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ABSTRACT
Modern high-throughput microscopy methods such as light-sheet
imaging and electronmicroscopy are capable of producing petabytes
of data inside of a single experiment. Storage of these large images,
however, is challenging because of the difficulty of moving, storing,
and analyzing such vast amounts of data, which is often collected at
very high data rates (>1GBps). In this report, we provide a compar-
ison of the performance of several compression algorithms using
a collection of published and unpublished datasets including con-
focal, fMOST, and pathology images. We also use simulated data
to demonstrate the efficiency of each algorithm as image content
or entropy increases. As a result of this work, we recommend the
use of the BLOSC algorithm combined with ZSTD for various mi-
croscopy applications, as it produces the best compression ratio
over a collection of conditions.
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1 INTRODUCTION
The biomedical sciences have been fundamentally altered by the 
introduction of ever-improving imaging techniques, such as confo-
cal [26, 27], light-sheet [3, 10, 21, 24], super-resolution microscopy 
[11, 18, 23], and expansion microscopy [20, 22]. As microscopes

become faster and higher resolution, their utility have increased.
Some of the applications of these methods in neuroscience include
multi-spectral imaging of Brainbow samples to identify neuronal
connections [5, 20], fMOST imaging for whole-brain neuron recon-
struction [4, 17], and single molecule imaging techniques for spatial
transcriptomics, which allow scientists to identify spatial profiles
of RNA expression [14]. As experiments become more content-rich
and data sizes increase, it is increasingly difficult to handle the data,
which may can contain many single images reaching >10TB [9, 26].

To deal with data of this scale, most microscopy images are
stored in some form of compression, however, there is little con-
sensus on the best way to perform compression to optimize both
the compression ratio and the data read/write speed. For archival
and distribution, it is not uncommon to see data distributed as
compressed TIFF files which have been processed using GZIP or
ZIP, because these tools are commonly-available on most desktop
computer and integrated with various image visualization tools. In
other cases, matrix storage libraries like Zarr [15] or HDF5 [8, 12]
are used to store images in a chunked format which can then be
compressed using a variety of methods. Despite this variability,
there have been few efforts to benchmark the best compression
practices in microscopy data storage. In one recent example, Datta
and colleagues showed that different compression algorithms for
storage of reduced-representation electron microscopy can have
significantly different performance [7], showing the importance of
this type of comparison for designing experimental protocols.

Here, we will perform benchmarking of many of the most com-
mon lossless image compression algorithms, including GZIP, LZ4,
BLOSC, and ZSTD using a variety of real-world and simulated biomed-
ical images. From these results we provide a recommendation for
compression of biomedical images.

2 DATASETS
2.1 Imaging data
We collected 9 different datasets from a variety of sources and
imaging modalities for benchmarking, including published and
unpublished data (Table 1). As specified in the table, each dataset
were assigned a label to make their referencing in the text simpler
and the collection of datasets spans many orders of magnitude in
size. The published datasets include traditional confocal imaging
of Brainbow-labeled neurological tissue (brainbow) [5, 17], fMOST
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Figure 1: Example z-axis slices from each dataset presented in Table 1. In some images, maximum projections have been
performed to increase the visibility of the image in print.

imaging of an entire mouse brain (fMOST) [26], and breast cancer tis-
sue pathology images collected as part of a 10× visium experiment
(visium). In addition to this, we collected confocal imaging of DiD-
dyed neurites from mouse cortical tissue (neurites), 5-channel
Drosophila melanogaster (fruit fly) Bitbow images as previously
described in [13] (bitbow), and fluorescent latex beads (bead). We
also include an example segmentations from the mouse common
coordinate framework (CCF; segment) [25], which is a categorical
image representing the locations of different brain regions; this is a
meaningful comparison because categorical segmentation images
are commonly used to identify structures in different micrographs
(e.g., [6]). Negative control images of background noise collected
from an ORCA-Fusion sCMOS camera (Hammatsu Photonics K.K.)
are included at both 8 and 16 bit (noise8,16), because they repre-
sent the lowest-content image that can be produced by a typical
microscopy system. Figure 1 displays example frames from each
image.

2.2 Simulated Data
In addition to the real datasets presented above, we used custom
Python code to generate in silico confocal images of simulated
point sources (beads), randomly distributed throughout the frame
(see Methods). In total, we created 27 images of (256 px)3 at 9
logarithmically-spaced bead densities which were used for titration
experiments at a signal-to-noise-ratio (SNR) of 5.

3 METHODS
3.1 Compute Environment
Dataset compression tests (Section 4.1) were performed on a custom-
built server with two EPYC 7351 16 core processors and 512GB of
DDR4 memory running at 2133 MT/s. This system was chosen
because it is representative of real-world situations, where high
performance computing is needed to handle data of this scale. Simu-
lation results (Section 4.2) were performed on a MacBook Pro with
a M1 Pro processor and 16GB of LPDDR5 memory at 6400 MT/s,
because of it’s higher speed than the sever described above. We
forced all benchmarks to run on a single core, because some com-
pression methods are unable to be multithreaded, but we note that,

Label Size (px) Type Source
brainbow 4 × 136 × 512 × 512 uint16 [17]
neurites 1 × 1000 × 2304 × 2304 uint16 (this work)
bitbow 5 × 97 × 3000 × 3000 uint16 (this work)
fMOST 2 × 11464 × 20821 × 30801 uint16 [16]
visium 3 × 1 × 24240 × 24240 uint8 10xgenomics.com
bead 1 × 1000 × 2304 × 2304 uint16 (this work)
noise16 1 × 100 × 1000 × 1000 uint16 (this work)
noise8 1 × 100 × 1000 × 1000 uint8 (this work)
segment 1 × 456 × 528 × 320 uint32 [25]

Table 1: A list of the datasets collected for this study, with
associated metadata. Image size is given in 𝑐 × 𝑧 × 𝑥 × 𝑦.
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Figure 2: A strip plot of the compression ratio achieved by different compression algorithms when applied to our benchmark
datasets. Methods are sorted by the maximum compression rate achieved by any dataset for visualization.

in practice, many datasets can be compressed in multiple streams
to achieve higher throughput than we present here. All files were
saved into a Python memory buffers rather than a hard drive in
order to ensure that disk latency or bandwidth did not impact bench-
mark times. As such, we use a parameter set labeled “Uncompressed”
as a control for the throughput of the testing scripts themselves. We
used Anaconda Python (v3.10) to implement our testing scripts, as
it provides a high-level programming interface, while having a min-
imal impact on performance because the libraries used in this study

are implemented as wrappers around the low-level compression
libraries.

Compression methods tested included LZ4, LZF, GZIP, ZSTD, and
BLOSC [1]. For methods which accept compression level parameters,
we tested a range of parameters between the minimum and max-
imum. BLOSC uses a "meta-compression" and blocking strategy
which allows the use of multiple compressors as well as filters,
such as bitshuffle and shuffle. These images transpose the data
at the bit or byte level in order to align similarly-value bits in
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Figure 3: A scatter plot of the compression compression and decompression rates for the different compression algorithms
tested.

integer data, and require a negligible amount of computation to
perform. We excluded comparisons without BLOSC shuffling filters,
because we found that they consistently performed worse than the
shuffled equivalent (data not shown). In the rest of this report, we
will describe each compression method using the combination of
parameters used for each comparison.

3.2 Simulated data generation
We used custom Python scripts to generate simulated confocal
images of varying complexity using the python-sdt simulation
package [19]. Specifically, random 3D bead coordinates were gener-
ated for each specified density, which were then modeled as point
sources with an intensity of 500 au and standard deviations of 2 px.
Each 2D frame’s coordinates were then calculated by slicing the 3D
bead coordinates into individual planes assuming a Gaussian inten-
sity distribution for each point. The image was then offset by 100
au and noise was added by sampling with the Poisson distribution
with 𝜆 equal to the simulated image intensity:

𝑃 (𝑣) |𝜆 =
𝜆𝑣𝑒−𝜆

𝑣!
(1)

Each 2D frame is then stacked to form composite 3D images which
were exported for benchmarking.

3.3 Compression comparison
Each dataset was sampled into 10 independent 256 × 256 × 256 px
chunks across all channels in 𝑥 × 𝑦 × 𝑧. Each sampled image was
compressed into HDF5 files with a chunk size of 32 × 32 × 32 px
using default parameters, with the exception of the compression
settings which were changed for each experiment. We quantify
compression and decompression rates as an “Effective” throughput,

which is the size of uncompressed data divided by the total time
to open, parse, and decompress an image into RAM. This allows
us to quantify the speed that a given application will be able to
actually access data, rather than just the algorithm speed. The
chunk size was reduced for the visium dataset, because the image
is a single z plane. We used compression filters for HDF5 which
were included in the base Python HDF5 (h5py1) library or the
hdf5plugin2 pip package, which extends the number of available
compression plugins available.

4 RESULTS AND DISCUSSION
4.1 Compression Benchmark
The compression ratios (c.r.), decompression, and compression
speed of each compression experiment are shown in Figure 2. For
visualization, we removed the segment layer because it had very
high compression rates which were not representative of the other
datasets (c.r. range 11.3-96.6) with ZSTD-based approaches perform-
ing the best. First, we observe noise16 consistently returns the
largest compression ratio, while noise8 performs poorly due to it’s
much higher relative entropy. visium also performs poorly, likely
due to the 2D nature of the dataset causing smaller chunking sizes.
In this sorted figure, we see that the shuffle and bitshuffle filters are
essential for achieving the highest compression ratios in integer
data. BLOSC-ZSTD-SHUFFLE-8 is found to be the highest compres-
sion ratio by a very small margin, but we recommend the use of
BLOSC-ZSTD-SHUFFLE-5 when high compression ratios are needed
because the higher compression speed found is much higher.

1https://www.h5py.org/
2https://pypi.org/project/hdf5plugin/
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Next, we compared the compression and decompression speed of
a subset of compression methods which were selected to represent
the full dynamic range of speed and compression ratios (Figure
3). Here, we can see that the algorithms using LZ4 are universally
the fastest methods, with LZ4 and BLOSC-LZ4-BITSHUFFLE-5 per-
forming only slightly slower than a the uncompressed control.
We highlight these methods as a good candidates for real-time
data processing, such as intermediate compression of data being
produced by a microscope due to these results, with the BLOSC
variant being prefered due to the higher compression ratio (Figure
2). The BLOSC-ZSTD-SHUFFLE-5 method identified above is able to
be decompressed quickly, however it’s compression rates are slow
enough to be a limiting for real-time applications. GZIP is too slow
to be usable by in any real-time microscopy application.

4.2 Simulated Confocal Imaging Benchmark
We created simulated micrographs with varying densities of flu-
orescent beads, similar to the beads dataset and with simulated
image noise (Figure 4, left). We compared the compression ratios of
BLOSC-ZSTD-BITSHUFFLE-5 with a commonly-used standard com-
pression scheme represented by GZIP-5. Here, we find that BLOSC
performs significantly better, however there is a reduction in the
compression ratio as the bead count increases. This matches our
expectation, as increased bead density is directly correlated with
an increase in image entropy, making the theoretical compression
limit lower.

Next, to demonstrate the effectiveness of simple data manipula-
tion for improving we performed background subtraction above the
approximate noise floor of the images described above (120au; Fig-
ure 4, right).We repeated the compression testing, finding that there
is an order-of-magnitude increase in the achieved compression ra-
tio, with GZIP performing better than BLOSC in this case. While this
transform is lossy, it highlights the potential value of preprocessing
microscopy data before storage, as well as the potential for other
lossy compression methods.

5 CONCLUSION AND FUTURE DIRECTION
Compression is incredibly important for making biomedical imag-
ing both economically and, in many cases, technically feasible by
reducing the hard disk space needed for a given experiment. We
have shown benchmarks of 39 different compression parameter
combinations applied to 9 different biomedical image datasets de-
rived from different neurological tissues and imaging methods,
as well as simulated data. Through this quantification, excluding
segment and visium due to their outlier characteristics, we find
that BLOSC-ZSTD-SHUFFLE-5 performs the best of all methods com-
pared (c.r. 2.7 ± 0.8), however, at the expense of slow compression
(86 ± 36 MB/s). In cases where fast or real-time computation is
needed, BLOSC-LZ4-BITSHUFFLE-8 provides a good compromise
(c.r. 2.3 ± 0.5) while being fast to compress (790 ± 92 MB/s). These
results provide an important starting point for choosing a compres-
sion method for any specific experiment, and we provide our code
under an GPL license to allow testing on different imaging types or
CPU architectures, as we expect results may vary.

While we presented a comprehensive view of the applications of
lossless compression in microscopy, there are several factors which
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Figure 4: Performance of BLOSC-ZSTD and GZIP compres-
sion at compressing simulated confocal data.

should be considered as future directions or factors when deciding
which compression method to use for a specific microscopy appli-
cation. First, NVIDIA has recently developed toolkits for lossless
compression which take advantage of GPU compression, poten-
tially making much higher throughputs possible by application of
these tools3. Next, while we used a chunk size of (32px)3 in this
study because it allows quick access in all dimensions, it is possible
that different datasets may have different spatial correlations which
make increased chunk sizes more efficient. Finally, as shown in
Section 4.2, image filtering and preprocessing has a strong potential
for improving the efficiency of data compression, assuming you can
make guarantees about the scientific validity of the decompressed
data. In the future, various lossy compression methods may be able
to fill this gap, similar to the previously-reported B3D method [2].

DATA AND CODE AVAILABILITY
The code used in this article is available from the Cai Lab GitHub
page under a GPL license4. The novel images presented in this
comparison have been uploaded to the University of Michigan Deep
Blue Data repository (DOI pending) and are freely available under
a Creative Commons Attribution-ShareAlike 4.0 International (CC
BY-SA 4.0) license5.
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