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Abstract

Motivation: The minimizers technique is a method to sample k-mers that is used in many bioinfor-

matics software to reduce computation, memory usage and run time. The number of applications

using minimizers keeps on growing steadily. Despite its many uses, the theoretical understanding of

minimizers is still very limited. In many applications, selecting as few k-mers as possible (i.e. having

a low density) is beneficial. The density is highly dependent on the choice of the order on the k-mers.

Different applications use different orders, but none of these orders are optimal. A better understand-

ing of minimizers schemes, and the related local and forward schemes, will allow designing schemes

with lower density and thereby making existing and future bioinformatics tools even more efficient.

Results: From the analysis of the asymptotic behavior of minimizers, forward and local schemes,

we show that the previously believed lower bound on minimizers schemes does not hold, and that

schemes with density lower than thought possible actually exist. The proof is constructive and

leads to an efficient algorithm to compare k-mers. These orders are the first known orders that are

asymptotically optimal. Additionally, we give improved bounds on the density achievable by the

three type of schemes.

Contact: gmarcais@cs.cmu.edu or ckingsf@cs.cmu.edu

1 Introduction

The minimizers technique is a method (Roberts et al., 2004a, b;

Schleimer et al., 2003) to sample k-mers from a sequence. It has two

important properties: (i) there is no large gap in the sampling and

(ii) from similar sequences similar k-mers are sampled. Minimizers

help design algorithms that are more efficient both in memory usage

and run time by reducing the amount of information to process,

while not losing information.

The minimizers method is very flexible and has been used in a sur-

prising large number of settings, from the original computation of read

overlaps (Roberts et al., 2004a, b), to counting k-mers (Deorowicz

et al., 2015; Li and XifengYan, 2015), reducing the genome assembly

de Bruijn graph (Li et al., 2013; Ye et al., 2012), making sequence

alignment faster (Li, 2016; Ondov et al., 2016), to metagenomics

(Kawulok and Deorowicz, 2015; Wood and Salzberg, 2014) and sparse

data structures (Grabowski and Raniszewski, 2015).

The minimizers method has two parameters, k the length of the

k-mers and w the maximum distance between two sampled k-mers in

the input sequence (called the window size). Additionally, the minimiz-

ers scheme is parameterized by the choice of a complete order on the

k-mers, for example the lexicographic order. The minimizers scheme

then selects in the input sequence the smallest k-mer, according to the

predefined order, in each window of w consecutive k-mers.

Any choice of an order on the k-mers is valid in the sense that

properties (i) and (ii) above are satisfied. The density, i.e. the

expected number of selected k-mers over the length of the input se-

quence, is affected by the choice of the order on the k-mers. For

many applications, a lower density is preferable as it reduces the

amount of data to process. The density of any minimizers scheme is

at least 1=w, as at least 1 k-mer is selected in each window, and at

most 1, when every k-mer in the sequence is selected. These are the

trivial bounds.

Although bioinformatics tool developers chose many different

orders for their applications, in most cases, these orders are not an in-

tegral part of their algorithm. That is, if one were to change the order

in a given application, the results returned by the application would

be unchanged or equivalent, although the run time or memory usage

may be different. Therefore, the development of k-mer orders giving

lower density would benefit new and existing applications.

In addition to minimizers schemes, we consider two generaliza-

tions: local schemes and forward schemes. Local schemes are the

most general schemes as they use any function defined on a set of w

k-mers. The forward schemes are local schemes with the additional

requirement that the k-mers are selected in an increasing manner

from the input sequence (minimizers schemes are an example of for-

ward schemes). From the more specific to the more general schemes,

we have

minimizers � forward � local:

Similarly, from the point of view of a bioinformatics application,

these other two types of schemes can be used as a drop-in
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replacement of a minimizers scheme: they have the same parameters

k and w, the same input and output, and they satisfy properties

(i) and (ii).

Schleimer et al. (2003) showed an expected density of 2= wþ 1ð Þ
for some class of minimizers schemes and showed a lower-bound of

1:5þ 1=2wð Þ= wþ 1ð Þ. This later bound only applies to randomized

and not all local schemes as previously believed. Marçais et al.

(2017) used a heuristic method to create minimizers schemes with

density below 2= wþ 1ð Þ, but still above the 1:5þ 1=2wð Þ= wþ 1ð Þ
bound.

We study the asymptotic behavior in k and w of local, forward

and minimizers schemes. This study leads to the realization that the

previously believed lower-bound on the achievable density of local

schemes does not apply. We give concrete examples of minimizers

schemes with density below that former lower-bound. This opens up

the field for much greater improvements in density from minimizers,

forward and local schemes. Also, the results of this study give direc-

tions for further potential improvements.

We present three main results in this paper.

i. For fixed w and asymptotically in k, we show that there exist

minimizers schemes that achieve optimal density. This is the

first example of schemes that achieve optimal density. Because

minimizers schemes are the most specific schemes, optimality is

also achieved by local and forward schemes and this completely

characterizes the behavior for fixed w and asymptotic in k.

ii. For fixed k and asymptotically in w, we derive new lower-

bounds for minimizers and forward schemes, which show that

neither of these schemes can be optimal when w is much larger

than k. Furthermore, we show that the local schemes are strictly

more powerful than forward schemes by finding optimal local

schemes for some parameters k and w with density not achiev-

able by forward schemes.

iii. We prove a lower-bound on the density of forward schemes

that is valid for all parameters k and w. This lower-bound is a

refinement of the bound proposed by Schleimer et al. (2003).

Additionally, these results give two practical algorithms. The

first one computes a set of k-mers that covers every path of length w

in the de Bruijn graph (an extension of the set cover problem). This

problem was studied in Orenstein et al. (2017) and Marçais et al.

(2017), and this new algorithm gives an asymptotically optimal so-

lution. The second algorithm gives the order between k-mers for the

minimizers schemes in (i). This algorithm is efficient as it only takes

O(k) time to compare two k-mers.

In the next section, we give precise definitions of the various con-

cepts and a statement of the main theorems. Section 3 gives detailed

proofs of the theorems, followed by a discussion of remaining open

problems (Section 4).

2 Approach

2.1 Definitions
2.1.1 Basic definitions

Let R be an alphabet of size r ¼ jRj. If S 2 R� is a string on alphabet

R, S i; ‘½ � is the substring of S starting at position i and of length ‘. In

many cases in the following the strings are circular: offsets in the

string are understood modulo the length of the string and a substring

extending beyond the end of the string wraps around to the begin-

ning of the string. The substring x ¼ S i;wþ k� 1½ � represents

the sequence of a window x of w consecutive k-mers starting at off-

set i in S.

2.1.2 Schemes

A local scheme is a function that selects a k-mer in a window of w

consecutive k-mers, i.e. f : Rwþk�1 ! 0 : w� 1½ �.
A forward scheme is a particular local scheme where the se-

quence of the starting positions of the selected k-mers is an increas-

ing sequence. Equivalently, a local scheme f : Rwþk�1 ! 0 : w� 1½ �
is a forward scheme if

8x 2 Rwþk�1;8x 2 R; f x 1;wþ k� 2½ � � xð Þ � f xð Þ � 1:

The dot is the concatenation operator and x 1;wþ k� 2½ � � x;
8x 2 R represents all the possible windows following x.

A minimizers scheme is a particular local scheme where the func-

tion returns the left-most position of the smallest k-mer in the win-

dow. All minimizers schemes are forward schemes, and forward

schemes are local schemes, but those sets are not equal to each

other.

2.1.3 Density

The set of selected indices of a scheme f on string S is

Sf ;k;w Sð Þ ¼ fiþ f S i; kþw� 1½ �ð Þ j i 2 0; jSj � 1½ �g:

Because the scheme may select in adjacent windows the same pos-

ition in S, jSf ;k;w Sð Þj � jSj. The particular density of a scheme f on

the circular string S is the proportion of k-mers selected:

df ;k;w Sð Þ ¼ jSf ;k;w Sð Þj=jSj.
The density of a scheme df ;k;w is defined at the limit as the

expected density on an infinitely long sequence with the characters

selected Independent Identical Distribution (IID). The trivial bounds

for the density are 1=w � df ;k;w � 1. Following Marçais et al.

(2017), we define the density factor df ¼ d � wþ 1ð Þ, which repre-

sents the average number of k-mers selected in every window of

length wþ1. The trivial bounds for the density factors are

1þ 1=w � dff ;k;w � wþ 1.

2.1.4 Computing density

A de Bruijn sequence of order ‘ is any circular sequence of length r‘

such that every possible substring of length ‘ occurs once and only

once in the string (de Bruijn, 1946). In the following, D‘ represents

the de Bruijn graph of order ‘. A de Bruijn sequence is obtained by

reading the first base of every vertex traversed by a Hamiltonian

tour of a de Bruijn graph D‘ of order ‘.

Even though the density is defined as the limit of an expected

value on an infinite string, it can be computed exactly (and not just

estimated) as the particular density computed on a de Bruijn se-

quence of large enough order (Marçais et al., 2017). For any

de Bruijn sequence S‘ of order ‘ � 2wþ k� 2, the particular density

of f on S‘ is equal to the density of f: df ;k;w ¼ df ;k;w S‘ð Þ. For a forward

scheme, the minimum order of the de Bruijn sequence is only wþk.

2.1.5 Universal set

A universal set is an unavoidable set of k-mers: it is a set Uk;w such

that every path of w nodes in the de Bruijn graph of order k contains

a k-mer from Uk;w. In other words, a universal set is a set of nodes

of Dk that covers every path of w nodes. Equivalently, every string

of length kþw� 1 must contain a substring of length k from Uk;w.

There is a strong link between universal sets and minimizers

schemes. A minimizers scheme is compatible with a universal set

Uk;w if every k-mer of Uk;w compares less than any k-mer not in

Uk;w. There is more than one order which is compatible with a uni-

versal set, as the relative order of the k-mers within Uk;w is not

i14 G.Marçais et al.



constrained by the definition. Although this relative order may

change the density of the scheme, it is not relevant in our asymptotic

analysis.

2.2 Main results
2.2.1 Behavior asymptotically in k

We show that for any fixed value of w, there exists a sequence of

minimizers schemes that asymptotically achieve optimal density, i.e.

one k-mer per window or 1=w. These are the first proposed orders

that achieve close to optimal density. It is also the first orders to

have density factors below 1:5þ 1=2wð Þ, which was formerly con-

sidered the lowest possible density factor. Surprisingly, this optimal

density is attained with minimizers schemes, the weakest type of

schemes.

The sequence of minimizers schemes is created from universal

sets. The following Lemma shows an important link between univer-

sal sets and minimizers scheme: the size of a universal set upper-

bounds the density of any compatible minimizers scheme.

Lemma 1. Given a minimizers scheme fU compatible with a uni-

versal set U, the density satisfies

dfU ;k;w �
jUj
rk

:

The strategy is then to construct a sequence of universal sets

whose sizes get close to rk=w. This gives us our first main result,

that optimal minimizers schemes exist asymptotically in k for alpha-

bet of even sizes.

Theorem 1. On an even alphabet, for any fixed w, there exists a

sequence of universal sets Uk asymptotically of optimal size and a se-

quence of minimizers schemes fk asymptotically of optimal density.

The proof of this theorem relies on a geometric argument. The

de Bruijn graph is embedded in a w-dimensional space, a hypercube

with w dimensions, such that the k-mers mapping into a particular

volume of the cube is a universal set. Then, we show that asymptot-

ically the number of k-mers mapping into that volume represents a

proportion 1=w of the total number of k-mers. This line of proof is a

generalization of the construction of asymptotically minimum vertex

cover by Lichiardopol (2006).

2.2.2 Behavior asymptotically in w

The previously mentioned bounds on density of 2= wþ 1ð Þ might

give the impression that, as w gets large, arbitrarily small density

can be achieved. It is not the case for minimizers schemes which

have a lower limit on the density greater than 0.

Theorem 2. For any minimizers scheme f, the density df ;k;w con-

verges asymptotically in w to r�k:

df ;k;w ��!
w!1

1

rk
:

Forward schemes and local schemes do not have such a lower-

bound on their density, and we will construct a forward scheme

with a density going to 0 asymptotically in w. In such cases, it is

more meaningful to speak of the density factor. The lowest density

factor for minimizers is X wð Þ, while the lowest density factor for

forward schemes is O
ffiffiffiffi
w
pð Þ.

2.2.3 Forward schemes bound

Finally, we prove a lower-bound on the density for forward

schemes, which holds for any parameters k and w.

Theorem 3. The density of any forward scheme satisfies

df ;k;w �
1:5þmax 0; bk�w

w c
� �

þ 1
2w

wþ k
:

Asymptotically in w, this bound implies that the best density fac-

tor for forward schemes is � 1:5. This is much lower than the

lower-bound for minimizers schemes, although it is not known yet

how to construct a forward scheme approaching that lower-bound

for large values of w.

3 Proofs of main theorems

3.1 Minimizers asymptotic behavior in k
We consider in this section the behavior of minimizers schemes

when the length of the window w is fixed while the length of the

k-mer goes to infinity. In particular, we will construct asymptotical-

ly optimal minimizers schemes. Given that a local scheme must se-

lect at least one k-mer in each window, the minimum density is

� 1=w. So, more precisely, we construct a minimizers scheme f such

that df ;k;w ��!
k!1

1=w. To do so, we use the link between universal sets

and orderings.

Recall that given a universal set U, a set that intersects every w-

long path in the de Bruijn graph Dk;r, the minimizers scheme f is

compatible with U if every k-mer of U compares less than any k-mer

not in U. The following Lemma explains the fundamental link be-

tween universal sets and orderings.

Lemma 1. Given a minimizers scheme fU compatible with a uni-

versal set U, the density satisfies

dfU ;k;w �
jUj
rk

:

PROOF. Let S‘ be a de Bruijn sequence of order ‘ � wþ k.

Because U is a universal set, every window of w consecutive k-mers

contains at least one element of U, hence all the selected k-mers are

from the set U. Therefore, SfU ;k;w contains, at most, all the positions

in S‘ of the k-mers of U. Moreover, every k-mer occurs exactly r‘�k

times in S‘. Hence

dfU ;k;w ¼
jSfU ;k;w S‘ð Þj

r‘
� jUjr

‘�k

r‘
¼ jUj

rk
: (1)

h

This Lemma gives a simple lower-bound on the size of a univer-

sal set for a de Bruijn graph. Define bw Gð Þ to be the minimum size

of a universal set for a graph G that hits every path of w vertices.

This notation is an extension of the definition of the size of the min-

imum vertex cover: b2 Gð Þ ¼ b Gð Þ.

Proposition 1. The minimum size of a universal set satisfies:

bw Dk;r

� �
� rk

w
:

PROOF. Let U be a universal set of minimum size, jUj ¼ bw Dk;r

� �
and fU a minimizers scheme compatible with U. By Lemma 1

1

w
� dfU ;k;w �

jUj
rk
) bw Dk;r

� �
� rk

w
: (2)

h

A second consequence of Lemma 1 is that a sequence of

universal set Uk that is asymptotically optimal, i.e. such that

jUkj=rk�!
k!1

1=w, gives a sequence of minimizers schemes fUk
which

is also asymptotically optimal, i.e. dfUk ;k;w
��!
k!1

1=w. The remainder of

Asymptotically optimal minimizers schemes i15



this section describes how to construct such a sequence of universal

sets. This construction is similar to the construction of an optimal

vertex cover (Lichiardopol, 2006) and of an optimal decycling set

(Mykkeltveit, 1972).

3.1.1 Naive extension

Given a universal set U that hits every w-long path in Dk;r, we can

easily construct a universal set that hits every w-long path in Dkþ1;r.

The set U � R obtained by concatenating every letter of the alphabet

R to every element of U is called the naive extension. The naive ex-

tension of a universal set U in Dk;r is a universal set in Dkþ1;r for

w-long paths, but the naive extension may not be of optimal size,

even if U is of optimal size.

The naive extension shows that the minimum size of a universal

set, in proportion, is a non-increasing function as the length of the

k-mers increases.

Proposition 2. The function k! bw Dk;r

� �
=rk is non-increasing.

PROOF. Let Uk;w be a universal set of minimum size, i.e.

jUk;wj ¼ bw Dk;r

� �
. Consider now the naive extension Uk;w � R. The

size of the naive extension is jUk;w � Rj ¼ rjUk;wj. Then,

bw Dkþ1;r

� �
rkþ1

� jUk;w � Rj
rkþ1

¼ jUk;wj
rk

¼
bw Dk;r

� �
rk

: (3)

h

In the following construction, we only consider a subsequence of

universal sets, where k is a multiple of w. Nevertheless, using the

naive extension, the subsequence can be extended to a non-

increasing complete sequence of universal sets that is asymptotically

optimal.

3.1.2 Embedding of the de Bruijn graph

The universal set is created by embedding the de Bruijn graph in a

w-dimensional space and picking a region of the space that intersects

every path of length w. Using a mapping (called ww), we embed the

de Bruijn graph Dk in a w-dimensional hypercube Cw, where edges

in Dk correspond approximately to a rotation around a diagonal of

the hypercube (a rotation plus a small translation). The hypercube is

then split into w volumes, or wedges called Wi; i 2 0;w� 1½ �, of

equal size, and one of them is selected, say W0. Because the edges do

not correspond perfectly to a rotation, the k-mers mapping to the

wedge W0 do not constitute a universal set. Therefore, we enlarge

the wedge W0 to get a universal set: W0 is the wedge W0 augmented

with thin ‘slabs’ at the frontier between W0 and the other wedges.

The set W0 is such that any path of w vertices in Dk contains at least

one vertex that maps to W0 . Finally, the universal set is any k-mer

that maps into the wedge W0 , that is the set w�1
w W0

� �
.

By construction, the same number of k-mers maps to any of the w

wedges. The technical part of the proof below is to show that the num-

ber of k-mers mapping into the extra slabs is negligible as k!1.

In the following, we assume that w divides k and set n ¼ k=w.

Also, the alphabet is mapped to the integers f0; . . . ; r� 1g. For a

k-mer m, define the functions

wi;w mð Þ ¼
Xn�1

j¼0

m jwþ i½ � (4)

ww mð Þ ¼ w0;w mð Þ;w1;w mð Þ; . . . ;ww�1;w mð Þ
� �

: (5)

wi;w mð Þ sums every wth bases of m, starting at base i. wi;w mð Þ is an

integer in the range 0 : n r� 1ð Þ½ �. Then ww mð Þ is a w-dimensional

vector that maps a k-mer to a point with integer coordinates inside a

w-dimensional hypercube of side length n r� 1ð Þ þ 1 (Fig. 1).

The mapping ww has an important property: an edge in the

de Bruijn graph corresponds to a rotation in the space, plus a

translation along the last coordinate of length at most r� 1.

More precisely, given an edge m! m0 in Dk, the suffix of m is

equal to the prefix of m0: m0 i½ � ¼ m iþ 1½ �; i 2 0;k� 2½ �. Hence,

there is a shift in most of the coordinates in the mapping:

wi;w m0ð Þ ¼ wiþ1;w mð Þ; i 2 0;w� 2½ �. Only the last coordinate of ww

m0ð Þ is not directly equal to a coordinate of ww mð Þ, but rather

ww�1;w m0ð Þ ¼ w0;w mð Þ �m 0½ � þm0 k� 1½ �. In other words, ww m0ð Þ
is obtained from ww mð Þ by rotating all the coordinates and

adding a vector d which has only one non-zero coordinate

d w� 1½ � 2 � r� 1ð Þ : r� 1½ �:

ww m0ð Þ ¼ w1;w mð Þ; . . . ;ww�1;w mð Þ;w0;w mð Þ þ d w� 1½ �
� �

:

We define the wedge Wi as the points in the hypercube whose

ith coordinate is greater than all the other coordinates. Let Vi be a

vertex of the hypercube whose only non-zero coordinate is the ith

coordinate. If x 2W0, then its 0th coordinate is greater than its ith

coordinate: x i½ � � x 0½ � ¼ �!V0Vi �~x= n r� 1ð Þð Þ < 0. The wedge W0 is

then equivalently defined as the volume bounded by the w – 1

hyperplanes orthogonal to the vectors
�!
V0Vi; i 2 1;w� 1½ �:

W0 ¼ x 2 Cw

�����
�!
V0Vi

n r� 1ð Þ �~x
(

< 0; 8i 2 1;w� 1½ �
)
:

Notice that the hyperplanes separating the wedges are not contained

in any of the wedges, and therefore the wedges are disjoint and have

the same size.

The rotation of the coordinates correspond geometrically to a ro-

tation around the vector 1; . . . ; 1ð Þ, and this vector is contained in

the intersection of all the hyperplanes.

Ignoring at first the points on the hyperplanes, take a point x

of Cw: it is in one of the wedges, say Wi. The rotation of the

coordinates of x gives a point in Wi�1 (or Ww�1 if i¼0). Hence,

Fig. 1. The cube Cw for w¼3. The vertices Vi have their ith coordinate equal to

nðr� 1Þ, where n ¼ k=w and all other coordinates equal to 0. The wedge Wi

is the part of the cube of the points whose ith coordinate is greater than the

others, which includes vertex Vi. The hyperplanes separating wedge Wi and

Wj is orthogonal to the vector
�!
Vi Vj . An edge in the de Bruijn graph

corresponds to a rotation of 2p=w around the line OOCw , followed by a

translation along the ðw � 1Þth coordinate of at most r

i16 G.Marçais et al.



either x is in W0 or one of its w – 1 consecutive rotations is in W0. If

it were not for the additional translation by d, the k-mers mapping

to W0 would constitute a universal set.

Starting from a k-mer m that maps to point x, any k-mer reach-

able from m by a path of at most w – 1 edges maps to a point where

each coordinate differs from a rotation of x by at most r. To com-

pensate for d and the points on the hyperplanes, we extend the

wedge W0 by pushing the hyperplanes back by r (i.e. we add some

slabs parallel to the hyperplanes of thickness r):

W0 ¼ x 2 Cw

�����
�!
V0Vi

n r� 1ð Þ �~x
(

� r;8i 2 1;w� 1½ �
)
:

By construction, the set w�1
w W0

� �
is a universal set.

The slabs have a thickness of r, which is a constant independent

of k, hence only w – 1 dimensions of the slabs grow with k and the

volume of the slabs is in proportion a negligible volume of the

hypercube as k!1. The slabs are represented by the set

s ¼W0nW0. It remains to show that the number of k-mers that map

into the slabs, i.e. w�1
w sð Þ, is also asymptotically negligible compared

to the total number of k-mers rk.

3.1.3 Asymptotic size of the universal set: binary alphabet

By the symmetry of the definition of the mapping function and of

the wedges, the same number of k-mers map to each wedge, there-

fore jw�1
w Wið Þj is independent of i and because the wedges are dis-

joint, jw�1
w Wið Þj � rk=w. All the hyperplanes are contained in W0 ,

and therefore jw�1
w W0

� �
j � rk=w. Hence,

jw�1
w W0ð Þj

rk
� 1

w
�
jw�1

w W0

� �
j

rk
¼ jw

�1
w W0ð Þj

rk
þ jw

�1
w sð Þj
rk

; (6)

and it suffices to show that the proportion of k-mers mapping into s,

i.e. jw�1
w sð Þj=rk, is asymptotically 0.

Let’s first assume that the alphabet is binary, r¼2.

Proposition 3. The slabs are asymptotically negligible:

jw�1
w sð Þj
2k

�!
k!1

0:

PROOF. The number of ways to sum up n binary numbers to a

value v is
n
v

� �
. Hence, the number of k-mers mapping to x 2 Cw is

Qn�1

i¼0

n
x i½ �

� �
. The point at the center of the cube OCw

¼ n=2; . . . ; n=2ð Þ,

which is also in all the slabs, has the largest number of k-mers map-

ping to it:
n

n=2

� �w

. The volume of a slab, which is bounded by an

hyperplane and of thickness r¼2, is O nw�1
� �

.

The images of the mapping ww are the points with integer

coordinates, and these points are evenly distributed through out

Cw. Hence, the number of points in a slab is proportional to its

volume. We can therefore get an over-estimation of the number of

k-mers mapping into the slabs by estimating the number of k-mers

mapping to any point in the slab as the
n

n=2

� �w

(the maximum

possible), and then multiply by the volume. Unfortunately,

the approximation of the proportion of k-mers in the w – 1 slabs

of O w� 1ð Þ n
n=2

� �w

nw�12�k

� �
is too crude and does not con-

verge to 0 when k (hence n) goes to infinity.

Instead, we split the slabs into two parts: (i) the points within a

small hypercube Ca centered at OCw and of side length 2 n=2ð Þa;

(ii) the points outside of that hypercube. As we shall see, choosing

1=2 < a < w=2 w� 1ð Þ gives the desired convergence. We use

n
n=2

� �w

as an upper-bound on the number of k-mers mapping to

the points in Ca. For the points mapping outside of Ca, i.e. in the

complement C{a, at least one coordinate is at distance � n=2ð Þa from

n=2. The maximum number of k-mers mapping to a point x of C{a is

when all the coordinates are equal to n=2, except for one equal to n

� n=2ð Þa or nþ n=2ð Þa. Because of the symmetry of the binomial

coefficient around n=2;
n

n=2� n=2ð Þa
� �

n
n=2

� �w�1

is an upper-

bound on the number of k-mers mapping to a point outside of Ca.

In the following O expressions, w and r¼2 are constants and

will be included in the constant in the O, while k and n ¼ k=w go to

infinity.

For (i), from the Stirling approximation
x

x=2

� �
	 2xþ0:5=

ffiffiffiffiffiffi
px
p

,

and the volume of the intersection of Ca with the slabs of

O w n=2ð Þa w�1ð Þ
� 	

, we have:

jw�1
w Ca \ Sð Þj

2k
¼ O

2nþ0:5ffiffiffi
n
p

� �w

w
n

2

� 	a w�1ð Þ 1

2k

 !
(7)

¼ O
2nw

2k
na w�1ð Þ�w=2

� �
(8)

¼ O na w�1ð Þ�w=2
� 	

: (9)

In Equation (8), recall that nw¼k. Therefore, jw�1
w Ca \ Sð Þj=2k con-

verges to 0 if the power of n in Equation (9) is negative, that is if Ca
is not too large and a < w=2 w� 1ð Þ.

For (ii), also from Stirling approximation, we have the

equivalence

x

y

 !
	 xxþ0:5ffiffiffiffiffiffi

2p
p

yyþ0:5 x� yð Þx�yþ0:5
:

Let n0 ¼ n=2, then x¼n and y ¼ n0 � n0a. Then, the denominator of

the binomial coefficient is (except for the
ffiffiffiffiffiffi
2p
p

factor):

n0 � n0að Þn
0�n0aþ0:5

n� n0 þ n0að Þn�n0þn0aþ0:5
(10)

¼ n0nþ1 1� n0a�1
� �n0�n0aþ0:5

1þ n0a�1
� �n0þn0aþ0:5

(11)

	2� nþ1ð Þnnþ1 exp 2n02a�1
� �

(12)

Hence, the proportion of k-mers mapping in the slab outside of Ca is:

jw�1
w ðC{a \ SÞj

2k
¼ O

2nþ0:5ffiffiffi
n
p

� �w�1
nnþ0:5wnw�12nþ1

2knnþ1 exp 2n02a�1ð Þ

 !
(13)

¼ O
2nw

2k

nw=2�1

exp 2n02a�1ð Þ

� �
: (14)

In Equation (14), both n ¼ k=w and n0 ¼ n=2 grow linearly with k.

Therefore, the proportion jw�1
w ðC{a \ SÞj=2k converges to 0 when the

power of n0 in the exponential is positive, that is when Ca is large

enough and a > 1=2. h

The following proposition is then a direct consequence of

Proposition 3 and Lemma 1.
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Proposition 4. On the binary alphabet, for any fixed w, there exists

a sequence of universal sets Uk asymptotically of optimal size and a se-

quence of minimizers schemes fk asymptotically of optimal density.

3.1.4 Asymptotic size of the universal set: even alphabet

We now extend the previous result to even alphabets. Let’s assume

that the alphabet R is even: jRj ¼ r ¼ 2r0. We construct a graph

homomorphism (Lempel, 1970; Lichiardopol, 2006) from the

de Bruijn graph Dk;r of order k on the alphabet of size r onto the

de Bruijn graph Dk;2 of order k on the binary alphabet. Consider

the function g xð Þ ¼ bx=r0c. In other words, g maps the first

half of the alphabet R to 0 and the second half to 1. Then, consider

u : Dk;r ! Dk;2 which applies g to each base of a k-mer. That is,

y ¼ u xð Þ implies that y i½ � ¼ g x i½ �ð Þ; i 2 0;k� 1½ �.
It is simple to check that u is an onto function and a graph

homomorphism: if m;m0ð Þ is an edge of Dk;r, then so is

u mð Þ;u m0ð Þð Þ in Dk;2. Inductively, if m1; . . . ;mn is a path of Dk;r,

then u m1ð Þ; . . . ;u mnð Þ is a path of Dk;2. Therefore, if Uw;2 is a uni-

versal set in Dk;2 that intersects every path of w vertices, then the set

Uw;r ¼ u�1 Uw;2

� �
is also a universal set of Dk;r. Moreover, the same

number of letters of R map to 0 and to 1: jg�1 0ð Þj ¼ jg�1 1ð Þj ¼ r0.

Then the number of k-mers of Dk;r that map to a k-mer m of Dk;2 is

ju�1 mð Þj ¼
Yk�1

i¼0

jg�1 m i½ �ð Þj ¼ r0k ¼ rk

2k
: (15)

We can now prove a generalization of Proposition 4.

Theorem 1. On an even alphabet, for any fixed w, there exists a

sequence of universal sets Uk asymptotically of optimal size and a se-

quence of minimizers schemes fk asymptotically of optimal density.

PROOF. Let Uw;2 kð Þ be the sequence of universal sets of Dk;2 con-

structed in the Proof of Proposition 4. Then Uw;r kð Þ ¼ u�1 Uw;2 kð Þ
� �

is

a sequence of universal sets of Dk;r where jUw;r kð Þj ¼ jUw;2 kð Þjrk=2k.

Therefore, by Proposition 3:

jUw;r kð Þj
rk

¼ jUw;2 kð Þjrk

2krk
��!
k!1

1

w
: (16)

Lemma 1 proves the second part of the statement. h

3.2 Minimizers asymptotic behavior in w
We now consider the converse problem where the length of the

k-mer is fixed and w grows to infinity.

Proposition 5. For any minimizers scheme f and any fixed k, the

density function w! df ;k;w is non-increasing.

PROOF. Let Swþkþ1 be any de Bruijn sequence of order wþ kþ 1.

Let pw ¼ Sf ;k;w Swþkþ1ð Þ and pwþ1 ¼ Sf ;k;wþ1 Swþkþ1ð Þ be the set of

the positions of the minimizers in Swþ1þk when computing the

minimizers for w and wþ1, respectively. Because the order of the

de Bruijn sequence is large enough, df ;k;w ¼ jpwj=rwþ1þk and

df ;k;wþ1 ¼ jpwþ1j=rwþ1þk. We now show that pwþ1 is a subset of pw.

Let ‘ ¼ wþ k� 1. Consider the windows Swþkþ1 i; ‘½ � and

Swþkþ1 i; ‘þ 1½ �, containing w and wþ1 k-mers, respectively, both

starting at base i in Swþkþ1. Swþkþ1 i; ‘þ 1½ � contains one extra k-mer

compared to Swþkþ1 i; ‘½ �, the right-most k-mer starting at position

iþw. Hence, if a different minimizer is selected in these two win-

dows when computing minimizers for w and wþ1 respectively,

then the k-mer at position iþw must compare less than any k-mer

in Swþkþ1 i; ‘½ �. Then the k-mer at position iþw also compares

less than any k-mer in Swþkþ1 iþ 1; ‘½ �, and the position iþw is also

in pw. h

This previous proposition and the previously known lower-

bound on the density, such as 2= wþ 1ð Þ, might suggests that the

density of a minimizers scheme goes to 0 asymptotically in w. That

is not the case however, as shown in this next proposition.

Proposition 6. For any minimizers scheme f, df ;k;w � r�k.

PROOF. Let l be the k-mer that is the lowest for the ordering f.

In the minimizers scheme, every instance of l in the sequence is the

left-most smallest k-mer for some window. Hence the algorithm

selects as minimizers every instance of l. In a de Bruijn sequence of

order wþ k, every k-mer occurs the same number of times, rw

times. Hence the density is � rw=rwþk ¼ r�k. h

As the consequence, the expected density factor is not a constant

but rather grows at least linearly � wþ 1ð Þ=rk. Moreover this

lower-bound is tight.

Theorem 2. For any minimizers scheme f, the density df ;k;w con-

verges asymptotically in w to r�k:

df ;k;w ��!
w!1

1

rk
:

PROOF. Let Skþw be a de Bruijn sequence of order kþw and l the

smallest k-mer for the ordering f. In every window that contains l, it

is the selected minimizer. Let Aw be the set of all the windows of

Skþw that do not contain l. As a worst case scenario, assume that in

every window of Aw, a different minimizer is selected. In that worst

case, the set of selected positions contains all the rw instances of l in

Skþw and one position in each of the windows of Aw. This gives us

an upper-bound on the density:

df ;k;w Swþkð Þ ¼
jSf ;k;wj
rwþk

� rw þ jAwj
rwþk

¼ 1

rk
þ jAwj

rwþk
: (17)

We will show that as w increases, the proportion jAwj=rwþk goes to

zero, in other words most windows contain l and the only k-mer

that matters with respect to the density is l.

Because Swþk is a de Bruijn sequence, every possible window of

w consecutive k-mers occurs exactly r times in Swþk. Hence, the pro-

portion of interest jAwj=rwþk is exactly the probability of the event

that l is not in a window, and we can use a probabilistic argument.

The event that a window x does not contain the k-mer l is a subset

of the event that the non-overlapping k-mers starting at positions

i � k; i 2 0 : bw=kc½ � are not equal to l. Hence,

jAwj
rwþk

¼ Pr l 62 x½ � � 1� 1

rk

� �bw
k
c

(18)

� exp � w

krk

� �
: (19)

For a fixed k, as w goes to infinity, this proportion goes to 0.

Equation (17) combined with Proposition 6 gives the desired limit

for df ;k;w, for all minimizers scheme f. h

Theorem 2 shows that for very large w, all the minimizers

schemes are equivalent. Intuitively, when w is very large, say

w
 rk, every window of w consecutive k-mers is expected to con-

tain every possible k-mer. Hence almost every window contains l,

the absolute lowest k-mer and almost no other k-mer but l is

selected as a minimizer. This happens for any order on the k-mers.
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For minimizers schemes, the density factor is h wð Þ, that is it

grows linearly. This does not apply for local and forward schemes as

the next proposition exhibits a forward scheme whose density factor

is O
ffiffiffiffi
w
p
ð Þ, and therefore a density whose limit is 0 at infinity. The

insight for that proof is that a minimizers scheme for parameters

k0;w0, different from k, w, is a valid local scheme for parameters k,

w, so long as w0 � w and w0 þ k0 � wþ k. This holds because any

function taking a string of length at most wþ k� 1 and returns a

value within 0;w� 1½ � is a valid local scheme.

Proposition 7. There exists a forward scheme whose density fac-

tor is O
ffiffiffiffi
w
p
ð Þ.

PROOF. Let’s set k0 ¼ logr

ffiffiffiffi
w
pð Þ and w0 ¼ wþ k� k0 and con-

sider a minimizers scheme f 0 for parameters k0;w0. For large values

of w, w0 < w, and f 0 returns an offset in 0;w0 � 1½ � � 0;w� 1½ �,
hence f 0 is a valid forward scheme for parameters k, w. In a

de Bruijn sequence of order wþk, the minimum k0-mer l0 of the

ordering f 0 occurs rwþk�k0 times, hence, following the same proof as

Theorem 2, the density of f 0 on Swþk satisfies

df 0;k;w Swþkð Þ ¼
jSf 0 ;k;wj
rwþk

� rwþk�k0 þ jA0wj
rwþk

(20)

� 1

rk0
þ exp �wþ k� k0

k0rk0

� �
; (21)

where A0w is the set of windows not containing l0. Consequently, the

density factor satisfies

dff 0 ;k;w �
wþ 1

rk0
þ wþ 1ð Þ exp �wþ k� k0

k0rk0

� �
(22)

� wþ 1ffiffiffiffi
w
p þ wþ 1ð Þ exp �wþ k� logr

ffiffiffiffi
w
p
ð Þ

logr

ffiffiffiffi
w
pð Þ ffiffiffiffiw
p

� �
: (23)

Asymptotically, expression 23 is O
ffiffiffiffi
w
p
ð Þ. h

Forward schemes do not necessarily have a linear growth for the

density factor. The lowest asymptotic density factor achievable by

local schemes and forward schemes is still an open question.

3.3 Lower bound on forward schemes
When introducing the winnowing scheme, Schleimer et al. (2003)

provided a lower-bound on the density factor for local schemes of

1:5þ 1= 2wð Þ. Unfortunately, their definition of a local scheme dif-

fers slightly from ours as they assume that the input k-mers are first

hashed into fingerprints and that those fingerprints can be assumed

independent and uniformly distributed. This is a weaker setting than

what is considered here.

Moreover, their theorem does not apply to all local schemes, but

only to forward schemes. For a forward scheme, instead of counting

the number of selected k-mers, we use instead charged windows.

A window is charged if it is the window with the smallest starting

position where a given k-mer is selected. More precisely, for a for-

ward scheme f, a window is charged if its selected k-mer is different

than in the preceding window, i.e. the window xi starting at pos-

ition i is charged when iþ f xið Þ > i� 1þ f xi�1ð Þ. For a forward

scheme, the number of charged window is equal to the number of

selected k-mers and the density is equivalently computed from the

number of charged windows. This property, which is not satisfied

by general local schemes, is explicitly used in the proof of Schleimer

et al. (2003) and in the proof of the following theorem.

The theorem below is a refinement of Theorem 1 of Schleimer

et al. (2003) and it uses the same proof technique. The idea is to

look at two windows that are disjoint, and therefore the choice of a

selected k-mer in each window is independent from the choice in the

other window, and to estimate the number of k-mers that must be

selected between the two windows. We first have a Lemma.

Lemma 2. Let X and Y be two discrete random variables with

values in f0; . . . ;w� 1g which are independent and have the same

distribution. Then, Pr X � Y½ � � 1=2þ 1= 2wð Þ.

PROOF. Because X and Y are IID, Pr X > Y½ � ¼ Pr Y > X½ �, hence

Pr X > Y½ � ¼ 1� Pr X ¼ Y½ �
2

(24)

Pr X � Y½ � ¼ 1þ Pr X ¼ Y½ �
2

: (25)

We now get a lower bound on Pr X ¼ Y½ �. Let ~u be a vector

whose coordinates are Pr X ¼ i½ � for i 2 f0; . . . ;w� 1g, and let ~1 be

the vector of all 1s. Because the variables are IID, Pr X ¼ Y½ � ¼ k~uk2,

and by the Cauchy–Schwartz inequality

j~1 �~uj ¼ 1 � k~1k2k~uk2 ¼ wPr X ¼ Y½ � (26)

h

Theorem 3. The density of any forward scheme satisfies

df ;k;w �
1:5þmax 0; bk�w

w c
� �

þ 1
2w

wþ k
:

PROOF. Let f : Rwþk�1 ! 0;w� 1½ � be a forward scheme, and

consider two windows of w consecutive k-mers, x1 ¼ S i;wþ k� 1½ �
and x2 ¼ S iþwþ kþ 1;wþ k� 1½ �, starting, respectively, at base

i and iþwþ kþ 1 (Fig. 2). The last base of x1 is at index

iþwþ k� 2, hence there is no shared sequence between the two

windows, and a gap of two bases between the two windows.

Without loss of generality, we can assume that the input sequence is

Fig. 2. The sequence is represented by a thick vertical line, and each base is a

tick mark. In this example, k¼3, w¼4, X1 ¼ f ðx1Þ ¼ 1 and X2 ¼ f ðx2Þ ¼ 2.

The first base, last k-mer start and last base of x1 and x2 are i, i þw � 1; i

þw þ k � 2 and i þw þ k þ 1; i þ 2w þ k ; i þ 2w þ 2k � 1, respectively. The

selected k-mers are marked with a circle at positions s1 and s2. D is the num-

ber of bases between, and excluding, the selected k-mers. There are wþ k

windows that can be charged after x1 and before x2, between bases iþ1 and

iþwþ k included
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a de Bruijn sequence of large enough order so that every possible

pair of windows x1 and x2 is encountered, the same number of

times. We can therefore use a probabilistic argument: the starting

position i is chosen at random, consequently the strings x1 and x2

are IID.

We are counting the number of charged windows starting at

positions in the interval iþ 1; iþwþ k½ �, that is all the windows

after x1 and before x2. Consider the random variables of the offset

of the selected k-mer in each window, X1 ¼ f x1ð Þ and X2 ¼ f x2ð Þ.
Because the windows x1 and x2 do not share any sequence, X1 and

X2 are independent and have the same distribution. The respective

positions of the selected k-mer in x1 and x2 is s1 ¼ iþX1 and

s2 ¼ iþwþ kþ 1þX2.

At least one window with starting index in iþ 1; s1 þ 1½ � must be

charged, as the k-mer selected in window x1 is not in the window

starting at position s1 þ 1. Moreover, additional windows must

be charged if the number of bases between s1 and s2 (excluding bases

at s1 and s2) is larger or equal to 2w. If D is the distance between s1

and s2, the number of extra k-mers to select is b D�wð Þ=wc if

D � w, 0 otherwise. The number of bases between these two

selected k-mers is

D ¼ wþ kþX2 �X1 ¼ bk=wc þ 1ð Þwþ rþX2 �X1;

where k ¼ bk=wcwþ r. Given that both X1 and X2 are in 0;w� 1½ �
and r � 0; X2 �X1 þ r � �wþ 1. Therefore D � bk=wcw and at

least an extra b k�wð Þ=wc windows must be charged (provided that

k � w).

When D � bk=wc þ 1ð Þw, or equivalently when X2 � X1 � r, at

least one extra window is charged. By Lemma 2, this event occurs

with probability

Pr X2 � X1 � r½ � � Pr X2 � X1½ � � 1

2
þ 1

2w
:

Hence, in any interval iþ 1; iþwþ k½ � of length wþk,

the expected number of charged windows is at least

1:5þmax 0; b k�wð Þ=wcð Þ þ 1= 2wð Þ, and the density of charged

windows is as stated. h

This lower-bound is tight for some extremal cases. For w¼1,

the lower-bound on the density is 1, which is the value of the density

for any scheme. When k!1, the lower-bound on the density goes

to 1=w, which is achieved asymptotically by the orderings

constructed in Section 3.1.

On the other hand, when w!1, the lower-bound on density

factor goes to 1.5. It is still an open question whether this bound can

be reached asymptotically by a forward scheme.

4 Discussion

4.1 Asymptotic behavior in w
Figure 3 summarizes the known upper and lower-bounds for

local, minimizers and forward schemes, for a fixed parameter k and

varying w.

The dashed lines show the upper and lower-bound for minimiz-

ers schemes. In addition, we computed through exhaustive search

(there are ‘only’ 23! ¼ 40 320 different orderings) the actual lowest

and highest density factor achievable for k¼3 and w 2 1;27½ �.
These values are shown in gray, and the inset zooms in on that re-

gion of the graph. The minimizers scheme is the most understood

scheme, and the known bounds are tight asymptotically in w.

Theorem 2 shows that for very large w, all the minimizers schemes

are equivalent, as the number of selected positions is dominated by

the occurrences of the lowest k-mer l and this number is the same

for any ordering. This is responsible for the linear lower-bound on

the density factors. Local and forward schemes do not have that in-

herent limitation (Proposition 7).

The thicker lines show the upper and lower-bounds for the local

schemes. The upper-bound is tight, as the constant function

f xð Þ ¼ 0, that always picks the first k-mer in any window, selects

every k-mer in the sequence and therefore has a density factor of

wþ1. On the other hand, it is not known if the trivial lower-bound

for local schemes (i.e. one k-mer per window hence a density factor

of 1þ 1=w) is tight or not, even for asymptotic w. Theorem 3 shows

that this trivial lower-bound cannot be achieved by a forward

scheme (the thin line).

4.1.1 Local schemes are more powerful

It would be conceivable that for any set of parameters k, w, there is

always a forward scheme that is among the local schemes with the

lowest density. Then, the lower-bound of Theorem 3 would also

apply to local schemes. However, this is not the case. By formulating

the problem of finding a local scheme with lowest density as an

Integer Linear Program (ILP), we found set of parameters (e.g. k¼2

and w¼4) where none of the lowest density solutions are forward

schemes. Therefore, the lower-bound on forward schemes may not

apply to local scheme in general.

The local schemes are the largest class of schemes and the least

understood. In fact, most of what is known about local schemes is

derived from our knowledge of the minimizers schemes and forward

schemes. The previous remark shows that the local schemes are

strictly more powerful than the other type of schemes, and that the

lower-bounds on the density that were previously thought to con-

strain local schemes (say d � 1:5þ 1=2wð Þ= wþ 1ð Þ) may not apply.

New insights and a deeper understanding of local schemes are neces-

sary to design local schemes with even lower densities. For example,

to achieve a low density, a local scheme must not be a forward

Fig. 3. For a binary alphabet r¼2 and a fix value of k¼ 3, this plots show the

upper-bound and lower-bound for the local-schemes (thick lines ‘LS UB’ and

‘LS LB’) and for the minimizer-schemes (dashed lines ‘MS UB’ and ‘MS LB’).

The thin line ‘FS LB’ is the lower-bound for forward scheme. In addition, in

the inset, the gray lines show the actual best and worse density factor achiev-

able by a minimizer schemes for k¼3 and for w 2 ½1; 27�
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scheme, that is it must sometimes do backward jumps (i.e. pick

k-mers in a non-increasing manner). Why such backward jumps are

beneficial to reduce the number of selected k-mers is not yet

understood.

4.2 Asymptotic behavior in k
Figure 4 shows, for varying values of w, the density obtained by

orderings compatible with the universal sets constructed in Section

3.1. The orderings are constructed such that k-mers mapping into

the wedge W0 compare less to the k-mers mapping into the slabs,

who also compare less than the k-mers mapping outside of W0 . Ties

are resolved using lexicographic order.

For w¼2, and k � 14, the density factor obtained is below

1:5þ 1= 2wð Þ ¼ 1:75, that is below what was previously thought

possible. Moreover, such a range of values for the parameters k and

w is potentially useful for some applications. According to Theorem

1, all of the curves on Figure 4 have an asymptote of 1þ 1=w, al-

though such low density factors may be reached for relatively large

values of k, larger than useful in practice. Better orderings compat-

ible with the universal sets than the simple one used here might exist

to achieve lower density for smaller values of k. Also, even though

local schemes are not asymptotically in k more powerful than mini-

mizers schemes, local schemes might achieve lower densities for

smaller values of k and therefore be more practical than the order

used here.

One benefit of the construction of the universal sets in

Section 3.1 is that it can be implemented as a test. That is, there is

an indicator function using O(k) memory and O(k) time to check if

a k-mer is in the universal set: for a given k-mer m, computing the

vector ww mð Þ requires k additions. There is no need to pre-compute

the universal set or hold it in memory. Similarly, the comparison

between two k-mers takes O(k) time.

4.2.1 Minimum size universal sets

In Orenstein et al. (2017), we proposed the problem of finding uni-

versal sets of minimum size in the de Bruijn graph, and gave a heur-

istic algorithm to find small, although not necessarily minimum,

universal sets. In particular, the use of a heuristic was justified by

the difficulty of finding vertex cover for path of length ‘ in a

Directed Acyclic Graph (DAG) (Paindavoine and Vialla, 2015).

Although this problem is NP-hard for general DAGs, the construc-

tion given in Section 3.1 provides a solution that is asymptotically

optimal in the particular case of de Bruijn graphs.

4.2.2 Cycle structure of the de Bruijn graph

In the following, we propose a high level and intuitive description of

why the construction given in Section 3.1 works asymptotically,

when k is much larger than w. Consider a cycle C¼ of length ‘¼w

in Dk. This cycle could have one node in each of the wedges Wi. On

the other hand, a smaller cycle C< of length ‘ < w cannot have a

node in each of the w wedges. Therefore, it must have some nodes,

if not all, inside of the slabs, close to the diagonal of the hypercube

Cw. For a larger cycle C> of length ‘ > w, if ‘ is a multiple of w, the

cycle could rotate around the wedges Wi, with no nodes falling in

the slabs. If ‘ is not a multiple of w, some nodes of C>, but not all,

must fall in the slabs as well.

Let Ck;‘ be the number of cycles of length ‘ in Dk. For a fixed ‘,

the function k! Ck;‘ is increasing until k ¼ ‘� 1, then it is constant

(Maurer, 1992). In other words, when k becomes large, the number

of cycles of length � w remains constant, while the number of

larger cycles grows, and it grows very quickly. Asymptotically, we

can ‘ignore’ the fine grain cycle structure of the de Bruijn graph as

the behavior is dominated by long cycles, which tend to be more

regular with respect to our embedding.

Conversely, for values of k in the same order of magnitude as w,

the precise cycle structure of the de Bruijn graph matters, and

designing small universal sets or low density schemes requires taking

this cycle structure into account.

5 Conclusion

In this study, through the asymptotic analysis of minimizers, forward

and local schemes, we deepened the theoretical understanding of these

techniques and thereby showed that greater improvements than previ-

ously thought are possible. In particular, we completely characterized

the behavior asymptotically in k and gave an efficient algorithm to

create the first known optimal minimizers schemes. Because the mini-

mizers schemes are the weakest type of schemes, this shows that all

schemes are optimal asymptotically in k. For forward schemes, we

gave a refined lower-bound that applies to all parameters k and w.

The asymptotic behavior in w is markedly different than the

asymptotic behavior in k. For large w, the lower-bound for the mini-

mizers schemes is higher than for the forward scheme, which is

higher than for local schemes.

The local schemes are not well understood at all. Although we do

have some examples of optimal local schemes found through ILP or

brute force search, there is currently no algorithm to generate local

schemes with low density. Every algorithm proposed so far is a forward

scheme. A greater understanding of local schemes holds, at least for

large values of w, the greatest promise to design even better schemes.
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Marçais,G. et al. (2017) Improving the performance of minimizers and win-

nowing schemes. Bioinformatics, 33, i110–i117.

Maurer,U.M. (1992) Asymptotically-tight bounds on the number of cycles in

generalized de Bruijn-Good graphs. Discrete Appl. Math., 37–38, 421–436.

Mykkeltveit,J. (1972) A proof of Golomb’s conjecture for the de Bruijn graph.

J. Combinatorial Theory, Ser. B, 13, 40–45.

Ondov,B.D. et al. (2016) Mash: fast genome and metagenome distance estima-

tion using MinHash. Genome Biol., 17, 132.

Orenstein,Y. et al. (2017) Designing small universal k-mer hitting sets for

improved analysis of high-throughput sequencing. PLOS Comput. Biol.,

13, e1005777.

Paindavoine,M. and Vialla,B. (2015) Minimizing the number of

bootstrappings in fully homomorphic encryption. In: Selected Areas in

Cryptography–SAC 2015, Lecture Notes in Computer Science. Springer,

Cham, pp. 25–43.

Roberts,M. et al. (2004a) A preprocessor for shotgun assembly of large

genomes. J. Comput. Biol., 11, 734–752.

Roberts,M. et al. (2004b) Reducing storage requirements for biological se-

quence comparison. Bioinformatics, 20, 3363–3369.

Schleimer,S. et al. (2003) Winnowing: local algorithms for document finger-

printing. In: Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’03. ACM, New York, NY,

USA, pp. 76–85.

Wood,D.E. and Salzberg,S.L. (2014) Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol., 15, R46.

Ye,C. et al. (2012) Exploiting sparseness in de novo genome assembly. BMC

Bioinformatics, 13, S1.

i22 G.Marçais et al.


