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Table S1. DC2 and DC3 marker genes identified by Villani et al., (related to
Figure S1)

Transcripts identified as DC2 and DC3 marker genes by Single Cell RNA-Seq in

Villani et al., and present in our BM Single Cell RNA-Seq dataset, used to cluster BM
DCs in Figure S1J,K

DC2 Genes DC3 Genes
SLC2A3 MGSTI1 ILTRN
FCGR2B MTMR11 ASGRI1
PTGSI1 VCAN NLRP12
CD33 SLC2A3 ADAM15
AREG RAB27A S100A8
CLEC4A FCNI1 MPP7
CCR6 LAT?2 HNMT
CD2 LYZ NR4A?2
MBOAT7 RETN PID1
CLEC10A IL27RA CD1D
ENTPDI1 RAB3D LMNA
ADAMS8 BSTI1 ITGAS
NR4A?2 HBEGF NLRP3
PID1 CSF3R ST100A9
CLIC2 PLBD1 S100A12
CACNA2D3 CSTA MNDA
ETS2 NFE2 NOD?2
CD1D F13A1 RNASE?2
CDIC TREM1 PTAFR
CDI1E EREG CD14
ITGAS IL1B FPR1
PEAT1S ILT13RAT CD163
NOD?2 CLEC10A FCERTA
PTAFR MICAL?2 TMEM173
PER1 ANXAT1 CES1
FCERTA CD36 NAIP
CLEC17A AOAH




Table S2. CyTOF Panel (Related to Figures 1 and 5)

Antigens included in the CyTOF panel and the antibody metal conjugate. For
antibody details see Key Resources Table

Antigen Metal Surfacel/intracellular

CD14 113In

CD370/CLECL9A 141Pr

AXL 142Md

CD123 143Nd

CD11b 144Nd

CD116 145Nd

SIGLEC6 146Nd

CD303 147Sm

SIRPA 148Nd

IRF8 149Sm I
FCER1 150Nd

CD2 141Eu

IRF4 152Sm I
CD45RA 153Eu

CD38 154Sm

CD36 155Gd

CD10 156Gd

Lineage-FITC (CD3, 19, 20, 56)

157Gd (secondary)

CD33

158Gd

DOV NNDNI!VINNDINIMILIDDIOINIDIOINIVILINVInIK KW

CD11c 159Tb
ID2 160Gd
CD90 161Dy
SLAN-PE 162Dy (secondary)
BTLA 163Dy
CD15 164Dy
CD141 165H0
CD34 166Er
CD115 167Er
CD100 168Er
CD304 169Tm
CD135 170Er
CD88 171Yb
CD117 172Yb
HLA=DR 173Yb
CD1c 174Yb
CD5 175Lu
CX3CR1-APC 176Yb
CD16 209Bi
CD45 (PBMC) 115In
CD45 (BM) 89Y
Cisplatin 195Pt
DNA 191Ir




Table S3. Single Cell analysis parameters (related to Figures 1, 3, 4, S3, S4)

Dataset BM CD34+ BM CD34med PB bre-DC
Progenitors pre-DC and DC P
. Figures 3E-J; 1H, S1J-L, SAE-K,
Figures S3D-H SAH-J S4K-Q
Total cells sequenced 399 260 184
ERCC % threshold (adjusted
Raw for concentration of ERCC 30% 70% 25%
Data spike added)
Analysis Mitochondrial % threshold 25% 15% 30%
and QC Total features threshold >2500 >1700 >3000, <5000
CELLS Total counts threshold >50000 >50000 >25000
Number of ceI.Is rgtamed 262 244 116
after cell filtering
N f
umber o gengs expressed 18791 17850 14458
Raw at> 2 counts in > 2 cells
Data Number of genes retained
Analysis after removing cell cycle 18181 17237 13920
and QC genes
GENES in-codi
Number of protgln coding 12406 12137 10346
genes retained
Hierarchical Clustering Figure 3F, S3H Figure F, S4) Figure S4N
Cells in analysis 262 244 116
Genes retained for analysis 6,846 6,838 7265
by SC3
Clustering solutions 210 5:15 215
explored
Clustering solution 10 15 8
Average Silhouette width 0.45 0.58 0.27
Highest c.Iuster stability 0.63 0.7 04
Whole index
dataset Marker gene p value
.01 .01 .
(all cells, threshold 0.0 0.0 0.05
all AUROC threshold 0.75 0.85 0.7
genes) tSNE Figure 3E-G Figure 4E-G, S4l Figure S40-P
Cells in analysis 262 244 116
Genes in analysis 6,846 6,838 7,265
PC for tSNE 10 20 5
Total variance explained by
PCs selected for tSNE 25 3 26
Perplexity setting for tSNE 13 15 20
Diffusion Map Figure 3H-I Figure 4H-I
Number of ?C selected for 20 10
diffusion map
. Figure 1H
Hierarchical Clustering Figure 3D (GMP (mature DC only,
only)
all genes)
Partial Cells in analysis 58 88
dataset Genes retained for analysis
6,846 6,838
(cell by SC3 ! !
subsets) Clustering solutions 9:15 5:15
explored
Clustering solution 4 8
Average Silhouette width 0.5 0.67




Highest cluster stability

index 0.3 0.8
Marker gene p value
threshold 0.1 0.01
AUROC threshold 0.75 0.85
tSNE Figure S3E-G
Cells in analysis 58
Genes in analysis 6,846
PC for tSNE 5
Total variance explained by 30
PCs selected for tSNE
Perplexity setting for tSNE 13
Figure S1K
Hierarchical Clustering (mature DC only,
DC2/3 genes)
Cells in analysis 88
Genes retained for analysis 61 out of 71.
by 5C3 gen'es ff)und in
Villani et al.
Clustering solutions 915
. explored
Partial Clustering solution 7
dataset Average Silhouette width 0.53
(cell and - —
gene Highest c.luster stability 0.75
subsets) index
Marker gene p value 0.05
threshold )
AUROC threshold 0.75
Figure S1L (71
tSNE DC2/3 genes)
Cells in analysis 88
Genes in analysis 71
PC for tSNE 35
Perplexity setting for tSNE 15




Table S4. Cell input/output and donor details for in vitro DC Culture
experiments (related to figures 3, 4, S3, S4).

Input Input
Figure Donor | Cell Output Cell No
subset
No
Mono | CD14+ | CD14- | ¢DC1 | pDC
DC3 DC2
CD34+ 1 1000 243 393 7515 1690 408
Progenitor 1 3258 529 1614 5617 217 12
analysis 1 3258 554 1081 2037 275 9
3¢, S3B 2 496 10 343 1332 44 24
3 500 868 3520 1250 355 50
3 3090 53 262 742 180 120
3 3090 27 265 844 145 33
3 3090 400 374 288 145 65
4 2600 208 1588 8185 347 179
4 1642 0 22 1256 125 138
Bulk CD34+ 5 792 6 295 4664 712 106
6 800 94 328 1583 91 23
7 6200 355 2250 2556 195 57
8 3135 45 838 2783 624 50
8 3135 53 367 1014 279 8
8 3248 56 61 424 67 14
9 3056 46 1477 4577 315 51
10 1712 6 625 706 11 7
10 2911 29 1574 2650 17 66
10 2911 802 4996 1925 43 37
11 848 0 10 120 10 6
12 1343 5250 5734 1043 0 0
13 446 22 1854 343 0 0
1 3362 122 301 95 0 0
1 1426 31 272 33 0 0
2 500 12 0 0 0 0
cMP 4 1558 0 0 1489 0 2
5 2409 0 210 120 0 0
14 3040 0 1 0 0 0
14 1646 51 99 11 1 0
1 2000 643 4369 11989 1511 51
2 507 324 1570 397 2 0
3 500 1538 4467 4346 633 226
GMP33+
4 1168 142 1572 12966 24 20
5 1670 144 1169 2211 271 52
6 669 858 99 39 0 0
6 70 140 20 0 0 0
1 1500 126 605 3546 3589 827
1 2957 150 223 1525 1277 757
2 502 238 618 6479 714 413
LMPP 3 428 99 298 7017 4556 3800
4 215 0 6 9628 358 778
5 1729 2 21 7262 793 993
14 1708 7 105 2439 169 86




1 3042 | 268 750 456 451 | 178
3 558 37 511 3541 | 2649 | 480
MP33. 4 364 0 246 1148 | 495 | 59
5 848 22 194 2998 | 437 | 77
10 502 0 27 30 36 23
14 1709 4 64 163 205 | 34
3 550 9 278 1502 119 | 222
GMP123low 4 419 0 10 192 23 52
5 491 1 19 363 145 | 40
1 700 0 35 271 709 | 234
1 2462 0 54 37 466 | 159
3 445 0 52 65 394 | 39
GMP123med 4 252 0 9 191 45 134
5 152 0 34 138 190 | 37
10 953 0 6 10 20 2
14 497 0 0 3 4 4
15 1913 26 75 312 | 158
CD34med 1 2182 0 12 202 75 191
Precursor ] 1 2182 0 5 150 73 35
analysis 123high 8 1622 0 0 7 40 30
48, S4C 303/4low 8 1622 0 1 23 23 2
16 1521 0 0 2 5 50
17 1126 0 2 11 1 57
15 1229 0 0 2 10 | 181
CD2+ 16 1005 0 1 2 4 84
pre-pDC 16 1005 0 1 6 1 103
17 536 0 0 1 0 55
17 536 0 0 0 0 49
CD123high 1 434 0 0 10 0 0
CD5+ early 5 444 0 14 65 4 1
pre-DC2 8 469 0 5 41 0 0
8 1194 0 4 97 1 3
CD123med 3 548 1 113 108 0 3
CD5+ 4 717 0 0 11 2 1
pre-DC2 8 679 0 2 34 0 0
8 483 0 0 4 0 0
D34med 1 683 0 16 64 159 0
CD123med 198 1653906 8 3o6 ig 12596 2
SIRPA-
19 1701 0 13 54 144 | 194
3 3818 16 109 39 18 0
CD34med 8 3040 15 27 0 0 0
SIRPA+ 10 2703 59 295 29 0 0
15 1802 0 24 30 0 0
20 869 18 2557 118 8 0
3 4045 2 6 1 0 0
SIRPA+CD2+ 4 329 0 21 17 0 0
pre-DC3
5 2449 18 37 13 0 0
10 2724 6 6 1 0 0
3 4942 14 5 0 0 0
SIRPA+CD2- 10 3176 4 3 1 0 0
pre-mono
15 4966 1 0 0 0 0
20 1419 6 810 53 1 0




Figure S1, related to Figure 1
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Figure S1: CD1c+DC heterogeneity is evident in human bone marrow

A. Upstream gating steps for the flow cytometric analysis of HC PB monocyte and DC
subsets identified PBMC by light scatter properties, excluded doublets, dead and
CDA45. cells before lin(CD3, CD16, CD19, CD20, CD56)-HLA-DR+ cells were selected
for further analysis in Figure 1A. Representative example of n=22

B. Histogram of CD14 expression on CD5+BTLA+CD1c+DCs (red), CD14+CD1c+DCs
(orange) and CD14+CD88+ monocytes (black), by flow cytometric analysis

C. Correlation of expression fold change of differentially expressed genes by
NanoString analysis with the fold change of differentially expressed genes in single
cell RNA-Seq analysis described by Villani et al., comparing BTLA+CD1¢c+DCs (red)
(mean of n=3) and BTLA-CD1c+DCs (orange) (mean of n=3) with DC2 and DC3
described by Villani et al. 2017.

D. Correlation of expression fold change of differentially expressed genes by
NanoString analysis with the fold change of differentially expressed genes in single
cell RNA-Seq analysis described by Villani et al., comparing BTLA-CD1c+DCs(orange)
(mean of n=3) and monocytes (black) (mean of n=3) with DC3 and monocytes
described by Villani et al. 2017.

E. Intracellular flow cytometric analysis of in vitro cytokine elaboration by PB
monocytes (black), CD14+CD1c+DC (orange), CD14.-CD5-CD1c+DC (gray) and
CD5+CD1c+DC (red) from n=9 healthy donors in response to 14hrs stimulation with
TLR agonists (CpG, poly(l:C), CLO75, LPS). Integrated median fluorescence intensity
(iIMFI1) was calculated by multiplying the frequency of positive cells by the MFI of a
given marker. P values were derived from paired two-tailed t-tests (* p<0.05; **p<0.01;
***p<0.005). Bars show mean+SEM and circles represent individual donors.

F. Relative proportions of CD5+CD1¢c+DCs (red), CD14+CD1c+DCs (orange) and
CD14-CD5-CD1c+DCs (gray) in HC PB (n=22) and BM (n=13) expressed as a
percentage of the total CD1c+DC (gated as shown in Figure 1A). * p=0.046 (Mann
Whitney U, two-tailed). Bars show meantSD and circles represent individual donors.

G. Upstream gating steps for the flow cytometric analysis of HC spleen, skin (dermis)
and BM monocyte and DC subsets identified mononuclear cells by light scatter
properties, excluded doublets, dead and CD45- cells before lin(CD3, CD16, CD19,
CD20, CD56)-HLA-DR+ cells were selected for further analysis in Figure 1E
(representative example of n=3 for each tissue) and F (representative example of
n=13)

H. Histograms of BTLA expression on cDC1, CD5+CD1c+DC and pDC from PB,
spleen, BM and dermis (pDC absent), by flow cytometric analysis.

I. tSNE visualization of the expression of TFs IRF4 and IRF8 and surface markers
across HC PB and BM 1in(CD3,19,20,56,161)-HLA-DR+ cells by simultaneous CyTOF
analysis as in Figure 1G. Heat map shows SIGLEC6 expression.

J. Flow cytometric identification of index sorted human BM DC and monocytes for
single cell transcriptomic analysis in Figure 1H and S1K,L.



K. Hierarchical clustering of single cell transcriptomes of mature DC from BM using 71
DC2 and DC3 marker genes identified in Villani et al. to define 7 clusters used to
annotate Figure S1L (in SC3 software p<0.05, AUROC>0.75). Heatmap shows log2
expression. Genes enriched in DC2 or DC3 are shown in red and orange type,
respectively. The top rows display fluorescence intensity of surface antigens
(‘Antigens’) from index sorted cells.

L. tSNE plots of the first 35 principal components of the DC2 and DC3 single cell
transcriptome dataset (as described in J,K) of index sorted pDC, cDC1, CD1c+DC and
monocytes. The large panel depicts cells annotated by 7 clusters generated in K.
Smaller panels show the expression of key subset-specific antigens taken from
indexed flow cytometry.

M. Schematic of the phenotypic definition of DC2 and DC3 in PB and tissues; CD163-
CD5+-(BTLA+in PB) DC2 and CD163+CD14+-(BTLA- in PB) DC3.



Figure S2, related to Figure 2
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Figure S2: CD14 expression distinguishes between CD1c+DC subsets generated
in vitro

A. Upstream gating steps for the flow cytometric analysis of in vitro derived DC and
monocyte subsets. Gates identified live, singlet, cells and excluded CD15+ neutrophils
and CD34-+progenitors before DC and monocyte identification as shown in Figure 2A.

B. Upstream gating steps for the analysis of FACS-purified CD1c+DC subsets after 7
days of culture (Figure 2E,F). A representative example of the upstream gating from
the culture output of CD14-BTLA-DC3 (n=7).

C. Full gating strategy for FACS-purification of in vitro generated DC and monocyte
subsets derived from BM CD34+ progenitors after 21days in culture, for NanoString
gene expression analysis (Figure 2G,H) and TLR elaboration (Figure 2I).

D, E. Correlation of expression fold change of differentially expressed genes by
NanoString analysis with the fold change of differentially expressed genes in single
cell RNA-Seq described by Villani et al. (in a similar analysis to Figure S1), comparing
D) DC2 (red) and DC3 (orange) or E) DC3 and monocytes (black). PB DC
(BTLA+CD1c+DC2 and BTLA-CD1¢c+DC3) and their culture-derived counterparts
(CD14.CD1c+DC2 and CD14+CD1c+DC3, outlined dots) are shown. Fold change
derived from mean expression of n=3 for PB and n=3 for culture-derived cells.

F. Intracellular flow cytometric analysis of in vitro cytokine elaboration by CD14+1c-
monocytes (black), CD14+CD1c+DC3 (orange) and CD14-CD1c+DC2 (red) generated
from n=4 BM donors after 21 days in culture, in response to TLR agonists (CpG,
poly(l:C), CLO75, LPS). Integrated median fluorescence intensity (iMFIl) was calculated
by multiplying the frequency of positive cells by the MFI of a given marker. P values
were derived from paired two-tailed t-tests (* p<0.05). Bars show mean+SEM and
circles represent individual donors.



Figure S3, related to Figure 3
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Figure S3. High IRF8 expression defines LMPP-associated DC progenitors

A. Median Fluorescence intensity of Intracellular IRF8 by flow analysis across gates
identifying CD34+progenitor populations of HC BM (n=4). HSC, hematopoietic stem
cell; MPP, multipotent progenitor; MEP, megakaryocyte erythroid progenitor; MLP,
multilymphoid progenitor; LMPP, lymphoid primed multipotent progenitor; CMP,
common myeloid progenitor; GMP, granulocyte macrophage progenitor. Bars
represent meanzSD.

B. Flow analysis of CD34+CD38+CD10- progenitor populations (as shown in Figure
3A) showing the relative levels of CD123 expression across CD33+CD123neg-lo
(predicted CMP) and CD33-CD123- (predicted MEP) CD45RA.- populations and
CD45RA+GMP fractions.

C. Absolute proliferative capacity and differentiation potential of progenitor fractions
subjected to 14 days in DC differentiation culture, as depicted in Figure 3C, expressed
as the number of cells generated per input CD34+ cell. CD15+ neutrophils are included.
Bars show meantSEM, circles represent individual donors.

D. The relative output (ratio) of DC2 and DC3 from the specified CD34+progenitor
fractions. Orange bars DC2<DC3; red bars DC2>DC3.

E. Kinetics of DC, monocyte and neutrophil output from progenitor fractions over 14-21
days in DC differentiation culture. CD34+ n=3 (n=2-3/timepoint), CMP n=1, GMP33+
n=3 (n=1-3/timepoint), LMPP n=3 (n=2-3/timepoint), GMP33- n=3 (n=1-2/timepoint),
GMP123i n=2 (n=1-2/timepoint), GMP123int n=3 (n=1-3/timepoint). Dots and bars
represent mean—-SEM.

F. Flow identification of index sorted human BM progenitors for single cell
transcriptomic analysis in Figures 3D-J and S3G-J. A tight lin(CD3, 7, 14, 16, 19, 20)-
gate was used to select CD34+ progenitors for single cell sorting. This excluded
lineageio CD10+B/NK progenitors, as defined in Figure 3A, shown backgated (red
dots) onto the pre-sort BM live, singlet, mononuclear cells (gray). Top middle panel
shows the same Lin-34+ gate on sorted single cells. Top right panel demonstrates the
absence of CD10+B/NK cells in the sorted CD38+CD45RA+ population.

G-I. tSNE visualization of the first 5 principal components (30% total variance) of the
transcriptomes of 58 single GMP, analyzed independently of surface phenotype. tSNE
plots are annotated by G, gate of origin from index-linked flow (Figure S3F) or H, 4
hierarchical clusters (Figure 3D) showing clustering of cells from the CD33-, CD1230,
and CD123int gates (cluster 4) away from clusters 1-3 containing GMP33+ cells.
Heatmaps (I) show log2 expression of key DC TF genes on tSNE plot in G and H.

J. Unsupervised hierarchical clustering of single cell transcriptomes of all progenitor
cells, using all protein-coding, non-cell cycle genes (independent of surface antigen
expression). Marker genes for 10 clusters generated within SC3 (p<0.01,
AUROC>0.75) are displayed, examples of which identify cluster 1, monocyte (LYZ,
CSF1R); cluster 2, granulocyte (CALR, ELANE), clusters 3-5, HSC and MPP (AVP,
PCDH9), cluster 6, MEP (GATA1, KLF1), cluster 8, DC (IRF8, TCF4, RUNX), clusters
9-10, LMPP (SMIM24). Heatmap shows log2 gene expression. The top rows display
fluorescence intensity of surface antigens (‘Surface Antigens’) from index sorted cells,
‘Flow annotation (Flow annot)’ denotes the classification of index sorted cells by their
surface phenotype (Figure S3F).
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Figure S4. Two trajectories of DC development connect the progenitor
compartment with mature DC

A. Heatmaps showing IRF8 expression by intracellular flow cytometric analysis across
sequential bivariate plots, using the gating strategy to identify DC and pre-DC shown
in Figure 4A. Heatmaps generated in FlowJo 10.6.1.

B. Absolute proliferative capacity and differentiation potential of CD34int precursor
fractions subjected to 14 days in DC differentiation culture, as depicted in Figure 4C,
expressed as the number of cells generated per input precursor cell. CD15+
neutrophils are included. Bars show mean+SEM, circles represent individual donors.

C. The relative output (ratio) of DC2 versus DC3 (left graph) or Monocyte versus DC3
(right graph) from the specified CD34int precursor fractions. Red bars DC2>DC3;
orange bars DC3>DC2, black bars with orange outline DC3>monocyte.

D. Mean fluorescence intensity (MFI) of CD34 by flow cytometric analysis of CD2+ and
CD2- pDC from BMMC (n=3) and PBMC (n=3). Plots show mean+SEM.

E. CFSE dilution in CD2+ and CD2- pDC from BM and PB after 3 days in DC culture, to
assess proliferation. Histograms show CD34+ progenitors and monocytes as controls.
Plots shown are representative of n=3 experiments in PB and BM.

F. Kinetics of the output generated from 14 days culture of CD2+ pDC, expressed as
the number of cells generated per input cell. n=2 donors with n=2 analyses at each
time point. Dots and bars show mean+SEM.

G. Flow cytometric analysis of Lin-HLA-DR+CD1¢c-CD141-CD123ni PBMC and BMMC
showing the location of AXL+CD5+CD123+CD11c- early pre-DC2 (pink) on the bivariate
plot of CD2 versus CD303/4, overlying the CD34int CD123nCD303/410 population
(turquoise).

H. Summary of the proliferative capacity of BM DC precursors. BMMCs were CFSE
stained then precursors FACS-purified and cultured in DC-culture conditions for 3 days
before flow cytometric analysis of CFSE. Bulk CD34+ progenitors and CD14+
monocytes were included as positive and negative controls, respectively. Bars
represent mean+SD of n=3-4 donors, circles represent individual donors.

|. Location, in flow cytometry parameter space, of index-sorted precursor cells purified
for scRNA-Seq depicted in Figure 4E-J, S4J-K).

J. DC subset signature scores generated from Villani et al, mapped across the tSNE
plot of precursor and mature DC single cell transcriptomes (Figure 4E-J). To generate
signature scores, the dataset was mined for expression of cell subset ‘signature’
genes defined by single cell RNA-Seq in Villani et al., including DC1 (cDC1), DC2
(cDC2a), DC3 (cDC2b), DC5 (AXL+), DC6 (pDC) and monocytes. Normalized counts
were then rescaled from 0 to 1 and the average scaled score displayed on t-SNE plots
generated as described in the STAR methods. The left panel shows the level of
expression of DC subset signature scores. The right panel shows the mapping across
tSNE space of similar scores generated from differentially expressed genes after
pairwise comparisons of subsets, as indicated.



K. Unsupervised hierarchical clustering of single cell transcriptomes of BM precursor
and mature DC subsets and CD14+ monocytes, using all protein-coding, non-cell cycle
genes (independent of surface antigen expression). Marker genes for 15 clusters
generated within SC3 (p<0.01, AUROC>0.85) are shown. Examples used to identify
clusters are marked in red and derived from subset signature genes in Villani et al..
Clusters were used to annotate Figure 4F, H. The top rows display fluorescence
intensity of surface antigens (‘Surface Antigens’) from index sorted cells. ‘Flow
Annotation’ denotes the classification of index sorted cells by their surface phenotype
(in Figure S4l), Cluster color code related to Figure 4F,H.

L. The output of in vitro culture of DC precursors from PB, FACS-purified using the
gating strategy shown in Figure 4C showing lineage-specific enrichment from
precursors, analogous to the output from phenotypically similar BM precursors. Output
is expressed as the proportion of each DC and monocyte population as a percentage
of the total cells captured by all DC and monocyte gates. n=3-5 donors for each
population. Bars represent mean+SEM, circles represent individual experiments.

M. Proliferative potential of PB DC precursors at day 3 of culture, estimated by CFSE
dilution. Bulk CD34+ progenitors and CD14+monocytes were included as positive and
negative controls, respectively. The CFSE dilution histograms for each precursor are
grouped and ordered according to their proposed position in the developmental
trajectory for pDC or DC2 lineages. Results are representative of n=3 experiments.

N. Sorting strategy applied to Lin-HLA-DR+ CD1¢c-CD141- cells, and location, in flow
cytometry parameter space, of subsequently index-sorted PB precursor cells (CD2-
pDC excluded) purified for scRNA-Seq analysis depicted in Figure S40-R.

O. Hierarchical clustering of single cell transcriptomes of PB pre-DC populations
showing signature genes that identify 8 clusters (p<0.05 and AUROC>0.7), used to
annotate Figure S4P. These defined CD11c+ pre-DC2 (cluster 1 and 2; marked by
CD1c and SIRPA at RNA level), AXL+CD5+-CD11cio early pre-DC2 (clusters 4,5,6,8),
CD34intCD123intAXL- cells, marked by NFIL3 (critical for cDC1 development, Bagadia
et al., 2019) and shown to have enriched cDC1 potential in culture (Figure S4L) and a
small number of AXL-CD5-CD303/4ni pre-pDC (contained within cluster 7, marked by
SERPINF1, MZB1).

P. tSNE of the first 5 principal components (26% total variance) of 116 single cell
transcriptomes sampled from PB pre-DC populations, annotated by the gate of origin
from index-linked flow cytometry (Index Sort) or by 7 clusters generated from
hierarchical clustering Figure S40. Pre-DC2 and pre-pDC were polarized in tSNE
space, linked by early pre-DC2 which showed variable expression of both pDC and
CD1c+DC genes.

Q. Heatmaps show expression of key TF on the tSNE plot from Figure S4P.

R. Mapping of single cell transcriptomes to cell populations identified by Villani et al.
Cells identified as early pre-DC2 and pre-DC2(CD123+CD5+CD303/410) showed
enrichment of gene expression with ‘AS’ DC (DC5) and DC2; pre-pDC
(CD123+CD2+CD303/4hi) mapped to pDC (DC6) and the CD34intCD123intSIRPA-
population (early pre-cDC1) showed enrichment of genes expressed by a
CD34intCD100+ population also found in Villani et al. to contain cDC1 potential in vitro.



Figure S5, related to Figure 5
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Figure S5. Differential IRF8 expression defines the two trajectories of DC
development

A. Flow cytometric gating strategy for the FACS-purification of PBMC and BMMC to
enrich for CD45+ cells and exclude 1in(CD3,19,20,56,161)+ lymphocytes prior to
CyTOF analysis (Figure 5A-E).

B. Gating of bivariate plots from CyTOF analysis to identify CD34+ progenitor subsets,
comparable with flow cytometric analysis in Figure 3A.

C. Gating of bivariate plots from CyTOF analysis to identify DC and monocyte subsets
and their precursors, comparable with flow cytometric analysis in Figure 4A.

D. Heatmap expression of IRF4 and additional key antigens (CD303, CD1c, SIGLEC6)
across the tSNE visualization plot shown in Figure 5A-E.

E. Heatmaps of the expression (log2) of additional key antigens superimposed across
the diffusion map trajectories generated with 14,000 GMP, precursor and mature DC
and monocyte cells and 29 markers to infer pseudo-temporal ordering of cells and
reconstruct lineage branching, as shown in Figure 5F.

F. Back-gating of CD34neg-int DC precursors and DC subsets (defined in Figure 4A) on
bivariate plots, to relate the DC developmental pathways to standard flow analysis.
The relative expression of CD34 and CD123 is visualized across populations
comprising lineage-specific developmental pathways as defined by the previous data.
Schematic arrows summarize the proposed sequence of maturation of gated
populations across the 2D space, from CD34+ progenitor compartment to mature DC
populations. The utility of BM as a source material and relative paucity of DC
precursors in PB is also illustrated.

G. Lineage-specific CD34neg-int DC precursors and DC subsets from BM, as defined in
Figure 4A, backgated onto bivariate plots of CD123 versus CD11c and CD123 versus
SIRPA/B to visualize the relative expression of these antigens on populations
comprising lineage-specific developmental pathways.



Figure S6, related to Figure 6
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Figure S6. IRF8ni and IRF8ic pathways are differentially compromised in IRF8
deficiency

A. Flow cytometric gating strategy for whole PB Trucount™ analysis of a HC (Cont),
subject carrying heterozygous IRF8 mutation (R83C) and subject carrying dominant
negative mutation (V426fs), summarized in Figure 6B. Numbers represent the percent
of cells from the parent gate.

B-C. Intracellular flow cytometric analysis of in vitro cytokine elaboration by
monocytes (black bars), CD14+DC3 (orange), CD14-CD5-CD1¢c+DC (gray) and
CD5+DC2 (red) (B) and CD2+pre-pDC and pDC (C) from HC (n=8) and subjects
carrying heterozygous IRF8 mutations (R83C, R291Q, mean of technical duplicates;
and V426fs) in response to 14hrs stimulation with TLR agonists (CpG, poly(l:C),
CLO75, LPS). Integrated median fluorescence intensity (iMFI) was calculated by
multiplying the frequency of positive cells by the MFI of a given marker. Bars show
mean+SEM. P values from Mann Whitney U analysis (* p<0.05, **p<0.01, ***p<0.001).



Figure S7, related to Figure 7
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Figure S7. IRF8 deficiency causes dose-dependent blockade of the IRF8ni
pathway

A. Summary of DC and monocyte differentiation pathways from BM (where available)
and PB of subjects carrying heterozygous R83C, dominant negative V426fs and bi-
allelic R83C/R291Q IRF8 mutations. DC and precursor populations were gated as
shown in Figure 7B. These were backgated on bivariate plots to visualize the relative
expression of CD34 and CD123 on populations comprising lineage-specific
developmental pathways. Arrows indicate the proposed sequence of maturation of
gated populations from CD34+ progenitor compartment to mature DC populations.
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