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Abstract. Rat microsomal aldehyde dehydrogenase 
(msALDH) has no amino-terminal signal sequence, 
but instead it has a characteristic hydrophobic domain 
at the carboxyl terminus (Miyauehi, K., R. Masaki, S. 
Taketani, A. Yamamoto, A. Akayama, and Y. Tashiro. 
1991. J. Biol. Chem. 266:19536-19542). This mem- 
brane-bound enzyme is a useful model protein for 
studying posttranslational localization to its final desti- 
nation. When expressed from eDNA in COS-1 cells, 
wild-type msALDH is localized exclusively in the 
well-developed ER. The removal of the hydrophobic 

domain results in the cytosolic localization of trun- 
cated proteins, thus suggesting that the portion is 
responsible for membrane anchoring. The last 35 
amino acids of msALDH, including the hydrophobic 
domain, are sufficient for targeting of E. coli ~5-galac- 
tosidase to the ER membrane. Further studies using 
chloramphenicol acetyltransferase fusion proteins sug- 
gest that two hydrophilie sequences on either side of 
the hydrophobic domain play an important role in ER 
targeting. 

great deal of attention has been paid to resolve the 
mechanism for sorting and targeting of newly syn- 
thesized proteins to their final destinations, and this 

is one of the fundamental problemsin cell biology. Newly 
synthesized proteins are destined to follow two distinct 
routes, depending on the presence or absence of a signal se- 
quence at their amino termini (37). The signal recognition 
particle (SRP) t in the cytosol recognizes and binds to a sig- 
nal sequence of nascent peptides. The resulting SRP-ribo- 
some-nascent peptides complexes are targeted to the ER 
membrane through their interactions with the docking pro- 
tein complex (35, 36). After translocation across the ER 
membrane, secretory and plasma membrane proteins follow 
a common pathway from the ER, through the Golgi complex, 
to the cell surface by default with bulk flow of lipids (33). 
Resident proteins in the central vacuolar system are localized 
and retained in their final destinations with the aid of either 
specific targeting (18) or retention signals (25-27, 44). 

On the other hand, proteins without a signal sequence at 
their amino termini are synthesized on free polysomes and 

Address all correspondence to Yutaka Tashiro, Kansai Medical University, 
1 Fumizono-cho, Moriguchi, Osaka 570, Japan. Phone: 81-06-992-1001, 
x2000; fax: 81-06-993-5319. 

1. Abbreviations used in this paper: CAT, chloramphenicol acetyltransfer- 
ase; FP2, NADPH-cytochrome P-450 reductase; msALDH, microsomal 
aldehyde dehydrogenase; PBS(+), PBS containing 1 mM CaCI2 and 0.5 
mM MgCI2; PDI, protein disulfide isomerase; PTP, protein tyrosine phos- 
phatase; STE, sucrose solution containing 10 mM Tris-HCl, pH 7.4, 1 mM 
EDTA, 10 t~g/ml leupepdn A, 0.5 mM PMSF, and 10 U/ml Trasyol; SRP, 
signal recognition particle. 

are posttranslationally directed to intracellular organdies 
such as mitochondria, peroxisomes, the nucleus, and the 
ER, or they remain in the cytosol. Much is known regarding 
targeting signals (14, 16, 39) and cytosolic protein factors (1, 
15) by which proteins are imported into these organelles. 
However, less is known regarding posttranslational targeting 
of integral membrane proteins to the outer mitochondrial 
membrane, the peroxisomal membrane, or the ER mem- 
brane. 

Cytochrome b5 has a hydrophobic domain instead of an 
amino-terminal signal sequence at its carboxyl terminus 
(42). For a long time, cytochrome b5 has been noted to be 
a typical membrane protein inserted posttranslationally into 
microsomal membranes through the hydrophobic domain. 
Besides, it has been reported that cytochrome b5 is localized 
in any membranes of intracellular organdies, including the 
ER membrane, the Golgi membrane, the plasma membrane, 
and the outer mitochondrial membrane (47). Experiments 
using SRP-depleted or -supplemented in vitro systems have 
shown that this protein does not require SRP for insertion 
into microsomal membranes (3). Therefore, the carboxyl- 
terminal hydrophobic sequence was termed an "insertion" 
sequence through which spontaneous integration of cyto- 
chrome b5 into any exposed membranes could occur not 
only in vitro, but also in vivo (5). However, recent studies 
have shown that cytochrome b5 is restricted in the ER in vivo 
(11), and that the last 10 amino acids of this protein adjacent 
to the hydrophobic domain are important for its targeting to 
the ER (23). 

Recently, we have isolated and sequenced a full-length 
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cDNA for rat microsomal aldehyde dehydrogenase (msALDH) 
(24). The deduced amino acid sequence of this enzyme pre- 
diets a similar molecular structure to that of cytochrome b5, 
a bulky amino-terminal domain without an amino-terminal 
signal sequence and a short hydrophobic domain at the car- 
boxyl terminus. We report here that msALDH is localized 
exclusively in the ER in COS-1 cells when expressed from 
cDNA, and that expression of this protein apparently alters 
the structure of the ER from a reticular to large vesicular 
one. In addition, we report that the hydrophobic domain is 
responsible for membrane anchoring and that msALDH is 
likely to have two ER targeting sequences on either side 
of the membrane anchoring domain. Our results suggest a 
novel mechanism for the posttranslational ER targeting of 
this tail-anchored protein. 

Materials and Methods 

Materials 
FBS was purchased from Filtron Co. (Brooklyn, Australia). Penicillin- 
streptomycin liquid was from Gibco Laboratories (Grand Island, NY). 
DME was obtained from Nissui Pharmaceutical Co., Ltd. (Tokyo, Japan). 
Affinity-purified goat anti-rabbit IgG and anti-mouse IgG conjugated with 
TRITC were purchased from Protos Immunoresearch (San Francisco, CA). 
Affinity-purified goat anti-rabbit IgG and anti-mouse IgG conjugated with 
FITC were obtained from American Qualex Antibodies & Immunochemi- 
cals Co. (La Mirada, CA). FITC-eonjugated wheat germ agglutinin was 
from E-Y Laboratories, Ine. (San Mateo, CA). Affinity-purified goat anti- 
mouse IgG and anti-rabbit IgG conjugated with peroxidase were purchased 
from Dako A/S (Glostrup, Denmark) and Tago, Inc. (Burlingame, CA), re- 
spectively. Rabbit anti-chloramphenicol acetyltransferase (CAT) antibody 
was obtained from 5 Prime~3 Prime, Inc. (Boulder, CO). Mouse mAb to 
human mitochondria165-kD protein was from Chemicon International, Inc. 
(Temecula, CA). Mouse mAbs to Escherichia coil/5-galactosidase and the 
/3-subunit of human prolyl 4-hydroxylase were purchased from Boehringer 
Marmheim Biochemicals (Indianapolis, IN) and Fiji Yakuhin Kogyo Co., 
Ltd. (Toyama, Japan), respectively. Since the/3-subunit of prolyl 4-hydroxy- 
lase has been shown to be identical to protein disulfide isomerase (PDI) 
(34), this mAb is referred to as PDI mAb in this paper. Rabbit antibodies 
to rat msALDH, NADPH-cytoehrome P-450 reductase (FP2), and PDI 
have been prepared and characterized as described (2, 21, 24). Rabbit an- 
tiserum to bovine mitochondrial complex HI was a generous gift from Dr. 
Takamasa Ozawa (Nagoya University, Nagoya, Japan). The eukaryotic assay 
vectors, pCH110 and pSV2CAT, were from Pharmaeia LKB Biotechnohigy, 
Inc. (Uppsala, Sweden) and Stratagene (La JoUa, CA), respectively. The 
eukaryotic expression vector pMIW (43) was kindly provided by Dr. Aki- 
hiro Inoue (National Institute for Physiological Sciences, Okazaki, Japan). 
Restriction enzymes and DNA modifying enzymes were purchased from 
Nippon Gene (Toyama, Japan) and Takara Co., Ltd. (Kyoto, Japan). All 
other chemicals were of the highest purity commercially available. 

Plasmid Constructions 

All constructions were verified by the dideoxy chain termination method 
(38). Insertion of a full-length eDNA encoding rat msALDH into the unique 
EcoRI site of the SV-40-based vector pCD (30) has been described previ- 
ously (24). The gapped duplex method of oligonueleotide-directed muta- 
genesis (19) was used for truncation or deletion of msALDH eDNA. The 
full-length msALDH eDNA was cloned into the EcoRI site of M13tvl8 pre- 
pared from an umber mutant phage, and single-stranded phage DNA was 
purified for use as the template for mutagenesis. Synthetic oligonueleotides 
used are termed as follows (with mutated nucleotides underlined): no. 1 (5' 
GGTCAGCTGATCGAAATTC 3'), no. 2 (5' CTCGTGTGATIU,-GTTGCG- 
GT 3'), no. 3 (5' GTGATCGTCTAGGATCAGC 3'), no. 4 (5' AAATTCTTC 
CTGCTGAACAAAGGAAGCd2TG 3'), and no. 5 (5' CTGCTGAAACAG- 
TTCC~GC' ICd2TGCTTC 3'). The oligonueleotides nos. 1, 2, and 3 
were used to generate sequences that included artificial stop codons after 
amino acids 449, 470, and 480 of msALDH, respectively. The oligonucleo- 
tide no. 4 was used to produce the coding sequence for the mutant protein 

that lacked amino acids 457--459 of msALDH, and that for the mutant pro- 
tein lacking amino acids 460-463 was no. 5. After hybridization of the oli- 
gonucleotide and a PvuII fragment derived from M13mpl8 with the tem- 
plate DNA, second-strand synthesis was carried out with T4 DNA 
polymerase and E. coil DNA ligase, and the resultant double-stranded DNA 
was transfected into E. coil BMH71-18 routs for amplification. Phages re- 
covered from E. coil BMH71-18 routs were then transfected into E. coli 
MVI184 to select non-umber ones, and single-strunded DNA from t ~  to 
six plaques was sequenced to confirm the desired mutations. The mutated 
cDNAs were excised from the double-stranded replicative form DNAs and 
cloned into the EcoRI site of the pCD vector. The right orientation was 
verified by restriction enzyme digestion, and the resulting constructs were 
referred to as pCDALDHA450-484, pCDALDHA471-484, pCDALDHA- 
481-484, pCDALDHA457-459, and pCDALDHA460-463, respectively. 

A chimeric eDNA for E. coli/~-gaiactosidase fusion protein was con- 
structed as follows. First, a DNA fragment encoding the earboxyl-terminal 
53 amino acids (amino acids 994-1046) of/5-galaetosidase, followed by five 
amino acids (amino acids 450-454) of msALDH, was created by PCR using 
oligonuclcotides no. 6 (5' AGCCATCGCCATCTGCTG 3') and no. 7 (5' 
GGAAGAATTTCGACCATrTTW_tACACCAGACC 3'). Similarly, a second 
DNA fragment corresponding to the last five amino acids (amino acids 
1042-1046) of/5-galactosidase followed by the last 35 amino acids (amino 
acids 450-484) and 3' untranslated sequence of msALDH was amplified 
using oligonueleotides no. 8 (5' C_~'ICTC.~TG'IC_AAAAA'IUGTCGAAAT- 
TCTICC 3') and no. 9 with mutated nucleotides underlined for introduction 
of an EcoRI site (5' AACAACTTAGAATTCAC~GTTC 3'). These two 
fragments were then used as the templates to create a chimeric eDNA with 
the oligonucleotides nos. 6 and 9. The resultant PCR fragment was digested 
with EcoRI and ligated in-frame to the EcoRI site (amino acids 1029-1030) 
of pCHII0 to construct pCHII0/ALDH. 

Since it was difficult to construct a series of various fusion genes using 
~-gaiactosidase eDNA according to the method described above, we used 
CAT eDNA for further analyses on the role of the carboxyl-terminai portion 
of msALDH in the intracellular localization. Chimeric cDNAs for CAT fu- 
sion proteins (CAT/ALDH chimeras) were constructed essentially by com- 
bination of oligonucleotide-directed mutagenesis and PCR. A 1.8-kbp 
HindHLBamHI eDNA fragment encoding CAT in the pSV2CAT was cloned 
into Ml3tvl8. Oligonuclnotides no. 10 (5' A G ~ G G C ~ G G T A C C T -  
AATTTTTTTA 3') and no. 11 (5' ATAAGTGATATCAAGCGGATGA 3') 
with mutated nucleotides underlined were used for generation of a KpnI 
site at the carboxyl terminus and an EcoRV site in the 3' untranslated se- 
quence of CAT, respectively. The mutated eDNA was cloned into HindlH/ 
BamHI-digested pMIW expression vector to construct pMIWCAT. PCR 
was then used to generate DNA fragments corresponding to the carboxyl- 
terminal regions of msALDH, including the 3' untranslated sequence. PCR 
reactions used the following primers and templates to amplify DNA 
fragments termed ALDH1-7 and 9: ALDH1; oligonueleotides no. 12 (5' 
GAGTCCAAGGGTACCTGGTCGAAATTC 3') with mutated nueicotides 
underlined for introduction of a KpnI site and no. 9 (pCDALDH as tem- 
plate), ALDI-I2; oligonucleotides no. 12 and no. 9 (pCDALDHA481-484 
as template), ALDH3; oligonucleotides no. 13 (5' AAACAGTICAAC- 
GGTACCAGC~TGCAGCTG 3') and no. 9 (pCDALDH as template), 
ALDH4; oligonucleotides no. 13 and no. 9 (pCDALDHA481-484 as tem- 
plate), ALDH5; oligonucleotides no. 14 (5' GAAATTCTTCGGTACC- 
AAACAGTTCAAC 3') and no. 9 (pCDALDH as template), ALDH6; oligo- 
nucleotides no. 14 and no. 9 (pCDALDHA481-484 as template), ALDH7; 
oligonucleotides no. 12 and no. 9 (pCDALDHA457-459 as template), and 
ALDH9; oligonucleotides no. 12 and no. 9 (pCDALDHA460-463 as tem- 
plate). These amplified fragments were then digested with KpnI and HpaI 
and ligated into the KpnI-EcoRV site of pMIWCAT. The resultant plasmids 
were designated pMIWCAT/ALDH1-7, and pMIWCAT/ALDH9, respec- 
tively. For construction of pMIWCAT/ALDHS, pMIWCAT/ALDH2, which 
has the unique PstI site in the coding sequence for the hydrophobic domain 
of msALDH, was digested with PstI and BamHI, and ligated into 
Pstl/BamHI digested pMIWCATIALDH7. Similarly, the same fragment 
was ligated into PstI/BamHI digested pM1WCAT/ALDH9 to construct 
pMIWCAT/ALDH10. 

Cell Culture and Transfection 

COS-1 cells were maintained in DME with 10% FBS, 50 U/ml penicillin, 
and 50 ~g/ml streptomycin at 37"C in a 5% COz incubator, and were 
replated the day before transfection by trypsinization. Transfection was per- 
formed 4 h after the medium was replaced by the fresh one. For subeellniar 
fractionation experiments, cells plated in a lO0-mm dish (50-70% con- 
fluem) were transfected with an expression plasmid (20 ~g) using the cai- 
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msALDH 

msALDHA450-484 

msALDHA471-484 

msALDHA481-484 

450 460 470 480 484 

TG6 T6C AAG TGA 

SWSKFFLLKOFNKGRLOLLLLVCLVAVAAV I VKDOL* 
+ + + + +- -  

TGA 

S* 

IGA 

SWSKFFLLKOFNKGRLOLLLLV* 
+ + + + 

IAG 

SWSKFFLLKOFNKGRLOLLLLVCLVAVAAV I V* 
+ + + + 

Figure 1. Deduced amino acid 
sequences of the carboxyl ter- 
mini of wild-type and trun- 
cated forms of msALDH. The 
single amino acid code is 
used, and the amino acid 
numbers of msALDH are 
shown at the top. Positively 
and negatively charged amino 
acids are marked + and - at 
the bottom, respectively. The 
hydrophobic domains are 
underlined. The eDNA for 
msALDH was converted to 
code for three truncated pro- 
teins, msALDHA450-484, 
msALDHA471-484, or ms- 
ALDHA481-484 by oligo- 
nucleotide-directed mutagen- 
esis. 

cium phosphate precipitation method (48). For immunottuorescent experi- 
ments, cells were grown on a 22 × 22-ram coverslip in a 35-ram dish 
(10-20% confluent) and were transfected with 4 /~g plasmid DNA per 
35-mm dish. For immunogold localization of CAT/ALDH chimeras, cells 
plated in a 60-ram dish (50-70% confluent) were transfected with 10 ttg 
plasmid DNA per dish. 4 h after application of DNA-calcium phosphate 
precipitate at 37°C, cells were shocked with 15% glycerol for 2 rain at room 
temperature, then incubated again at 370C for an additional 44 h before har- 
vesting for subcellular fractionation or fixation for indirect immunofluores- 
cence microscopy or immunoelectmn microscopy. 

Subcellular Fractionation and Assays 

Cell fractionation was performed essentially as described previously for 
COS-I cells by Clark and Waterman (10) with slight modifications. Briefly, 
cells were washed once with PBS and harvested in 5 ml of ice-cold 0.5 M 
sucrose containing 10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 10 #g/ml 
leupeptin, 10/~g/ml pepstatin A, 0.5 m_M PMSF, and 10 U/ml Trasyol (0.5 
M STE). After centrifugation at 800 g for 5 rain, the pellet was suspended 
in 0.5 ml of 0.5 M STE, homogenized with a Teflon-glass homogenizer, then 
diluted with an equal volume of 10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 
10/tg/nd leupeptin, 10/=g/ml pepstatin A, 0.5 mM PMSF, and 10 U/rni 
Trasyol to obtain isotonic conditions. The total homogenate (designated H) 
was layered over 0.5 ml of 0.5 M STE and centrifuged at 800 g for 10 rain 
at 4°C using a swing but bucket, yielding a pellet (P1) consisting mainly 
of nuclei and unbroken cells. The supernatant and the interface were again 
layered over 0.5 M STE and centrifuged as above at 9,000 g for 10 min to 
isolate mitochondrial fraction (P2). The resultant supernatant was cen- 
trifuged at 88,000 g for 80 rain at 40C to sediment microsomal fraction (P3, 
mostly of the ER membrane). The final supernatant, consisting mostly of 
cytosol, was designated $3. Membrane fractions, P1, P2, and P3 were 
resuspended by hand homogenization in 0.25 M STE. Endogenous enzyme 
activities of FP2 (an ER marker) and succinate-cytochrome c reductase (a 
mitochondrial marker) were assayed by the methods of Omura and Takesue 
(31) and King (17), respectively. Protein was measured by Bradford's 
method (7). 

Membrane Extractions 

Membrane fractions (100/tg protein) were resuspended in 0.8 ml of 100 
mM Na2CO3 (pH 11.5), and were incubated for 30 rain at 0*C (13). The 
suspension was then centrifuged at 88,000 g for 80 rain at 40C, and the pellet 
(P) was suspended in 100/~i of SDS-PAGE sample buffer (20). The superna- 
tant (S) was precipitated with 10% TCA, washed twice with 90% ethanol 
and once with diethyl ether, and dried. The resultant pellet was suspended 
in 100/d of SDS-PAGE sample buffer. 

Immunoblot Analysis 

All procedures were done at room temperature. Proteins were separated on 
8.5 % polyacrylamide gels (20) and electrophoretically transferred to a dora- 

pore membrane according to the method of Burnette (8) using a semidry 
transfer blotter for 2.5 h at 36 V. After blocking with 3% skim milk in 
TBS for 1.5 h, blots were incubated with primary antibody in 3 % skim milk/ 
TBS for 1.5 h, and washed four times (5 rain each) with 0.05% Tween-20 
in TBS. They were then incubated with secondary antibody (pemxidase- 
conjugated goat anti-rabbit IgG or anti-mouse IgG) in 0.05 % Tween-20/ 
TBS for 1.5 h, followed by four washes (5 rain each) with 0.05% Tween- 
20/TBS. Blots were stained using the enhanced chemiluminescence West- 
ern blotting detection system (Amersham Corp., Arlington Heights, IL). 
Protein bands were quantitated using an enhanced laser densitometer (LKB 
Instruments Inc., Bromma, Sweden) to evaluate the relative level of proteins 
in each subcellular fraction. The densitometric scan value was then esti- 
mated by multiplying the relative level by the protein yield (milligrams of 
protein) in corresponding subcellular fraction. In calculating the percent 
distribution of each immunodetectable protein, the densitometric scan 
value of the homogenate was defined as 100%. 

Indirect Immunofluorescence Microscopy 

All procedures, except for the incubation with antibodies or FITC- 
conjugated lectin at 37°C, were carried out at room temperature. Cells 
grown on coverslips were washed gently three times (5 rain each) with PBS, 
fixed with 4% paraformaldehyde in PBS containing 1 mM CaC12 and 0.5 
mM MgCI2 [PBS(+)] for 20 rain, and permeabilized with 0.1% Triton 
X-100 in PBS(+) for 1 h. They were then rinsed twice with PBS(+), and 
incubated with 2 % FBS in PBS(+) to block nonspecific binding of primary 
antibodies for 1 h followed by 45 rain incubation with primary antibody in 
2 % FBS/PBS(+). After washing four times (5 rain each) with PBS(+), cells 
were incubated with secondary antibody in 2% FBS/PBS(+) for 45 min. 
For localization of the Golgi complex, cells were incubated with FITC- 
conjugated wheat germ agglutinin in 2% FBS/PBS(+) for 45 rain. After 
washing with PBS(+), they were then mounted on glass slides with 90% 
glycerol in PBS containing 1 m~/ml paraphenylenediamine, examined, and 
photographed on a microscope (BH-2; Olympus Corp., Tokyo, Japan) with 
Ektachrome 400 film (Kodak, Rochester, NY). 

Immunoelectron Microscopy on Frozen 
Ultrathin Sections 
Frozen ultramicrotomy was performed as described by Tokuyasu (46). 
Transfected cells were harvested by centrifugation at 1,000 g for 3 rain, and 
the pellet was fixed with 4% paraformaldehyde and 0.1% glutaraldehyde dis- 
solved in 0.1 M cacodylate buffer, pH 7.4, for 15 min. Small pieces of the 
fixed pellets of COS-I cells were incubated overnight in O.l M sodium phos- 
phate buffer, pH 7.4, containing 2.3 M sucrose and 20% polyvinyl pyrroli- 
done, and were rapidly frozen in liquid propane at -180°C. Frozen ultrathin 
sections were cut with an u l ~ c m t o m e  (Ultracut-N; Reichert, Wien, 
Australia) with a cryoattachment (FC-4D; P~ichert). The sections were 
picked up on formvar-carbon-conted nickel grids, incubated with 2 % gela- 
tin in PBS containing lO ~ glycine, then reacted with anti-CAT antib(xiy 
or control IgG prepared from a nonimmunized rabbit serum. The sections 
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Figure 2. Immunoblot analysis of wild-type and truncated forms of 
msALDH. (A) COS-1 cells were transfected with cDNA for wild- 
type or truncated forms of msALDH in the pCD vector, and were 
harvested 44 h after transfection. Equal amounts of protein (20/~g) 
from each homogenate were resolved on SDS-PAGE and immuno- 
blotted using anti-msALDH antibody. Lane 1, msALDH; lane 2, 
msALDHA481-484; lane 3, msALDHA471-484; lane 4, msALDH- 
A450-484. (B) Subcellular fractions (P1, P2, P3, and $3) were iso- 
lated from each homogenate (H) as described in Materials and 
Methods, and equal amounts of protein (12 #g, except for 6 #g of 
subcellular fractions from cells expressing msALDH or msALDH- 
A481-484) were immunoblotted using anti-msALDH antibody. En- 
dogenous FP2 and mitochondrial Rieske iron-sulfur protein (ISP) 
of the complex III were detected using anti-FP2 antibody and anti- 
complex III antiserum, respectively. (C) The percent distribution 
in each subcellular (P1, P1, P3, and $3) fraction is shown for 
msALDH, three truncated proteins, FP2, or ISP. The distribution 
of immunodetectable proteins in each subcellular fraction was cal- 
culated as described in Materials and Methods. In calculating the 
percent distribution, the densitometric scan value of the homog- 
enate (H) was defined as 100%. The bars show the mean + SD 
(n = 3). 

were then washed six times with gelatin solution, and were reacted with goat 
anti-rabbit IgG gold conjugate (10 nm in diameter) (British BioCell, 
Cardiff, UK). After washing with sodium cacodylate buffer, pH 7.4, sec- 
tions were postfixed in 2% glutaraldehyde, then in 1% OsO4, stained with 
uranyl acetate, embedded in LR white resin (Bio Rad Microscience Divi- 
sion, Watford, UK), and observed with an electron microscope (H-7000; 
Hitachi, Tokyo, Japan). 

Table I. Distribution of FP2, Succinate-Cytochrome c 
Reductase, and Protein in Subcellular Fractions 

FP2 SCR Protein 
(%) (%) (%) 

H 100 100 100 
P1 6 + 3 9 + 2 10 + 4 
P2 12 + 4  48 + 2 12 + 3 
P3 42 + 8 7 + 3 21 + 3 
$3 7 + 1 0 + 0 39 + 6 

Cell fractionation was performed as described in Materials and Methods. In 
calculating the percent distribution, each value of the homogenate was defined 
as 100%. The distribution of FP2 and succinate-cytochrome c reductase(SCR) 
is determined from the specific activities measured. The specific activities of 
the homogenate fractions are 52.3 + 11.0 nmol cytechrome c reduced/rain per 
mg protein (the mean + SD n = 4) and 26.9 + 2.8 nmol cytoehrome c 
reduced/min per mg protein for FP2 and succinate-cytochrome c reductase, 
respectively. 

Results 

Construction of  Truncated Mutants of  msALDH 

In the previous study (24), we cloned and sequenced the full- 
length cDNA for rat msALDH. The nucleotide sequence 
predicts a polypeptide of 484 amino acids, and the most 
characteristic feature of this membrane-bound ALDH is 
carboxyl-terminal 35 amino acids, consisting of a stem re- 
gion (amino acids 450-463) and a hydrophobic domain 
(amino acids 464-480) followed by a short hydrophilic tail 
region (amino acids 481-484) as shown in Fig. 1. Since rat 
cytosolic tumor-associated ALDH, which is 65.5 % identical 
to msALDH (24), lacks the carboxyl-terminal portion, we 
asked whether this portion played an important role in the 
intracellular localization of msALDH. For this purpose, we 
constructed three mutant proteins truncated at either amino 
acid 450 (msALDHA450-484, which corresponds to the 
tumor-associated ALDH in size), 471 (msALDHA471-484, 
deletion of more than half of the hydrophobic domain to- 
gether with the tail region), or 481 (msALDHA481-484, de- 
letion of solely the tail region) by oligonucleotide-directed 
mutagenesis (Fig. 1). 

These mutant proteins and wild-type msALDH were ex- 
pressed transiently in COS-1 cells under the control of SV-40 
promoter in the pCD expression vector. This transient ex- 
pression system in COS-1 cells was chosen as the most rapid 
method for evaluating the intracellular localization of ex- 
pressed proteins. Cells were allowed to express these pro- 
teins for 44 h, harvested, and the expressed proteins were 
analyzed by immunoblotting using anti-msALDH antibody. 
As shown in Fig. 2 A, msALDH and three truncated proteins 
were expressed efficiently in the total homogenates. As ex- 
pected, molecular masses of the truncated proteins were 
smaller than that of msALDH (54 kD). In addition, no cross- 
reactive protein was detected in untransfected COS-1 cells 
(data not shown), indicating the absence of endogenous 
msALDH. These results allowed us to investigate the intra- 
cellular localization of msALDH by transfection experi- 
ments. 

Deletion of the Carboxyl-terminal Portion of  
msALDH Abolishes ER Localization 

We analyzed the intraceUular distribution of msALDH and 
three truncated proteins by subcellular fractionation accord- 
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Figure 3. Effect of sodium carbonate treatment on the membrane 
association of wild-type msALDH and two truncated proteins. (,4) 
Each P3 fraction was treated with 100 mM Na2CO3 for 30 rain at 
0°C, and centrifuged at 88,000 g for 80 min to separate the pellets 
(P) from the supernatants (S). The distribution of msALDH, 
msALDHA481-484, msALDHA471-484, FP2, or PDI in the P and 
S fractions was assayed by immunoblotting. Polyclonal anti-PDI 
antibody was used for immunodetection of endogenous PDI. (B) 
The relative level of each protein in the P and S fractions was quan- 
titated by a scanning densitometer. In calculating portions recov- 
ered in the P fraction, the total level of each protein recovered in 
the P and S fractions was defined as 100 %. The bars show the mean 
+ SD (n = 3). 

ing to the method of Clark and Waterman (10). The separa- 
tion of ER membranes from mitochondria was checked by 
assaying two typical marker enzymes, FP2 (NADPH-cyto- 
chrome P-450 reductase), which has been shown to be an in- 
tegral ER membrane protein (22), and a mitochondrial 
marker succinate-cytochrome c reductase. As shown in Ta- 
ble I, FP2 and succinate-cytochrome c reductase were en- 
riched in the P3 fraction and the P2 fraction, respectively. 
In addition, when equal amounts of protein were immuno- 
blotted, the highest levels of FP2 and mitochondria Rieske 
iron-sulfur protein were found inthe P3 fraction and the P2 
fraction, respectively (Fig. 2 B). The percent distribution of 
the two proteins in each subcellular fraction also confirmed 
a good separation of ER membranes from mitochondria 
(Fig. 2 C). The subceUular distribution of msALDH and 
msALDHA481-484 was almost identical to that of FP2 (Fig. 
2, B and C), suggesting the ER localization of these proteins 
in transfected COS-1 cells. On the other hand, msALDH 
A450-484 was found exclusively in the $3 fraction. This re- 
sult indicated that the mutant protein lacking the last 35 
amino acid8 of msALDH was no longer associated with in- 
tracellular membranes. Curiously, msALDHA471-484 was 
recovered not only in the $3 fraction, but also in the P3 frac- 
tion, showing an intermediate distribution between msALDH 
and msALDHA450-484. 

We explored the nature of the association of the expressed 

proteins with microsomal membranes. Upon treatment of 
the P3 fraction with 100 mM Na2CO3 (pH 11.5) (13), FP2 
(the integral ER membrane protein) remained attached to 
microsomal membranes as judged by immunoblotting (Fig. 
3, A and B). Wild-type msALDH and msALDI-I~481-484 
were also resistant to alkali extraction, although ,x,35 % of 
msALDHA481-484 was released. Under the same condi- 
tions, >80% of msALDHA471-484 and PDI (a luminal ER 
residen0 were released, indicating a loose association of 
these proteins with microsomal membranes. Similar results 
were obtained upon Triton X-114 cloud point extraction (6) 
(data not shown). These data, together with those from sub- 
cellular fractionation, suggested that the carboxyl-terminal 
portion of msALDH including the hydrophobic sequence 
(amino acid 464-480) was necessary for both its ER localiza- 
tion and the tight association with the ER membrane. 

We next determined the intracellular localization of msALDH 
and the truncated proteins using indirect immunofluores- 
cence microscopy. Cells transfected with cDNAs in the pCD 
vector were fixed and permeabilized 44 h after transfection, 
and the expressed proteins were detected by incubation with 
anti-msALDH antibody followed by TRITC-conjugated sec- 
ondary antibody. As shown in Fig. 4 A, anti-msALDH anti- 
body stained a number of large vesicular structures that sur- 
rounded the nucleus, in addition to diffuse reticular ones in 
COS-1 cells transfected with msALDH eDNA. No staining 
was seen at the plasma membrane and in the nucleoplasm. 
A similar pattern of staining for msALDH was observed ei- 
ther 24 h after transfection in COS-1 cells or when expressed 
in HeLa cells or baby hamster kidney cells (data not shown). 
To explore this strange structure in more detail, we used dou- 
ble indirect immunofluorescence microscopy using two 
mAbs or FITC-conjugated lectin. Expressed msALDH was 
found to colocalize with endogenous PDI (Fig. 4 B, arrow), 
although PDI displayed a characteristic reticular staining 
pattern in cells not expressing msALDH (Fig. 4 B, arrow- 
head). In contrast, msALDH colocalized neither with a mi- 
tochondrial 65-kD protein (Fig. 4, C and D) nor with the 
perinuclear Golgi complex visualized by FITC-conjugated 
wheat germ agglutinin (Fig. 4, E and F). These results 
strongly suggest the ER localization of msALDH and the 
drastic morphological change of the ER by expression of 
msALDH. A similar ER staining pattern was observed 
for msALDHA481-484 (Fig. 4, G and H),  whereas both 
msALDHA471-484 and msALDHA450-484 were found dis- 
tributed diffusely throughout the cytoplasm, and they did not 
colocalize with PDI (Fig. 4, I-L). In addition, a significant 
amount of msALDHA450-484 appeared to enter the nucleus 
(Fig. 4 K). These immunolocalization data were consis- 
tent with those from subcellular fractionation, suggesting 
strongly the important role of the carboxyl-terminal portion 
of msALDH in its ER localization. 

The Carboxyl-Termina135 Amino Acids of  msALDH 
Are Sufficient for  ER Localization 
We focused our attention on the role that the carboxyl- 
terminal portion of msALDH might play in ER targeting, 
and we asked whether this portion could direct a heterolo- 
gous protein to the ER membrane. For this purpose, we con- 
structed an expression plasmid shown in Fig. 5 A. The con- 
trol vector (pCHll0) contains E. coli/3-galactosidase, which 
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Figure 4. Localization of wild-type 
msALDH and three truncated pro- 
reins in transfected cells by double 
indirect immunofluorescence micros- 
copy. COS-1 cells grown on cover- 
slips were transfected with pCDA- 
LDH (A-F), pCDALDHA481-484 
(G and H), pCDALDHA471-484 (I 
and J) or pCDALDHA450-484, (K 
and L), fixed 44 h after transfec- 
tion, and permeabilized. Wild-type 
msALDH (A, C, and E) and the trun- 
cated proteins (G, I, and K) were 
then detected by incubation with 
anti-msALDH antibody followed by 
TRITC-conjogated secondary anti- 
body. For visualization of endog- 
enous PDI (B, H, 1, and L) or a mito- 
chondrial 65-kD protein (D), cells 
were stained with corresponding 
mAbs followed by FITC-conjugated 
secondary antibody. The Golgi com- 
plex was localized by staining with 
FITC-conjugated wheat germ agglu- 
tinin (F). The arrow in B/indicates 
COS-I cell expressing msALDH, 
whereas the arrowhead in the same 
figure indicates the cell that does not 
express msALDH. 
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Figure 5. Immunoblot analysis of #-galactosidase and /~-galac- 
tosidase/ALDH in transfected cells. (A) Schematic diagrams of 
msALDH,/~-galaetosidase, and #-galactosidase/ALDH in the ex- 
pression vectors are shown. SV-40 implies the SV-40 early pro- 
moter. The expression plasmids pCDALDH, pCHll0, and pCHll0/ 
ALDH contain msALDH, E. coil B-gaiactosidase, and/5-gaiacto- 
sidase/ALDH, respectively. The amino acid numbers of each pro- 
tein are shown at the top, and the relevant restriction endonuelease 
sites are at the bottom. E, EcoRI; H, HindIH; B, BamI-H. The last 
35 amino acids of msALDH are indicated by the solid bar. The chi- 
meric eDNA fragment with EcoRI sites shown by the bar was am- 
plified by PCR and cloned in-frame to the unique EcoRI site in 
pCHll0 as described in Materials and Methods. To the right, the 
intracellular location of each protein is noted as E for ER or C for 
cytosolie. (B) COS-1 cells were transfected with pCHll0 (~Gal) 
or pCHll0/ALDH ~3GaI-ALDH), and harvested 44 h after trans- 
fection. The membrane (P) and cytosol (S) fractions were prepared 
by centrifugation of the postnuelear fractions at 88,000 g for 80 

i rain. The membrane fraction containing/3GaI-ALDH was treated 
• with 100 mM Na2CO3 at 0*C for 30 min, and was centrifuged at 

88,000 g for 80 min to separate the pellet (P) from the supernatant 
(S). Each fraction was assayed by immunoblotting using mAb to 
/3-galactosidase. 

was supposed to remain in the cytoplasm when expressedin 
COS-1 cells under the control of the SV-40 promoter. The 
constructed expression plasmid (pCHll0/ALDI-I) contains 
the last 35 amino acids of msALDH cloned in-frame to the 
3' end of/3-galactosidase. COS-1 cells were transfected with 
these DNAs and subjected to a crude subcellular fraction- 
ation. In this case, the postnuclear supernatant was cen- 
trifuged at 88,000 g for 80 min to separate the membrane 

fraction (P, containing mostly mitochondria and micro- 
somes) from the cytosol fraction (S). Immunoblotting using 
mAb to E. coli ~-galactosidase revealed that wild-type 
~-galactosidase was recovered, as expected, in the S frac- 
tion, whereas ~-galactosidase/ALDH chimera was found 
concentrated in the P fraction (Fig. 5 B). In addition, the chi- 
mera in the P fraction was resistant to alkali extraction, indi- 
caring a fight anchoring of this protein to intracellular mem- 
branes (Fig. 5 B). 

Indirect immunofluorescence microscopy showed that 
~-gaiactosidase was distributed diffusely throughout the 
cytoplasm (Fig. 6 A). However, attachment of the carboxyl- 
terminal 35 amino acids of msALDH to ~-galactosidase 
resulted in the reticular pattern of staining that surrounded 
the nucleus and extended throughout the cytoplasm (Fig. 6 
B). Double indirect immunofluorescence microscopy using 
polyclonal anti-PDI antibody showed the colocalization of 
/3-galactosidase/ALDH chimera and PDI in the ER (Fig. 6 
C). These results suggested that the carboxyl-terminai 35 
amino acids were sufficient for targeting of E. coli #-galac- 
tosidase to the ER membrane. 

Both  Stem and Tail Regions o f  m s A L D H  Contain 
ER-targeting Sequences 

We attempted to define the sequence requirement for ER tar- 
geting within the last 35 amino acids of msALDH, which is 
composed of three regions as shown in Fig. l, and we con- 
structed a series of CAT/ALDH chimeras (CAT/ALDH1-4) 
(Fig. 7). CAT/ALDH1 contains the last 35 amino acids of 
msALDH at the carboxyl terminus of CAT, while CAT/ 
ALDH2-4 chimeras lack either the tail, stem, or both 
regions of msALDH. COS-1 cells were transfected with 
these cDNAs in the pMIW expression vector that possesses 
/3-actin promoter and Rous sarcoma enhancer. The intra- 
cellular localization of the expressed proteins were deter- 
mined by indirect immunofluorescence microscopy using 
anti-CAT antibody. Wild-type CAT was distributed, as ex- 
pected, throughout the cytoplasm. In addition, it was also 
detected in the nucleoplasm (Fig. 8 A). CAT/ALDH1 showed 
the characteristic ER staining pattern (Fig. 8 B), which was 
confirmed by double indirect immunofluorescence micros- 
copy using PDI mAb (Fig. 8 C). This result was similar to 
that obtained with/5-gaiactosidase/ALDH (Fig. 6, B and C). 
Both CAT/ALDI-I2 and CAT/ALDH3 were also found to 
colocalize with endogenous PDI in the ER (Fig. 8, D-G).  
On the other hand, CAT/ALDH4 containing only the hydro- 
phobic domain of msALDH at its carboxyl terminus showed 
a similar pattern of staining to that of wild-type CAT. This 
chimera remained not only in the cytoplasm, but in the 
nucleoplasm as well (Fig. 8 H), and it did not colocaiize with 
PDI (Fig. 8 I). The simplest interpretation of these results 
is that both the stem and tail regions appear to contain ER- 
targeting information of msALDH. 

To elucidate more narrowly the sequence requirement 
within the stem region for ER targeting, we constructed an 
additional series of CAT/ALDH chimeras (CAT/ALDH5-10) 
(Fig. 9), in which three to seven amino acids of the stem re- 
gion of either CAT/ALDH1 or CAT/ALDI-I2 are deleted. 
The intracellular localization of these chimeras expressed in 
COS-1 cells was analyzed by indirect immunofluorescence 
microscopy. Three chimeras, CAT/ALDH5, CAT/ALDH7, 
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and CAT/ALDH9, were supposed to be directed to the ER 
by virtue of the tail region, even if they lack an ER targeting 
sequence within the stem region, and indeed they showed the 
reticu~lar staining pattern including the nuclear membrane 
(Fig. 10, A, C, and E). Among the mutant proteins lacking 
the tail region, CAT/ALDH6 and CAT/ALDH10 showed the 
reticular pattern (Fig. 10, B and F). These reticular compart- 
ments were confirmed to be the ER by colocalization with 
PDI (data not shown). In contrast, CAT/ALDH8, which 
lacks the Lys-Gln-Phe sequence (amino acids 457-459) 
within the stem region and the tail region, was found dis- 
tributed diffusely throughout the cytoplasm and the nucleo- 
plasm (Fig. 10 D). 

Figure 6. Localization of fl-galacto- 
sidase and fl-galactosidase/ALDH 
in transfected cells by double indi- 
rect immunofluoresc~nce microscopy. 
COS-I cells were transfected with 
pCHll0 (A) or pCHll0/ALDH (B 
and C), fixed 44 h after transfection, 
and permeabilized, mAb to fl-galac- 
tosidase was used to stain fl-galacto- 
sidase (A) or fl-galactosidase/ALDH 
(B). Polyclonal anti-PDI antibody 
was used for detection of endogenous 
PDI (C). 

We investigated in more detail the intracellular localiza- 
tion of CAT and CAT/ALDH chimeras in transfected COS-1 
cells using an IgG-gold immunoelectron microscopic tech- 
nique on frozen ultrathin sections. Gold particles were dis- 
tributed in the cytoplasm and in the nucleoplasm in COS-1 
cells transfected with pMIWCAT (Fig. 11 A). A similar dis- 
tribution of gold particles was observed in COS-1 cells ex- 
pressing either CAT/ALDH4 (data not shown) or CAT/ 
ALDH8 (Fig. 11 D). In marked contrast, gold particles were 
predominantly detected on the cytoplasmic surface of the ER 
membrane in COS-1 cells expressing CAT/ALDH1 (Fig. 11 
B), CAT/ALDH7 (Fig. 11 C), or the other CAT/ALDH 
chimeras (data not shown). These immunoelectron micro- 

1 CAT 21 9 

sv c CAT 

H K V B 

450 484 

CAT/ALDH1 ~ gSKFFLLKOFNKGRLQLLLLVCLVAVAAV I V K D O L - -  E 

450 480 

CAT/ALDH2 ~ WSKFFLLKOFNKGRLQLLLLVCLVAVAAV I V E 

463 484 

CAT/ALDH3 ~ .................................. RLQLLLLVCLVAVAAV I V K D O L - -  E 

463 480 

CAT/ALDH4 ~ .................................. RLOLLLLVCLVAVAAV I V C 

• Figure 7. Schematic diagrams of CAT and CAT/ALDH1-4 chimeras in the pMIW expression vector. /3-actin and RSV mean the fl-actin 
promoter and Rous sarcoma enhancer, respectively. The coding sequence of CAT is indicated by the solid bar. The single amino acid code 
is used to represent the carboxyl-terminal sequences ofmsALDH. Deleted sequences are indicated by broken lines. The amino acid numbers 
of each protein are shown at the top, and the relevant restriction endonuclease sites at the bottom. H, HindHI; K, KpnI; V, EcoRV; B, 
BamHI. To the right, the intracellular location of each protein is noted as E for ER or C for cytosolic. 
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Figure 8. Localization of CAT and 
CAT/ALDH1-4 chimeras in trans- 
fected cells by double indirect immu- 
nofluorescence microscopy. COS-1 
cells were transfected with pMIW- 
CAT (A), pMIWCAT/ALDH1 (B and 
C), pMIWCAT/ALDH2 (D and E), 
pMIWCAT/ALDH3 (F and G), or 
pMIWCAT/ALDH4 (H and I), fixed 
44 h after transfection, and perme- 
abilized. Wild-type CAT (A) and 
CAT/ALDH chimeras (B, D, F,, and 
H) were detected by anti-CAT anti- 
body. Endogenous PDI (C, E, G, and 
I) was stained with mAb to PDI. 

scopic data are consistent with indirect immunofluorescent 
data, and these immunolocalization data together strongly 
suggest that the ER-targeting sequences of msALDH exist 
within the Lys-Gln-Phe sequence in the stem region and 
within the Lys-Asp-Gln-Leu sequence of the tail region. 

D i s c u s s i o n  

Expression o f  m s A L D H  in COS-1 Cells Alters 
the ER Structure 

We have shown here by subcellular fracfionation and indirect 
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450 456  460 484  

CAT/ALDH7 - - ~ W S K F F L L  ......... NKGRLOLLLLVCLVAVAAVIVKDOL-- E 

450 456  460 480 

CAT/ALDH8 ~ W S K F F L L  ........ NKGRLOLLLLVCLVAVAAVIV. C 
450 459 464 484 

CAT/ALDH9 ~ W S K F F L L K O F  ............ LOLLLLVCLVAVAAVIVKDOL--  E 

450 459 464 480 

CAT/ALDHIO ~ W S K F F L L K O F  ........... LOLLLLVCLVAVAAVIV- E 

Figure 9. Schematic diagrams of CAT/ALDH540 chimeras in the pMIW expression vector. The coding sequence of CAT is indicated by 
the solid bar. The single amino acid code is used to represent the carboxyl-terminal sequences of msALDH. Deleted sequences are indicated 
by broken lines. The amino acid numbers of each protein are shown at the top. To the right, the intracellular location of each protein is 
noted as E for ER or C for cytosolic. 

immunofluorescence experiments that not only msALDH, 
but also msALDHA481-484, colocalizes with two ER marker 
proteins, FP2 and PDI, when expressed from cDNAs in 
COS-1 cells. Surprisingly, indirect immunofluorescence mi- 
croscopy revealed the apparent alteration of the ER structure 

in cells expressing either msALDH or msALDH-A481-484. 
The altered ER structure was characterized by large vesicu- 
lar structures mainly located near the nucleus. Since the un- 
usual staining pattern was observed by expression of 
msALDH or msALDHA481.484, it appeared that the ER an- 

Figure 10. Localization of CAT/ 
ALDHS-10 chimeras in transfected 
cells by indirect immunofluorescence 
microscopy. COS-1 cells were trans- 
fected with pMIWCAT/ALDH5 (A), 
p ~ T / A L D H 6  (B), pM~CAT/ 
ALDH7 (C), pMIWCAT/ALDH8 
(D), pM1WCAT/ALDH9 (E), or 
pM1WCAT/ALDHI0 (F), fixed 44 h 
after transfection, permeabilized, 
and stained with anti-CAT antibody. 
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Figure 11. Immunogold electron microscopic localization of CAT and CAT/ALDH chimeras in transfected cells. COSol cells were trans- 
fected with pMIWCAT (A), pMIWCAT/ALDHI (B), pMIWCAT/ALDH7 (C), or pMIWCAT/ALDH8 (D), and fixed 44 h after transfection. 
Ultrathin cryosections of COS-1 cells were reacted with anti-CAT antibody and subsequently with goat anti-rabbit IgG gold conjugate (10 
nm in diameter). ER, endoplasmic reticulum; G, Golgi apparatus; PM, plasma membrane; N, nucleus. Bar, 500 nm. 



choring of these proteins led to the morphological alteration 
of the ER. We are now investigating in more detail the al- 
tered ER structure by immunoelectron microscopy, and we 
have recently found that the ER tubules in COS-1 cells ex- 
pressing msALDH are packed in crystalloid hexagonal arrays 
(Yamamoto, A., R. Masaki, and Y. Tashiro, manuscript in 
preparation). The elucidation of the altered ER structure 
would provide interesting information on the morphological 
change of the intracellular organelle induced by overexpres- 
sion of a resident membrane protein. 

ER-targeting Sequences of msALDH Are Located at 
Its Carboxyl Terminus 

We showed previously that msALDH has no amino-terminai 
signal sequence, but instead, that it has a longer carhoxyl- 
terminal portion than cytosolic tumor-associated ALDH 
(24). Our truncation and domain replacement experiments 
have shown here that the last 35 amino acids of msALDH 
are necessary for its ER localization and also sufficient 
enough for localization of two beterologous proteins, E. coli 
/~-galactosidase and CAT, to the ER. We therefore conclude 
that the carboxyl-terminal portion contains an ER-targeting 
sequence of msALDH. 

Further analyses on the intraceilular distribution of vari- 
ous CAT/ALDH chimeras have defined the ER targeting 
sequence ofmsALDH. Both CAT/ALDH4 and CAT/ALDH8 
were distributed in the cytoplasm and nucleoplasm similar 
to wild-type CAT in spite of possessing the whole hydropho- 
bic domain (amino acids 464-480) of msALDH at their car- 
boxyl termini, whereas the other chimeras were predomi- 
nantly localized to the ER. The two chimeras are lacking the 
Lys-Gln-Phe sequence within the stem region and the Lys- 
Asp-Gln-Leu sequence of the tail region, thus suggesting 
that both sequences represent the ER-targeting sequences 
of msALDH. We are now in the process of determining 
through mutagenesis which amino acids within these two 
regions are required for ER targeting. On the other hand, 
it seems likely that the hydrophobic sequence of msALDH 
functions mainly as the ER membrane anchor because this 
portion is essential for membrane anchoring. 

To the best of our knowledge, our data characterize the 
first intracellular protein that appears to have two targeting 
sequences separated by a membrane anchor. The ambiguous 
behavior of msALDHA471-484 could be explained as fol- 
lows. A portion of this truncated protein could be targeted 
to the ER by virtue of the Lys-Gln-Phe sequence within the 
stem region, hut because of the shortened hydrophobic do- 
main, the portion would he either released into the cytosol 
or maintain only a loose association with the membrane. 

The significance of the presence of two separated targeting 
sequences is not yet clear. A small portion of msALDHA481- 
484 was, in fact, recovered in the $3 fraction, whereas only 
insignificant amounts of msALDH or FP2 (Fig. 2, B and C), 
which is efficiently targeted to the ER through the amino- 
terminal signal sequence, were recovered in the $3 fraction. 
Therefore, it is likely that the presence of two targeting se- 
quences in the same protein might be a means to ensure 
the more efficient ER localization of msALDH. In addition, 
the hydrophilic tail region might also serve to increase the 
strength of the membrane anchoring, as indicated by the 
partial membrane extraction of msALDHA481-484 with 
Na2CO3 (Fig. 3). Although it is not yet clear whether the 

A 
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Figure 12. Possible mechanisms for ER targeting of msALDH. (A) 
Alignment of the sequences of the carboxyl-terminal 35 amino 
acids of human PTP 1B (amino acids 401-435) (9), rat cytochrome 
b5 (amino acids 99-134) (32), and rat msALDH (amino acids 450- 
484) (24). The single amino acid code is used. Positively and nega- 
tively charged amino acids are marked + and - at the top, respec- 
tively. Each hydrophobic domain is underlined and the ER targeting 
sequences of either cytochrome b5 (23) or msALDH are indicated 
by broken lines. (B) Two possible models for ER targeting of 
msALDH. In model I, the aggregation of the newly synthesized 
msALDH polypeptides in the cytoplasm is prevented by the 
hydrophilic ER targeting sequences adjacent to the hydrophobic an- 
choring sequence. The monomeric msALDH would be inserted 
into the ER membrane with the aid of a receptor protein on the ER 
membrane. In model II, the complex of msALDH and a cytosolic 

• receptor protein would be targeted to the ER, and msALDH would 
be inserted correctly into the ER membrane spontaneously or 
through the interaction with a receptor protein on the membrane. 

hydrophobic segment fully transverses the membrane, this 
transmembrane disposition seems more likely to explain the 
tight anchoring of the protein in the ER membrane than a 
loop model where the hydrophilic tail remains on the cyto- 
plasmic surface. 

The Lys-Asp-Gln-Leu sequence of the tail region strongly 
resembles the well-characterized Lys-Asp-Glu-Leu retention 
signal found in the ER luminal proteins (25), suggesting that 
the Lys-Asp-Gln-Leu sequence, if translocated into the lu- 
men of the ER, serves as an ER retention signal of msALDH. 
However, Andres et al. have shown that proneuropeptide Y 
mutant bearing the Lys-Asp-Gln-Leu sequence at the car- 
boxyl terminus is processed and secreted like wild-type 
proneuropeptide Y when expressed in AtT-20 cells, despite 
the intraceUular retention of the unprocessed proneuropep- 
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tide Y with the Lys-Asp-Glu-Leu sequence (4), thus suggest- 
ing the important role of the acidic Glu residue in ER reten- 
tion. We are now studying the membrane topology of 
msALDH and the intracellular localization of both msALDH 
and msALDHA481-484 in more detail by immunoelectron 
microscopy to check the potential role of the tail region for 
ER retention. 

Novel ER targeting sequences have recently been reported 
for two other tail-anchored proteins. Frangioni et al. have 
found that the ER targeting sequence of protein tyrosine 
phosphatase 1B (PTP 1B) exists within the carboxyl-terminal 
35 amino acids (12). Mitoma and Ito have shown that the last 
10 amino acids of cytochrome b5, which include the 
hydrophilic tail of this protein, are important for its targeting 
to the ER (23). Fig. 12 A shows an alignment of the last 35 
amino acids of PTP 1B (9), cytochrome b5 (32), and 
msALDH (24), where each hydrophobic domain is under- 
lined and the ER-targeting sequences of cytochrome b5 and 
msALDH are indicated by the broken line. Although the se- 
quence required for ER targeting within the last 35 amino 
acids of PTP 1B has not been defined, PTP 1B and cyto- 
chrome b5 have the common Leu-X-Tyr-Arg motif (Fig. 12 
A) within their last 10 amino acids. In addition, PTP 1B and 
cytochrome b5 have tails of similar length (seven and eight 
amino acid residues, respectively), which are longer than 
that (four amino acid residues) of msALDH. It therefore 
seems likely that PTP 1B possesses a similar ER-targeting 
sequence to that of cytochrome b5. We have not found in the 
carboxyl-terminal portion of msALDH a motif similar to 
that in those two proteins, despite the fact that the ER- 
targeting sequences of cytochrome b5 and msALDH are 
both hydrophilic and adjacent to the membrane anchors. In 
addition, the presence in msALDH of two ER-targeting se- 
quences separated by the membrane-anchoring domain sug- 
gests that this protein, with respect to the ER-targeting se- 
quence, belongs to a different class than the other two. 

Possible Mechanisms for ER Targeting 

In addition to the three proteins described above, several 
other ER membrane proteins are known that also have 
carboxyl-terminal anchors, such as heine oxygenase (40) and 
ribosome-binding protein p34 (28), but ER-targeting se- 
quences of these proteins have not yet been identified. 
Cytochrome bS, heme oxygenase, and msALDH are synthe- 
sized on free polysomes (29, 41, 45) and posttranslationally 
targeted to the ER. Indeed, the SRP-independent integration 
of cytochrome b5 into microsomal membranes has been 
demonstrated (3). Our present study, together with these 
findings, suggests a novel pathway by which a class of tail- 
anchored proteins with a novel targeting sequence is directed 
to the ER. 

How might the ER-targeting sequence function? Fig. 12 B 
shows two possible models to explain the ER targeting of 
msALDH. One possibility (/) is that the hydrophilic target- 
ing sequences serve to prevent the aggregation of the newly 
synthesized msALDH polypeptides through their hydropho- 
bic anchoring sequences, which makes it easier for them 
finding a. specific receptor on the ER membrane. Another 
possibility (I/) is that a cytosolic receptor binds to the target- 
ing sequences of msALDH to form a complex that effects the 
correct insertion of the carboxyl-terminal anchor into the ER 
membrane spontaneously or through their interactions with 

a receptor on the membrane. The elucidation of the mecha- 
nisms by which ER localization of msALDH occurs should 
provide valuable clues for an understanding of the posttrans- 
lational targeting and insertion of a class of membrane pro- 
teins with a carboxyl-terminal anchor. 
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