoherence effects can be kept low, since they are produced in a
very controlled environment.

A meson consists of a quark and an antiquark. For example there
exists the neutral K-meson (K0, made of�s and d; or �K0, made of s and
�d) or the neutral B-meson system (B0, made of �b and d; or �B0, made of
b and �d). The phenomenology of these oscillating and decaying
systems is usually described by a 2 3 2 non-Hermitian Hamil-
tonian whose stationary states are the mass eigenstates41:

Ĥef f



M1,2i~ m1,2{
i
2
C1,2

� �



M1,2i where m1,2 and C1,2 are masses

and decay widths. The mass eigenstates are related to the flavour
eigenstates via M1,2ij ~ M0i+ �M0ijj½ �

� ffiffiffi
2
p

, if and only if we assume
CPT conservation and neglect CP violation. We can safely assume
such a linear combination because the CP violation is a very small
effect in our case.

The collapse rate for neutral mesons’ oscillations. In computing the
predictions of collapse models for the oscillations in neutral me-
sons, we follow the same approach as the one we did for neutrino

Table I | Theoretical values of CSL collapse rate and decoherence rate for neutrinos, mesons and chiral molecules. By moving from
elementary particle scale to molecular scale, the collapse rate lCSL increases significantly. The decoherence hides collapse effects in
neutrinos and mesons, but it can be reduced at a negligible level compared with collapse rates of chiral molecules. Results show that
quantum linearity can be in principle tested using chiral molecules. However, engineering a proper experiment is not straightforward

NEUTRINOS

Types of neutrinos Energy (eV) Time of Flight (s) CSL damping (lijt)

Cosmogenic neutrino 1019 3 3 1018 2 3 10255

Solar neutrino 106 5 3 102 4 3 10245

Laboratory neutrino 1010 2 3 1022 2 3 10257

Decoherence effect lDECt , 10218–1025

NEUTRAL MESONS

Types of mesons CSL collapse rate lCSL (Hz)

K-meson 1.5 3 10238

B-meson 1.4 3 10234

Bs-meson 1.7 3 10231

D-meson 3.2 3 10237

Decoherence effect lDEC , 8 3 107

CHIRAL MOLECULES

Type of molecule CSL collapse rate lCSL (Hz)

SOCH3(p-CH3C6H4) 6.3 3 10210

SOCH3(C6H5) 7.9 3 10210

SOCH3(CH2CH2-a-C10H7) 2.5 3 1029

SOCH3(1-pyrenyl) 5 3 1029

Decoherence effect lDEC , 10211–1029
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oscillations. We perform the computation by expanding the CSL
dynamics to the first significant perturbative order, in order to find
the dominant effect. The calculation is long but straightforward, and
is fully reported in41. The final result for the collapse rate is:

lCSL~
L m2{m1ð Þ2

2m2
0

: ð7Þ

We list the damping rates in Table I for distinct mesons, using the
experimental values given in Ref. 48. With not much surprise, the
obtained values are much larger than those for neutrinos.

The decoherence rate in mesons. Environmental decoherence effects
have been investigated42 and compared with experimental data43–47.
Bounds from experimental data of the CPLEAR experiment44 and to
the more refined data of the KLOE experiment of the DAPHNE
collider45–47 were obtained in terms of a phenomenological time-
independent parameter f42. This parameter, first introduced by
Schrödinger, quantifies the spontaneous factorization of an initially
entangled wave function in a chosen basis. The best value, obtained
by measuring 2-pion final states, is: f 5 0.003 6 0.018stat 6 0.006syst.
Since this is a time averaged quantity, we can use it only for small
times, when f < ldecot. From that we may deduce an upper bound on
the decoherence rate which is about 8 3 107 Hz with %90 confidence
level. Thus, comparing this value with those in Table I, we see that
collapse models are not directly measurable for strangeness oscilla-
tions; for other types of mesons similar considerations hold. To test
collapse models for mesons one has to find observables being more
sensitive to the CLS effect.

Chiral molecules. Effective description of chiral molecules. Another
very relevant example of oscillating quantum system is given by
chiral molecules, in which case j1æ, j2æ represents two
configurations with different macroscopic properties, e.g., optical
activity. The classical example is Ammonia inversion pheno-
menon4. In general, non-rigid molecules and molecular complexes
have at least two stable configurations that can be transformed to
each other by a large-amplitude vibration4. In the zero-th order
approximation, this vibration can be described by the motion of a
particle of effective mass m in a double-well potential V(q), where q is
a generalized large-amplitude coordinate. The minima of the wells
are positioned at q 5 6q0/2, separated by a barrier V0 (see Fig. 1).
Molecular configurations are described by localized states (say

‘‘chiral’’ states) at each minima. The tunnelling through the height
barrier leads to measurable level splittings in the molecular spectra,
which has been observed for a large variety of non-rigid molecules
and molecular complexes4,49,50.

In the limit V0 ? v0 ? kBT (where T is temperature, kB is
Boltzmann constant, and v0 5 [V0(6q0/2)/ m]1/2 is the small-
amplitude vibration in either well), the state of the molecule is effec-
tively confined in the two-dimensional Hilbert space spanned by two
chiral states5,6. Thus, the Hamiltonian becomes Ĥ0~vxŝx=2 with vx

the level splitting due to the tunneling.

The collapse rate in chiral molecules. We consider superpositions of
chiral states as spatial superpositions of an atom or group of atoms
between two distinct molecular configurations. So differently from
the case of neutrinos and neutral mesons, we can immediately derive
the collapse rate from Eq. (3). Typical non-rigid molecules are within
a range of size 1–100 Å. This implies that chiral coherence is dis-
tributed over the region whose dimension is much smaller than rC 5

103 Å. We can then expand F(r) to the leading order of r in Eq. (3),
and we obtain:

lCSL^
L

4r2
C

Xn

i~1

mi xL
i {xR

i

� � !2

, ð8Þ

where mi is the mass (in amu) of i-th atom, n is the number of atoms
in the spatial superposition (e.g., for Ammonia, we have three
Hydrogen atoms in superposition; n 5 3), and xL

i and xR
i are posi-

tions of i-th atom in the two chiral conformations where the origin is
the chirality center (e.g., for Ammonia, they are positions respect to
the Nitrogen atom). The mere knowledge of positions of atoms in
chiral structures of the molecule is enough to compute the collapse
rate using Eq. (8). However, when data about the effective mass m and
the minima separation q0 of the double-well potential is available,
then one can simply use the following simpler formula for the
collapse rate:

lCSL<
L

4r2
C

m q0ð Þ2 ð9Þ

with m the effective mass (in amu) moving in the double-well poten-
tial. For example, m 5 mN(3mH)/(mN 1 3mH) < 3 amu and q0 5

0.8Å in the case of Ammonia4.
We apply Eq. (8) to compute the collapse rates for some pyramidal

chiral sulfoxides51. The results are shown in Table I. For each sulf-
oxide, we obtain the enantiomeric equilibrium structures with DFT
(B3LYP), using a minimum basis set by Firefly program52. As
expected, the collapse rates are by many orders of magnitude stron-
ger than those of neutrinos and mesons.

Decoherence rate in chiral molecules. If we model the chiral coherence
as the spatial superposition of a quantum Brownian particle of effec-
tive mass m over the distance q0 (see next section for more detail),
then we can use the linearized quantum Brownian dynamics to com-
pute sDEC

5,6. In this way we can compute the dominant contribution
to lDEC by using Eqs. (3) and (13) of Ref. 6. We consider the London
dispersion potential for collisions. Then, for the density of back-
ground gas about , 1010 particles/m3 (the conventional ultra-high
vacuum) and the background temperature of T^300 K, we obtain:
lDEC , 1026–1024 Hz. Considering the cryogenic vacuum where
n , 105 particles/m353, then we get: lDEC , 10211–1029 Hz.
Accordingly, for chiral molecules decoherence can be practically
reduced to a negligible level compared to collapse effects (see
Table I), thus quantum nonlinearities can be in principle tested using
chiral coherence.

Estimates of bounds on L. We showed that, contrary to the cases
of neutrinos and mesons, spontaneous collapse effects (quantified by
l) can be in principle tested with chiral molecules because

Figure 1 | A symmetric double-well potential. Important parameters are

the tunnelling frequency vx 5 (E2 2 E1)/ , the height barrier V0 and the

minima separation of q0. The molecular structures are associated with left

and right chiral states, yL and yR, that are localized in each minima. The

tunnelling splitting is manifested as doubling in the spectra of the

molecule4.
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environmental effects can be controlled in such a way that the
decoherence becomes negligible. Of course, the great challenge is
to find a feasible experimental scheme. We leave the question to
future research. In the meantime, one can follow a different
strategy and use the spectroscopic data of tunneling splittings to
introduce upper bounds on L. Here, we discuss this strategy.

According to Eq. (2) the dipole moment ŝz tð Þh i~Tr r tð Þŝz½ �
shows no oscillation when l $ vx. If this is the case, then the spectra
of the molecule should show no tunneling splitting. Accordingly, the
experimental observation of a tunneling frequency vx implies that
l , vx. This places an upper bound on the collapse parameter L,
which according to Eq. (9) can be written as follows:

Lv

2rC

m q0

� �2

vx: ð10Þ

The smaller the observed tunnelling frequency, the stronger the
bound (see Table II). To our best knowledge, the smallest molecular
tunnelling splitting that has been observed is of the order of a few
Hertzs for Ru-D2 complex with NMR spectroscopy55, where m 5 2
amu and q0 , 1–2 Å. Accordingly, we get L , 105 Hz, which is 1014

times larger than the standard CSL value. This should be compared
with one of the best available experimental bounds on the collapse
rate: L , 1025 Hz, which is obtained by quantum interfere of mas-
sive objects with a mass of 7 3 103 amu, in matter-wave interfero-
metry experiment29. So, also this bound is very week, but could be
significantly improved.

According to Eq. (10), in order to obtain stronger bound onL, one
should move toward smaller tunnelling frequencies (i.e., smaller vx)
or larger effective sizes (i.e., larger m and q0). In molecular systems,
the effective size that can be simply described by a double-well poten-
tial, is limited in the ranges q0 , 1–10 Å and m , 1–100 amu4.
According to Eq. (10), we get: L , avx, with a varying in the range
4–4 3 106. Therefore, among possible strategies for testing collapse
effects in molecular systems, the observation of smaller tunnelling
frequencies is the most flexible.

This strategy becomes even more promising if we consider recent
progresses in high-resolution spectroscopic methods49,50. As we dis-
cussed before, vx is manifested as level splittings in rotational-vibra-
tional spectra, where molecular modes cover the typical frequency
range of v 5 109–1014 Hz (from microwave to UV4,49,50). Thus, if we
use a spectroscopic method with resolution R 5 vx/v, we find:L, b
R, where b varies in the range 4 3 109–4 3 1020 Hz. So, with a relative
resolution R , 10214, which is in the range of available highest
resolution spectroscopy techniques49,50, one can reach a bound for
L, comparable with that obtained in matter wave interferometry.
With better resolutions, we can set stronger bounds. Molecules of
the form Y-X-X-Y may serve as candidate molecules where their
torsional internal rotation can be simply described by a double-well
potential4,49,50, with a very tiny tunnelling splitting when Y is a heavy

atom (e.g., for Cl2O2, we have the theoretical value of vx ,
10211 Hz49,50).

Discussion
We computed the predictions of the Continuous Spontaneous
Localization (CLS) collapse model for the damping of the oscillatory
behavior of three distinct naturally oscillating quantum systems:
neutrinos, mesons and chiral molecules. The numerical results are
summarized in Table I. We also analysed the main decoherence
effects on these systems and compared them with the predictions
of the CSL collapse model. The values we obtained for the collapse
rates for the first two types of systems are much smaller than the
main decoherence rates; consequently, possible violations of the
superposition principle cannot be directly observed in these oscillat-
ory systems. Chiral molecules are better candidates. We suggest a
new type of experiment with chiral molecules, which can serve as a
test of quantum linearity, and which can possibly put stronger upper
bounds on the collapse parameters, than those already available from
the literature.

Our formulation of chiral molecules also includes any system
whose effective dynamics is described by a double-well potential. A
very promising line of research is the study of systems that can be
artificially prepared in a double-well potential where its parameters
(V0, m and q0) are adjustable at will. Then, by tuning them in proper
ranges, e.g. larger m, one can hope to set further bounds on the
collapse parameters.

Methods
CSL model. We consider the most commonly used collapse models in the literature:
the mass proportional Continuous Spontaneous Localization (CSL) model17. The CSL
dynamics is:

dyt~ {
i
y

Ĥdtz
ffiffiffi
c
p

m0

ð
dr M̂ rð Þ{ M̂ rð Þ


 	� �
dWt rð Þ

�

{
c

2m2
0

ð
dr M̂ rð Þ{ M̂ rð Þ


 	� �2
dt

�
yt ,

ð11Þ

with Ĥ the standard quantum Hamiltonian, M̂ rð Þ

 	

: yt jM̂ rð Þjyt


 	
the standard

quantum average (here is where nonlinearity enters the equation), m0 5 1 amu, c . 0
the strength of the collapse process, which is a new phenomenological constant of the
model, Wt(r) an ensemble of independent Wiener processes, one for each point in
space, and:

M̂ rð Þ~
X

j

mj

ð
dr’g r’{rð Þâ{

j r’ð Þâj r’ð Þ, ð12Þ

where âj rð Þ is the annihilation operator of a particle of type j at position r, and:

g rð Þ~ 1ffiffiffiffiffi
2p
p

rC
� �3 exp {r2=2r2

C

� �
ð13Þ

with rC the correlation length, the other new phenomenological constant of the
model. After averaging over all possible realizations of the stochastic processes, the
dynamics for the density matrix is given by:

Table II | Current bounds on the collapse constantL, coming from observation of tunnelling. We used available spectroscopic data about
tunnelling splittings (see main text). These bounds should be compared with the best experimental bound on L, which is obtained by
wave-matter interferometry of molecules with mass m 5 7 3 103 amu29. Using a molecular spectroscopic technique with relative
resolution of R # 10214, it is in principle possible to introduce bounds on L, which could compete with those coming from matter-wave
interferometry

Molecule Upper bound on L Tunnelling splitting vx

Ammonia4 L , 1016 Hz 24 3 109 Hz
Carboxylic acid dimers54 L , 108 Hz , 103 Hz
Ru-D2 complex55 L , 105 Hz 1–100 Hz
High resolution spectroscopy L , 1025 Hz (proposal) -
Matter-wave interference29 L , 1025 Hz -
Adler’s CSL value27 L , 1029 Hz -
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d
dt

r̂~{
i

Ĥ,r̂
� �

{
c

2m2
0

ð
dr M̂ rð Þ, M̂ rð Þ,r̂

� �� �
, ð14Þ

where the second term on the right hand side is the collapse term. It tells that
superpositions of states which are closer than rC are efficiently localized, while
superpositions of terms which are further separated are suppressed, with a rate
proportional to c and to the size of the system27.

Values of collapse parameters. The value of the correlation length is commonly fixed
to rC^10{516. For the collapse strength c, two values have been proposed in the
literature. Ghirardi, Pearle and Rimini16 set c^10{30cm3s{1, while Adler27 sets
c^10{22cm3s{1. These values are in agreement with all known experimental data.
Much larger values are ruled out because the collapse would become so strong to be
detectable also for isolated microscopic systems, contrary to experimental evidence.
Much smaller values are also ruled out, because in such cases the collapse would
become so weak that the localization of the wave function of macroscopic objects
would not be guaranteed anymore. Without this, collapse models would lose their
interest. In our analysis, we consider the strongest value of c suggested by Adler. By
defining the collapse rate as: L~c= 8p3=2r3

C

� �
, we get:L^10{9. This is the numerical

value we used in the text.
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