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Matter evolved under the influence of gravity from minuscule
density fluctuations. Nonperturbative structure formed hierarchi-
cally over all scales and developed non-Gaussian features in the
Universe, known as the cosmic web. To fully understand the struc-
ture formation of the Universe is one of the holy grails of modern
astrophysics. Astrophysicists survey large volumes of the Universe
and use a large ensemble of computer simulations to compare
with the observed data to extract the full information of our
own Universe. However, to evolve billions of particles over bil-
lions of years, even with the simplest physics, is a daunting task.
We build a deep neural network, the Deep Density Displacement
Model (D3M), which learns from a set of prerun numerical simula-
tions, to predict the nonlinear large-scale structure of the Universe
with the Zel’dovich Approximation (ZA), an analytical approxima-
tion based on perturbation theory, as the input. Our extensive
analysis demonstrates that D3M outperforms the second-order
perturbation theory (2LPT), the commonly used fast-approximate
simulation method, in predicting cosmic structure in the nonlinear
regime. We also show that D3M is able to accurately extrapo-
late far beyond its training data and predict structure formation
for significantly different cosmological parameters. Our study
proves that deep learning is a practical and accurate alterna-
tive to approximate 3D simulations of the gravitational structure
formation of the Universe.

cosmology | deep learning | simulation

Astrophysicists require a large amount of simulations to
extract the information from observations (1–8). At its core,

modeling structure formation of the Universe is a computation-
ally challenging task; it involves evolving billions of particles
with the correct physical model over a large volume over bil-
lions of years (9–11). To simplify this task, we either simulate
a large volume with simpler physics or a smaller volume with
more complex physics. To produce the cosmic web (12) in large
volume, we select gravity, the most important component of the
theory, to simulate at large scales. A gravity-only N -body sim-
ulation is the most popular and effective numerical method to
predict the full 6D phase-space distribution of a large num-
ber of massive particles whose position and velocity evolve over
time in the Universe (13). Nonetheless, N -body simulations are
relatively computationally expensive, thus making the compari-
son of the N -body–simulated large-scale structure (of different
underlying cosmological parameters) with the observed Uni-
verse a challenging task. We propose to use a deep model that
predicts the structure formation as an alternative to N -body
simulations.

Deep learning (14) is a fast-growing branch of machine learn-
ing, where recent advances have led to models that reach and
sometimes exceed human performance across diverse areas,
from analysis and synthesis of images (15–17), sound (18, 19),
text (20, 21), and videos (22, 23) to complex control and plan-
ning tasks as they appear in robotics and game play (24–26). This
new paradigm is also significantly impacting a variety of domains

in the sciences, from biology (27, 28) to chemistry (29, 30) and
physics (31, 32). In particular, in astronomy and cosmology, a
growing number of recent studies are using deep learning for a
variety of tasks, ranging from analysis of cosmic microwave back-
ground (33–35), large-scale structure (36, 37), and gravitational
lensing effects (38, 39) to classification of different light sources
(40–42).

The ability of these models to learn complex functions has
motivated many to use them to understand the physics of inter-
acting objects, leveraging image, video, and relational data (43–
53). However, modeling the dynamics of billions of particles in
N-body simulations poses a distinct challenge.

In this work, we show that a variation on the architecture
of a well-known deep-learning model (54) can efficiently trans-
form the first-order approximations of the displacement field
and approximate the exact solutions, thereby producing accu-
rate estimates of the large-scale structure. Our key objective is
to prove that this approach is an accurate and computationally
efficient alternative to expensive cosmological simulations, and,
to this end, we provide an extensive analysis of the results in the
following section.

Significance

To understand the evolution of the Universe requires a con-
certed effort of accurate observation of the sky and fast
prediction of structures in the Universe. N-body simulation is
an effective approach to predicting structure formation of the
Universe, though computationally expensive. Here, we build
a deep neural network to predict structure formation of the
Universe. It outperforms the traditional fast-analytical approx-
imation and accurately extrapolates far beyond its training
data. Our study proves that deep learning is an accurate
alternative to the traditional way of generating approximate
cosmological simulations. Our study shows that one can use
deep learning to generate complex 3D simulations in cosmol-
ogy. This suggests that deep learning can provide a powerful
alternative to traditional numerical simulations in cosmology.
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The outcome of a typical N-body simulation depends on
both the initial conditions and on cosmological parameters
which affect the evolution equations. A striking discovery is
that the Deep Density Displacement Model (D3M), trained
by using a single set of cosmological parameters, generalizes
to new sets of significantly different parameters, minimizing
the need for training data on a diverse range of cosmological
parameters.

Setup
We build a deep neural network, D3M, with similar input and
output of an N -body simulation. The input to our D3M is the dis-
placement field from the Zel’dovich Approximation (ZA) (55).
A displacement vector is the difference of a particle position at
target redshift z = 0—i.e., the present time—and its Lagrangian
position on a uniform grid. ZA evolves the particles on linear
trajectories along their initial displacements. It is accurate when
the displacement is small; therefore, ZA is frequently used to
construct the initial conditions of N -body simulations (56). As
for the ground truth, the target displacement field is produced
by using FastPM (57), a recent approximate N-body–simulation
scheme that is based on a particle-mesh (PM) solver. FastPM
quickly approaches a full N-body simulation with high accuracy
and provides a viable alternative to direct N-body simulations for
the purpose of our study.

A significantly faster approximation of N-body simulations
is produced by second-order Lagrangian perturbation theory
(2LPT), which bends each particle’s trajectory with a quadratic
correction (58). The 2LPT is used in many cosmological analyses
to generate a large number of cosmological simulations for com-
parison of the astronomical dataset against the physical model
(59, 60) or to compute the covariance of the dataset (61–63).
We regard 2LPT as an effective way to efficiently generate a
relatively accurate description of the large-scale structure, and
therefore we select 2LPT as the reference model for comparison
with D3M.

We generate 10,000 pairs of ZAs as input and accurate
FastPM approximations as the target. We use simulations of
323 N -body particles in a volume of 128 h−1Mpc (600 million
light years, where h = 0.7 is the Hubble parameter). The particles
have a mean separation of 4 h−1Mpc per dimension.

An important choice in our approach is training with a dis-
placement field rather than a density field. Displacement field Ψ
and density field ρ are two ways of describing the same distribu-
tion of particles. And an equivalent way to describe a density field
is the overdensity field, defined as δ= ρ/ρ̄− 1, with ρ̄ denoting
the mean density. The displacement field and overdensity field
are related by Eq. 1.

x = Ψ(q) + q

δ(x) =

∫
d3qδD(x− q−Ψ(q))− 1.

[1]

When the displacement field is small and has zero curl, the
choice of overdensity vs. displacement field for the output of the
model is irrelevant, as there is a bijective map between these two
representations, described by the equation:

Ψ =

∫
d3k

(2π)3
e ik·q ik

k2
δ(k). [2]

However, as the displacements grow into the nonlinear regime
of structure formation, different displacement fields can pro-
duce identical density fields (e.g., ref. 64). Therefore, providing
the model with the target displacement field during the training
eliminates the ambiguity associated with the density field. Our
inability to produce comparable results when using the density

field as our input and target attests that relevant information
resides in the displacement field (SI Appendix, Fig. S1).

Results and Analysis
Fig. 1 shows the displacement vector field as predicted by D3M
(Left) and the associated point-cloud representation of the struc-
ture formation (Right). It is possible to identify structures such
as clusters, filaments, and voids in this point-cloud representa-
tion. We proceed to compare the accuracy of D3M and 2LPT
compared with ground truth.

Point-Wise Comparison. Let Ψ∈Rd×d×d×3 denote the displace-
ment field, where d is the number of spatial-resolution elements
in each dimension (d = 32). A natural measure of error is the rel-
ative error |Ψ̂−Ψt |/|Ψt |, where Ψt is the true displacement field
(FastPM), and Ψ̂ is the prediction from 2LPT or D3M. Fig. 2
compares this error for different approximations in a 2D slice of
a single simulation. We observe that D3M predictions are very
close to the ground truth, with a maximum relative error of 1.10
over all 1,000 simulations. For 2LPT, this number is significantly
higher at 4.23. In average, the result of D3M comes with a 2.8%
relative error, while for 2LPT, it equals 9.3%.

Two-Point Correlation Comparison. As suggested by Fig. 2, the
denser regions seem to have a higher error for all methods—that
is, more nonlinearity in structure formation creates larger errors
for both D3M and 2LPT. The dependence of error on scale is
computed with two- and three-point correlation analysis.

Cosmologists often use compressed summary statistics of the
density field in their studies. The most widely used of these statis-
tics are the two-point correlation function (2PCF) ξ(r) and its
Fourier transform, the power spectrum Pδδ(k):

ξ(|r|) = 〈δA(r′)δB (r′+ r)〉,

Pδδ(|k|) =

∫
d3r ξ(r)e ik·r,

[3]

where the ensemble average 〈 〉 is taken over all possible real-
izations of the Universe. Our Universe is observed to be both
homogeneous and isotropic on large scales—i.e., without any
special location or direction. This allows one to drop the depen-
dencies on r′ and on the direction of r, leaving only the amplitude
|r| in the final definition of ξ(r). In the second equation, Pδδ(k) is
simply the Fourier transform of ξ(r) and captures the dispersion
of the plane-wave amplitudes at different scales in the Fourier
space. k is the 3D wavevector of the plane wave, and its ampli-
tude k (the wavenumber) is related to the wavelength λ by k =
2π/λ. Due to isotropy of the Universe, we drop the vector form
of r and k.

Fig. 1. The displacement vector field (Left) and the resulting density field
(Right) produced by D3M. The vectors in Left are uniformly scaled down for
better visualization.
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Fig. 2. The columns show 2D slices of full-particle distribution (Upper) and displacement vector (Lower) by various models: FastPM, the target ground truth,
a recent approximate N-body simulation scheme that is based on a PM solver (A); ZA, a simple linear model that evolves particle along the initial velocity
vector (B); 2LPT, a commonly used analytical approximation (C); and deep-learning model (D3M) as presented in this work (D). While FastPM (A) served as our
ground truth, B–D include color for the points or vectors. The color indicates the relative difference (qmodel − qtarget)/qtarget between the target location (A)
or displacement vector and predicted distributions by various methods (B–D). The error bar shows that denser regions have a higher error for all methods,
which suggests that it is harder to predict highly nonlinear region correctly for all models: D3M, 2LPT, and ZA. Our model D3M has the smallest differences
between predictions and ground truth among the above models B–D.

Because FastPM, 2LPT, and D3M take the displacement field
as input and output, we also study the two-point statistics for
the displacement field. The displacement power spectrum is
defined as:

PΨΨ(k) = 〈Ψx (k)Ψ∗x (k)〉+ 〈Ψy(k)Ψ∗y(k)〉+ 〈Ψz (k)Ψ∗z (k)〉.
[4]

We focus on the Fourier-space representation of the two-point
correlation. Because the matter and the displacement power
spectrum take the same form, in what follows, we drop the sub-
script for matter and displacement field and use P(k) to stand
for both matter and displacement power spectrum. We use the
transfer function T (k) and the correlation coefficient r(k) as
metrics to quantify the model performance against the ground
truth (FastPM) in the two-point correlation. We define the trans-
fer function T (k) as the square root of the ratio of two power
spectra,

T (k) =

√
Ppred(k)

Ptrue(k)
, [5]

where Ppred(k) is the density or displacement power spectrum
as predicted by 2LPT or D3M, and, analogously, Ptrue(k) is the
ground truth predicted by FastPM. The correlation coefficient
r(k) is a form of normalized cross-power spectrum,

r(k) =
Ppred×true(k)√
Ppred(k)Ptrue(k)

, [6]

where Ppred×true(k) is the cross-power spectrum between 2LPT
or D3M predictions and the ground-truth (FastPM) simula-
tion result. The transfer function captures the discrepancy
between amplitudes, while the correlation coefficient can indi-
cate the discrepancy between phases as functions of scales.
For a perfectly accurate prediction, T (k) and r(k) are both
1. In particular, 1− r2 describes stochasticity, the fraction of
the variance in the prediction that cannot be explained by the
true model.

Fig. 3A shows the average power spectrum, transfer function
T (k), and stochasticity 1− r2(k) of the displacement field and
the density field over 1,000 simulations. The transfer function of

density from 2LPT predictions is 2% smaller than that of FastPM
on large scales (k ≈ 0.05 hMpc−1). This is expected since 2LPT
performs accurately on very large scales (k < 0.01 hMpc−1).
The displacement transfer function of 2LPT increases >1 at
k ≈ 0.35 hMpc−1 and then drops sharply. The increase of the
2LPT displacement transfer function is because 2LPT overes-
timates the displacement power at small scales (e.g., ref. 65).
There is a sharp drop of power near the voxel scale because
smoothing over voxel scales in our predictions automatically
erases power at scales smaller than the voxel size.

Now, we turn to the D3M predictions: Both the density and
displacement transfer functions of the D3M differ from 1 by
a mere 0.4% at scale k . 0.4 hMpc−1, and this discrepancy
only increases to 2% and 4% for density field and displace-
ment field, respectively, as k increases to the Nyquist frequency
at ?0.7 hMpc−1. The stochasticity hovers at ∼10−3 and 10−2

for most scales. In other words, for both the density and dis-
placement fields, the correlation coefficient between the D3M
predictions and FastPM simulations, all the way down to small
scales of k = 0.7 hMpc−1, is >90%. The transfer function and
correlation coefficient of the D3M predictions show that it
can reproduce the structure formation of the Universe from
large to seminonlinear scales. D3M significantly outperforms
our benchmark model 2LPT in the two-point function anal-
ysis. D3M only starts to deviate from the ground truth at
fairly small scales. This is not surprising, as the deeply non-
linear evolution at these scales is more difficult to simulate
accurately and appears to be intractable by current analytical
theories (66).

Three-Point Correlation Comparison. The three-point correlation
function (3PCF) expresses the correlation of the field of
interest among three locations in the configuration space,
which is equivalently defined as bispectrum in Fourier
space. Here, we concentrate on the 3PCF for computational
convenience:

ζ(r1, r2, θ) = 〈δ(x)δ(x + r1)δ(x + r2)〉, [7]

where r1 = |r1| and r2 = |r2|. Translation invariance guaran-
tees that ζ is independent of x. Rotational symmetry further
eliminates all direction dependence except dependence on θ, the
angle between r1 and r2. The multipole moments of ζ(r1, r2, θ),
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Fig. 3. (A) Displacement and density power-spectrum of FastPM (orange), 2LPT (blue), and c (green) (Top); transfer function—i.e., the square root of
the ratio of the predicted power-spectrum to the ground truth (Middle); and 1 – r2, where r is the correlation coefficient between the predicted fields
and the true fields (Bottom). Results are the averaged values of 1,000 test simulations. The transfer function and correlation coefficient of the D3M
predictions are nearly perfect from large to intermediate scales and outperform our benchmark 2LPT significantly. (B) The ratios of the multipole coef-
ficients (ζl(r1, r2)) (to the target) of the two 3PCFs for several triangle configurations. The results are averaged over 10 test simulations. The error bars
(padded regions) are the SDs derived from 10 test simulations. The ratio shows that the 3PCF of D3M is closer than 2LPT to our target FastPM with lower
variance.

ζ`(r1, r2) = (2`+ 1)
∫
dθP`(cos θ)ζ(r1, r2, θ), where P`(cos θ) is

the Legendre polynomial of degree `, can be efficiently estimated
with pair counting (67). While the input (computed by ZA)
do not contain significant correlations beyond the second order
(power spectrum level), we expect D3M to generate densities
with a 3PCF that mimics that of ground truth.

We compare the 3PCF calculated from FastPM, 2LPT, and
D3M by analyzing the 3PCF through its multipole moments
ζ`(r1, r2). Fig. 3B shows the ratio of the binned multipole
coefficients of the two 3PCFs for several triangle configura-
tions, ξ̄`(r1, r2)pred/ξ̄`(r1, r2)true , where ξ̄`(r1, r2)pred can be the
3PCF for D3M or 2LPT and ξ̄`(r1, r2)true is the 3PCF for
FastPM. We used 10 radial bins with ∆r = 5 h−1Mpc. The
results are averaged over 10 test simulations, and the error bars
are the SD. The ratio shows that the 3PCF of D3M is closer to
FastPM than 2LPT, with smaller error bars. To further quan-
tify our comparison, we calculate the relative 3PCF residual
defined by

3PCF relative residual

=
1

9×Nr

8∑
`=0

∑
r1,r2

|ζ`(r1, r2)pred− ζ`(r1, r2)true|
|ζ`(r1, r2)true|

, [8]

where Nr is the number of (r1, r2) bins. The mean relative
3PCF residual of the D3M and 2LPT predictions compared with
FastPM are 0.79% and 7.82%, respectively. The D3M accu-
racy on 3PCF is also an order of magnitude better than 2LPT,
which indicates that the D3M is far better at capturing the
non-Gaussian structure formation.

Generalizing to New Cosmological Parameters
So far, we train our model using a “single” choice of cosmo-
logical parameters As = 2.142× 10−9 (hereafter A0 = 2.142×
10−9) and Ωm = 0.3089 (68). As is the primordial amplitude
of the scalar perturbation from cosmic inflation, and Ωm is the
fraction of the total energy density that is matter at the present
time, and we will call it matter density parameter for short. The

true exact value of these parameters is unknown, and different
choices of these parameters change the large-scale structure of
the Universe; Fig. 4.

Here, we report an interesting observation: The D3M trained
on a single set of parameters in conjunction with ZA (which
depends on As and Ωm) as input can predict the structure
formation for widely different choices of As and Ωm . From a
computational point of view, this suggests a possibility of produc-
ing simulations for a diverse range of parameters, with minimal
training data.

Varying Primordial Amplitude of Scalar Perturbations As. After
training the D3M using As =A0, we change As in the input
of our test set by nearly one order of magnitude: As = 1.8A0

and As = 0.2A0. Again, we use 1,000 simulations for analy-
sis of each test case. The average relative displacement error
of D3M remains <4% per voxel (compared with < 3% when
train and test data have the same parameters). This is still
well below the error for 2LPT, which has relative errors
of 15.5% and 6.3% for larger and smaller values of As ,
respectively.

Fig. 5A shows the transfer function and correlation coef-
ficient for both D3M and 2LPT. The D3M performs much
better than 2LPT for As = 1.8A0. For small As = 0.2A0, 2LPT
does a better job than D3M predicting the density trans-
fer function and correlation coefficient at the largest scales;
otherwise, D3M predictions are more accurate than 2LPT
at scales larger than k = 0.08 hMpc−1. We observe a simi-
lar trend with 3PCF analysis: The 3PCFs of D3M predictions
are notably better than 2LPT ones for larger As , compared
with smaller As , where it is only slightly better. These results
confirm our expectation that increasing As increases the non-
linearity of the structure-formation process. While 2LPT can
predict fairly well in linear regimes, compared with D3M,
its performance deteriorates with increased nonlinearity. It
is interesting to note that the D3M prediction maintains its
advantage, despite being trained on data from more linear
regimes.
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Fig. 4. We show the differences of particle distributions and displacement fields when we change the cosmological parameters As and Ωm. (A) The error
bar shows the difference of particle distribution (Upper) and displacement fields (Lower) between As = A0 and the two extremes for As = 0.2 A0 (Center)
and As = 1.8A0 (Right). (B) A similar comparison showing the difference of the particle distributions (Upper) and displacement fields (Lower) for smaller and
larger values of Ωm ∈{0.1, 0.5} with regard to Ωm = 0.3089, which was used for training. While the difference for the smaller value of As (Ωm) is larger, the
displacement for the larger As (Ωm) is more nonlinear. This nonlinearity is due to concentration of mass and makes the prediction more difficult.

Varying Matter Density Parameter Ωm. We repeat the same exper-
iments, this time changing Ωm to 0.5 and 0.1, while the model
is trained on Ωm = 0.3089, which is quite far from both of the
test sets. For Ωm = 0.5, the relative residual displacement errors
of the D3M and 2LPT averaged over 1,000 simulations are
3.8% and 15.2%, and for Ωm = 0.1, they are 2.5% and 4.3%.
Fig. 5 C and D show the two-point statistics for density field
predicted by using different values of Ωm . For Ωm = 0.5, the
results show that the D3M outperforms 2LPT at all scales, while
for smaller Ωm = 0.1, D3M outperforms 2LPT on smaller scales
(k > 0.1 hMpc−1). As for the 3PCF of simulations with differ-
ent values of Ωm , the mean relative 3PCF residual of the D3M
for Ωm = 0.5 and Ωm = 0.1 are 1.7% and 1.2%, respectively, and
for 2LPT, they are 7.6% and 1.7%, respectively. The D3M pre-
diction performs better at Ωm = 0.5 than Ωm = 0.1. This is again
because the Universe is much more nonlinear at Ωm = 0.5 than
Ωm = 0.1. The D3M learns more nonlinearity than is encoded in
the formalism of 2LPT.

Conclusions
To summarize, our deep model D3M can accurately predict the
large-scale structure of the Universe as represented by FastPM
simulations, at all scales, as seen in Table 1. Furthermore,
D3M learns to predict cosmic structure in the nonlinear regime
more accurately than our benchmark model 2LPT. Finally, our
model generalizes well to test simulations with cosmological
parameters (As and Ωm) significantly different from the training
set. This suggests that our deep-learning model can potentially
be deployed for a range of simulations beyond the parame-
ter space covered by the training data (Table 1). Our results
demonstrate that the D3M successfully learns the nonlinear
mapping from first-order perturbation theory to FastPM simu-
lation beyond what higher-order perturbation theories currently
achieve.

Looking forward, we expect that replacing FastPM with exact
N-body simulations would improve the performance of our
method. As the complexity of our D3M model is linear in the

BA

Fig. 5. Similar plots as in Fig. 3A, except that we test the two-point statistics when we vary the cosmological parameters without changing the training set
(which has different cosmological parameters) or the trained model. We show predictions from D3M and 2LPT when tested on different As (A) and Ωm (B).
We show the transfer function—i.e., the square root of the ratio of the predicted power spectrum to the ground truth (Upper)—and 1 – r2, where r is the
correlation coefficient between the predicted fields and the true fields (Lower). The D3M prediction outperforms 2LPT prediction at all scales except in the
largest scales, as the perturbation theory works well in linear regime (large scales).
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Table 1. A summary of our analysis

Data Point-wise T(k)k = 0.11 r(k)k = 0.11 T(k)k = 0.50 r(k)k = 0.50 3PCF

Test phase
2LPT density N/A 0.96 1.00 0.74 0.94 0.0782
D3M density N/A 1.00 1.00 0.99 1.00 0.0079
2LPT displacement 0.093 0.96 1.00 1.04 0.90 N/A
D3M displacement 0.028 1.00 1.00 0.99 1.00 N/A

As = 1.8A0

2LPT density N/A 0.93 1.00 0.49 0.78 0.243
D3M density N/A 1.00 1.00 0.98 1.00 0.039
2LPT displacement 0.155 0.97 1.00 1.07 0.73 N/A
D3M displacement 0.039 1.00 1.00 0.97 0.99 N/A

As = 0.2A0

2LPT density N/A 0.99 1.00 0.98 0.99 0.024
D3M density N/A 1.00 1.00 1.03 1.00 0.022
2LPT displacement 0.063 0.99 1.00 0.95 0.98 N/A
D3M displacement 0.036 1.00 1.00 1.01 1.00 N/A

Ωm = 0.5
2LPT density N/A 0.94 1.00 0.58 0.87 0.076
D3M density N/A 1.00 1.00 1.00 1.00 0.017
2LPT displacement 0.152 0.97 1.00 1.10 0.80 N/A
D3M displacement 0.038 1.00 1.00 0.98 0.99 N/A

Ωm = 0.1
2LPT density N/A 0.97 1.00 0.96 0.99 0.017
D3M density N/A 0.99 1.00 1.04 1.00 0.012
2LPT displacement 0.043 0.97 1.00 0.97 0.98 N/A
D3M displacement 0.025 0.99 1.00 1.02 1.00 N/A

The unit of k is hMpc−1. N/A, not applicable.

number of voxels, we expect to be able to further improve
our results if we replace the FastPM simulations with higher-
resolution simulations. Our work suggests that deep learning is a
practical and accurate alternative to the traditional way of gener-
ating approximate simulations of the structure formation of the
Universe.

Materials and Methods
Dataset. The full simulation data consists of 10,000 simulations of boxes
with ZA and FastPM as input–output pairs, with an effective volume of 20
(Gpc/h)3 (190× 109ly3), comparable to the volume of a large spectroscopic
sky survey like Dark Energy Spectroscopic Instrument or EUCLID. We split the
full simulation dataset into 80%, 10%, and 10% for training, validation, and
test, respectively. We also generated 1,000 simulations for 2LPT for each set
of tested cosmological parameters.

Model and Training. The D3M adopts the U-Net architecture (54) with 15
convolution or deconvolution layers and ∼8.4× 106 trainable parameters.
Our D3M generalizes the standard U-Net architecture to work with 3D data
(69–71). The details of the architecture are described in the following sec-
tions, and a schematic figure of the architecture is shown in SI Appendix,
Fig. S2. In the training phase, we use the Adam Optimizer (72) with a learn-
ing rate of 0.0001, and first- and second-moment exponential decay rates
equal to 0.9 and 0.999, respectively. We use the mean-squared error as
the loss function (Loss Function) and L2 regularization with regularization
coefficient 0.0001.

Details of the D3M Architecture. The contracting path follows the typical
architecture of a convolution network. It consists of two blocks, each of
which consists of two successive convolutions of stride 1 and a down-
sampling convolution with stride 2. The convolution layers use 3×3×3 filters
with a periodic padding of size 1 (Padding and Periodic Boundary) on both
sides of each dimension. Notice that at each of the two down-sampling
steps, we double the number of feature channels. At the bottom of the
D3M, another two successive convolutions with stride 1 and the same peri-
odic padding as above are applied. The expansive path of our D3M is an
inverted version of the contracting path of the network. (It includes two
repeated applications of the expansion block, each of which consists of one
up-sampling–transposed convolution with stride 1/2 and two successive con-

volutions of stride 1. The transposed convolution and the convolution are
constructed with 3×3×3 filters.)

We take special care in the padding and cropping procedure to preserve
the shifting and rotation symmetry in the up-sampling layer in expan-
sive path. Before the transposed convolution, we apply a periodic padding
of length 1 on the right, down, and back sides of the box [padding =
(0,1,0,1,0,1) in pytorch], and after the transposed convolution, we discard
one column on the left, up, and front sides of the box and two columns on
the right, down, and back sides [crop = (1,2,1,2,1,2)].

A special feature of the D3M is the concatenation procedure, where the
up-sampling layer halves the feature channels and then concatenates them
with the corresponding feature channels on the contracting path, doubling
the number of feature channels.

The expansive building block then follows a 1×1×1 convolution with-
out padding, which converts the 64 features to the final 3D displacement
field. All convolutions in the network except the last one are followed by a
rectified linear unit activation and batch normalization.
Padding and Periodic Boundary. It is common to use constant or reflective
padding in deep models for image processing. However, these approaches
are not suitable for our setting. The physical model we are learning is con-
structed on a spatial volume with a periodic boundary condition. This is
sometimes also referred to as a torus geometry, where the boundaries of the
simulation box are topologically connected—that is, xi+L = xi , where i is the
index of the spatial location, and L is the periodicity (size of box). Constant
or reflective padding strategies break the connection between the physically
nearby points separated across the box, which not only loses information
but also introduces noise during the convolution, further aggravated with
an increased number of layers.

We find that the periodic padding strategy significantly improves the per-
formance and expedites the convergence of our model, comparing to the
same network using a constant padding strategy. This is not surprising, as
one expects that it is easier to train a model that can explain the data than
to train a model that does not.
Loss Function. We train the D3M to minimize the mean square error on
particle displacements

L=
1

N

∑
i

(Ψ̂i −Ψt,i)
2, [9]

where i labels the particles and N is the total number of particles. This loss
function is proportional to the integrated squared error, and by using a
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Fourier transform and Parseval’s theorem, it can be rewritten as

∫
(Ψ̂−Ψt)

2d3q =

∫
|Ψ̂−Ψt|2d3k=∫

d3k
(
|Ψt|2(1− T)2

+ 2
∣∣∣Ψ̂∣∣∣ |Ψt| (1− r)

)
, [10]

where q is the Lagrangian space position, and k its corresponding wavevec-
tor. T is the transfer function defined in Eq. 5, and r is the correlation
coefficient defined in Eq. 6, which characterize the similarity between the
predicted and true fields, in amplitude and phase, respectively. Eq. 10 shows
that our simple loss function jointly captures both of these measures: As T
and r approach 1, the loss function approaches 0.
Data Availability. The source code of our implementation is available at
https://github.com/siyucosmo/ML-Recon. The code to generate the training
data is also available at https://github.com/rainwoodman/fastpm.
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