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Introduction

Exosomes are a type of extracellular vesicles (EVs); they 
are membranous structures originating from different kinds 
of cells (Szabo and Momen-Heravi 2017). EVs can be clas-
sified into microvesicles, apoptotic bodies, and exosomes 
based on their size, surface proteins, and biogenesis mech-
anisms (Cocucci and Meldolesi 2015). Exosomes were 
originally regarded as a remnant of cell degradation to dis-
card unneeded cellular materials (Doyle and Wang 2019); 
however, they have been increasingly implicated in cellular 
communication through which cells exchange proteins and 
genetic material (van Niel et al. 2018). The liver is a complex 
organ that consists of a number of different types of cells, 
including parenchymal cells (hepatocytes) and non-paren-
chymal cells, such as immune cells (e.g., Kupffer cells), liver 
sinusoidal endothelial cells, hepatic stellate cells, and chol-
angiocytes (Mehal et al. 2001). Exosomes can be released by 
most of these liver cells, and thus, may actively participate 
in intercellular communication not only in the liver but also 
in the distal organs (Szabo and Momen-Heravi 2017). Exo-
some-mediated intercellular communication is dependent 
on the cargo materials present in exosomes, which include 
proteins and nucleic acids (Fig. 1) such as DNA, mRNA, and 
microRNA (miRNA; (Turchinovich et al. 2019). Transfer of 
these materials can alter the activities of recipient cells by 
regulating gene transcription and expression.

miRNAs are small (20–24 nucleotides in length), non-
coding RNAs that mediate post-transcriptional regulation of 
gene expression (Ha and Kim 2014). They are transcribed 
as precursor molecules, pri-miRNAs, and subsequently 
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processed by the RNase III protein Drosha and the endo-
nuclease Dicer to generate mature miRNAs (Treiber et al. 
2019). Mature miRNAs form an RNA-induced silencing 
complex (RISC) in association with argonaute 2 for post-
transcriptional regulation (Treiber et al. 2019). As a result, 
miRNAs bind to specific mRNAs and interfere with trans-
lation or reduce the stability of target mRNAs (Heo et al. 

2019). The specificity of this reaction and the diversity of the 
miRNAs incorporated in exosomes have recently highlighted 
miRNAs as important cargo materials that may explain the 
molecular pathogenesis of liver diseases (Sato et al. 2016). 
In this review, we summarize recent advances in our under-
standing of the roles of exosomal miRNAs in the pathogene-
sis of liver diseases and their potential as therapeutic targets.

MVE

ILVs
Docking & 
Fusion with PM

MVE

Cargo
Incorporation Microtubule

Donor Cell

Lysosomal
Degradation

Early
Endosome

Cargo
Transfer

Cellular Function
Modification

Cargo 
Release

Recipient
Cell

ILV Release

Endocytosis

Direct
Fusion
With PM

HSPs Cytoskeletal
Proteins

mRNA
miRNA
DNA

Integrins &
Adhesion Molecules

MHCI

MHCII

Tetraspanins

Membrane
Proteins

Other 
Proteins

Enzymes

[Exosome Composition]

ILV

ILV

Fig. 1  Exosome biogenesis. Exosomes are composed of diverse materials ranging from nucleic acids to cell surface molecules, heat shock pro-
teins (HSPs), cytoskeletal proteins, and enzymes. Exosomes are generated from the endosomal system by first targeting cargo materials to the 
limiting membrane of multivesicular endosomes (MVEs), which in turn produces intraluminal vesicles (ILVs). MVEs migrate to the cell surface 
along microtubules, followed by docking and fusion with the plasma membrane (PM), through which ILVs are released to the extracellular 
milieu. Released exosomes are internalized into the recipient cell through endocytosis, which produces early endosomes. Exosomes fuse back 
with the limiting membrane of endosome and release cargoes within the cell to exert a modification of cellular function. Exosomal cargoes can 
also be transferred to the recipient cells via direct fusion with PM
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Exosome biology

EVs have been recently recognized as intercellular commu-
nication mediators. However, it needs to be noted that EV 
is the term that represents the population of different types 
of vesicles with profoundly heterogeneous nature, such as 
exosomes, microvesicles, and apoptotic bodies; thus, it is 
desirable to understand the specific biology of exosomes that 
distinguishes them from other subtypes of EVs. Exosomes 
(50 to 150 nm in diameter) are smaller than microvesicles 
(100 to 1000 nm) and apoptotic bodies (500 to 2000 nm) 
(Cocucci and Meldolesi 2015). In terms of biogenesis mech-
anisms, exosomes originate from the endosomal system as 
intraluminal vesicles (ILVs), and are secreted through the 
integration of multivesicular endosomes (MVEs) to the 
cell surface (Fig. 1), whereas microvesicles are formed by 
direct shedding from the plasma membrane (Raposo and 
Stoorvogel 2013). Cargoes such as nucleic acids and pro-
teins to be secreted within exosomes are first targeted to the 
limiting membrane of MVEs, either involving endosomal 
sorting complexes required for transport (ESCRT) or inde-
pendently of ESCRT (Zhang et al. 2019). Notably, specific 
sequence motifs in miRNAs assist in the sorting of miRNAs 
to exosomes (Villarroya-Beltri et al. 2013). The cargo-con-
taining microdomain structures at the limiting membranes 
of MVEs are in turn subjected to inward fission to produce 
ILVs (Möller and Lobb 2020). Afterwards, MVEs migrate to 
and fuse with the plasma membrane to release ILVs into the 
extracellular environment (Möller and Lobb 2020).

Although the release of microvesicles is a straightforward 
event that occurs by pinching off from the plasma mem-
brane, the trafficking and release of exosomes involves mul-
tiple steps that can be subjected to regulation at different 
levels (Hessvik and Llorente 2018). For example, MVEs can 
fuse with lysosomes resulting in the degradation of MVEs, 
and with the plasma membrane for the release of ILVs and 
exosomes (Futter et al. 1996; Treiber et al. 2019). Subse-
quently, the fate of MVEs is dependent on several factors, 
including RAB-guanosine triphosphatase (GTPase) RAB7 
(Vanlandingham and Ceresa 2009; Guerra and Bucci 2016). 
Remarkably, RAB7 may promote both targeting to the lyso-
some and the plasma membrane, which is in part determined 
by its ubiquitination status. Ubiquitinated RAB7 has been 
shown to increase the chance of MVEs to be targeted to 
lysosomes (Song et al. 2016). MVEs that are destined to be 
released migrate to the plasma membrane along the micro-
tubules. They undergo docking and fusion, two crucial steps 
for the release of exosomes, and are also regulated by RAB-
GTPases, such as RAB27A, RAB27B, RAB11, and RAB35 
(Savina et al. 2002; Hsu et al. 2010; Ostrowski et al. 2010; 
Blanc and Vidal 2018).

Exosomes released from donor cells bind to recipient 
cells, possibly altering their cellular function by triggering 

changes in cellular pathways through interaction with 
surface receptors and membrane proteins, or by transfer-
ring exosome contents into the target cells (van Niel et al. 
2018). Exosomes are internalized by multiple endocytosis 
mechanisms, including macropinocytosis, phagocytosis, 
clathrin-dependent endocytosis, lipid raft-mediated inter-
nalization, and caveolin-mediated uptake, all of which create 
early endosomes that carry exogenous exosomes to MVEs 
(Mulcahy et al. 2014). Exosomes that reach MVEs coexist 
with ILVs until they fuse with the limiting membrane of 
MVEs (Huotari and Helenius 2011), after which intralumi-
nal materials of exosomes such as miRNA are released into 
the target cell, thereby triggering changes in cellular function 
(van Niel et al. 2018). Although endocytosis is considered 
the major pathway for exosome uptake, exogenous exosomes 
can also directly fuse with the plasma membrane and release 
the cargo materials into the target cells to alter cellular func-
tion (Fig. 1) (Prada and Meldolesi 2016).

Exosomal miRNAs in liver diseases

Among a number of cargo materials in exosomes, miRNAs, 
along with other nucleic acids have been implicated in the 
pathogenesis of liver diseases (Szabo and Momen-Heravi 
2017; Urban et al. 2019). Therefore, exosomal miRNAs have 
been highlighted as biomarkers for diagnostic and therapeu-
tic purposes in the management of diverse diseases (Sato 
et al. 2016; Pan et al. 2018). In this section, we discuss the 
recent literature on the involvement of various exosomal 
miRNAs in different types of liver diseases (Table 1).

Acute liver injury

Acute liver injury is one of the major causes of acute liver 
failure, which is a life-threatening disease in patients without 
preexisting hepatic disorders (Bernal and Wendon 2013). 
Emerging evidence has shown that exosomal miRNAs are 
implicated in the pathogenesis of acute liver injury that is 
induced by various factors, such as chemical toxicants [e.g., 
carbon tetrachloride  (CCl4)] and drug overdose. Acute liver 
injury caused by acetaminophen increased miR-122 levels 
in the exosome-rich fraction of plasma in mice (Bala et al. 
2012).  CCl4 administration in mice reduced hepatic levels of 
miR-208a, and miR-208a-deficient mice were more suscep-
tible to  CCl4-induced liver injury associated with enhanced 
activation of nuclear factor kappa B and caspase-8-related 
cellular death pathways (Bala et al. 2020). Plasma exosomal 
miRNA analysis revealed that exosomal miR-1-3p could be 
substantially involved in the pathogenesis of anthracycline-
induced liver injury (Zhang et al. 2020c). Expression pro-
filing of exosomal, serum, and hepatic miRNAs identified 
several exosome-derived miRNAs (e.g., miR-122a-5p) with 
the potential for use in the diagnosis of acute liver injury 
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induced by drugs (e.g., acetaminophen and thioacetamide) 
(Motawi et al. 2018). Idiosyncratic drug-induced liver injury 
(IDILI) is an acute liver injury caused by drugs only in a 
certain type of individuals (Teschke 2019). The specificity 

of IDILI is highly associated with human leukemia antigen 
serotypes in patients, and thus, its pathogenesis is thought 
to be attributable to the adaptive immune system (Yamash-
ita et al. 2017; Uetrecht 2019). A recent study determined 

Table 1  Summary of exosomal micoRNAs and their targets in liver diseases

NASH nonalcoholic steatohepatitis, HFD high-fat diet, MCD methionine–choline-deficient, HCV hepatitis C virus, HBV hepatitis B virus, LPS 
lipopolysaccharide

miRNAs Expression Disease model Exosome source Targets References

Acute liver injury
 miR-122 ↑ Acetaminophen, thioaceta-

mide (mouse/rat)
Hepatocyte – Bala et al. (2012) and Motawi 

et al. (2018)
 miR-208 ↓ CCl4 (mouse) Hepatocyte NF-κB Bala et al. (2020)
 miR-1 ↑ Anthracycline (human) Hepatocyte CXCL1, IGF1, CCL2, ARG1, 

IL6, VEGFA, HMOX1
Zhang et al. (2020c)

 miR-1246 ↓ Hypoxia-reoxygenation (in 
vitro)

Hepatocyte GSK-3β Xie et al. (2019b)

 miR-20 ↓ Ischemia–reperfusion (rat) hUC-MSC Beclin-1, Fas Zhang et al. (2020a)
 miR-455 ↑ IL-6 (in vitro) hUC-MSC PIK3R1 Shao et al. (2020)

NAFLD
 miR-192 ↑ NASH patients (human)

Choline deficient l-amino 
acid-defined diet (mouse)

Hepatocyte Rictor Liu et al. (2020) and Povero 
et al. (2014)

 miR-199 ↑ HFD feeding (mouse) Hepatocyte MST1, PPAR-α Li et al. 2020b
 miR-122 ↑ Cholesterol (in vitro)

Choline deficient l-amino 
acid-defined diet (mouse)

MCD diet feeding (mouse)

Hepatocyte HIF-1α, Vimentin, MAP3K3, 
HO-1

Csak et al. (2015), Povero et al. 
(2014) and Zhao et al. (2020b)

 miR-155 ↑ HFD feeding (mouse) Adipose tissue macrophage PPAR-γ Ying et al. (2017)
 miR-223 ↑ HFD feeding (mouse) Myeloid cell TAZ, CXCL1, NLRP3 He et al. (2020) and Hou et al. 

(2020)
Alcoholic liver disease
 miR-155 ↑ Alcoholic hepatitis (human), 

Lieber–DeCarli diet for 
5 weeks (mouse)

Liver, hepatocyte, Kupffer cell SOCS1, mTOR, Rheb, 
LAMP1, LAMP2

Momen-Heravi et al. (2014) and 
Babuta et al. (2019)

 miR-122 ↑ Binge alcohol drinking 
(human and mouse), 
Lieber–DeCarli diet for 
5 weeks (mouse)

Hepatocyte HO-1 Momen-Heravi et al. (2015a)

 miR-27a ↑ Alcoholic hepatitis (human) Monocyte Increase of CD206 Saha et al. (2016)
Viral hepatitis
 miR-29 ↑ HCV infection (in vitro) Macrophage HCV genome targeting

Activate cellular anti-HCV 
response

Zhou et al. (2016)

 HBV-miR-3 ↑ HBV transfection/infection 
(in vitro)

Hepatoma cell lines with an 
integrated HBV genome

SOCS5, HBV 3.5-kb mRNA 
encoding HBV core protein

Yang et al. (2017b) and Zhao 
et al. (2020a)

Liver fibrosis
 miR-214 ↓ CCl4-induced liver fibrosis 

(mouse)
Hepatic stellate cell CCN2 Chen et al. (2014)

 miR-199a-5p ↓ Quiescent and activated pri-
mary mouse hepatic stellate 
cells (in vitro)

Hepatic stellate cell CCN2 Chen et al. (2016)

 miR-30a ↓ TGF-β1-treated LX-2 cells 
(in vitro)

Hepatic stellate cell Beclin1 Chen et al. (2017)

 miR-19b
 miR-92

↑ Lieber–DeCarli diet + LPS 
(rat)

Hepatic stellate cell TGF-RII, MeCP2
SMAD7

Brandon-Warner et al. (2016)

 miR-17a
 miR-18a

↓ Lieber–DeCarli diet + LPS 
(rat)

Hepatic stellate cell P21, BCL2L11, SMAD7
CTGF, TSP-1

Brandon-Warner et al. (2016)

 miR-19a ↑ HCV-infected hepatocyte (in 
vitro)

HCV-infected hepatocyte SOCS3 Devhare et al. (2017)
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the immunoregulatory potential of exosomal miRNAs and 
their implications for IDILI (Holman et al. 2019). Treat-
ment with hepatocyte-derived exosomes (HDEs) attenuated 
the lipopolysaccharide (LPS)-induced immune response in 
THP-1 cells with reduced expression of interleukin (IL)-1β, 
IL-8, and tumor necrosis factor (TNF)-α (Holman et al. 
2019). These downregulated genes were predicted to be tar-
geted by miRNAs enriched in HDEs.

Mesenchymal stem cells (MSCs) are multipotent stem 
cells that can differentiate into mesodermal, ectodermal, 
and endodermal lineages (Ullah et al. 2015). MSCs have 
been recently reported to have therapeutic potential in 
various diseases as they modulate immune reactions and 
promote cell regeneration (Parekkadan and Milwid 2010; 
Wang et al. 2018). Several recent studies have elucidated the 
immunosuppressive effects of MSCs in the liver. For exam-
ple, exosomes isolated from the supernatant of mouse bone 
marrow-derived MSCs attenuated concanavalin A-induced 
T cell-mediated liver injury in mice (Tamura et al. 2016). 
Exosomal miRNAs have also emerged as potential mediators 
of the therapeutic benefit of MSCs. Miyaji et al. reported 
that miRNAs derived from bone marrow cells such as 
miR-92b-3p, miR-23b-3p, miR-204-3p, miR-1247-3p, and 
miR-326-5p improved the effectiveness of MSC therapy 
by upregulating TNF-stimulated gene 6 and/or repressing 
mitochondrial oxidative phosphorylation in vitro and in a 
 CCl4-induced liver injury model (Miyaji et al. 2020). IL-6 
mediates the acute phase response to normalize hepatic 
function after liver injury (Schmidt-Arras and Rose-John 
2016); however, it can also induce a cytokine storm and 
liver injury (Kong et al. 2016). Shao et al. reported that IL-6 
treatment enhanced exosome secretion from human umbili-
cal cord-derived MSCs (hUC-MSCs), and these exosomes 
repressed LPS-induced macrophage activation (Shao et al. 
2020). Among the miRNAs that may regulate IL-6 signal-
ing, miR-455-3p was one of the most highly upregulated 
upon IL-6 treatment, and it repressed LPS-induced hepatic 
macrophage activation in mice through regulation of PI3-
kinase regulatory subunit 1 (Shao et al. 2020).

Ischemia/reperfusion injury is a common cause of 
acute liver failure after liver transplantation and resection 
(Weigand et al. 2012), and the protective effect of MSCs 
in ischemia/reperfusion injury has been increasingly 
explored. LO2 human liver cell line subjected to hypoxia/
reoxygenation underwent cell death and downregulated miR-
1246 expression (Xie et al. 2019b). Treatment with hUC-
MSC-derived exosomes upregulated miR-1246, induced 
anti-apoptotic genes in LO2 cells, and improved ischemia/
reperfusion-induced liver dysfunction in mice via the gly-
cogen synthase kinase-3β-Wnt/β-catenin pathway (Xie et al. 
2019b). Another study from the same group reported that 
miR-1246 in hUC-MSC-derived exosomes ameliorated 
ischemia/reperfusion injury in mice by decreasing the Th17/

Treg ratio in  CD4+ T cells via a mechanism involving the 
IL-6-gp130-signal transducer and activator of transcription 
(STAT) 3 pathway (Xie et al. 2019a). miR-20a also mediates 
the protective effect of MSCs against ischemia/reperfusion 
injury by inhibiting the expression of Beclin-1 and Fas, the 
regulators of autophagy and apoptosis, respectively (Zhang 
et al. 2020a).

The combination of LPS and d-galactosamine (d-GalN) 
is widely used to induce acute liver failure in animals 
(Josephs et al. 2000). TNF-treated hUC-MSCs ameliorated 
LPS + d-GalN-induced acute liver failure in mice by sup-
pressing the macrophage NLRP3 inflammasome. An anti-
inflammatory miR-299-3p, whose levels were elevated 
in exosomes derived from TNF-treated hUC-MSCs, had 
potential involvement in this process (Zhang et al. 2020b). 
Another study reported that exosomes obtained from adi-
pose tissue-derived mesenchymal MSCs ameliorated 
LPS + d-GalN-induced acute liver failure, which occurred 
through miR-17-dependent inhibition of thioredoxin-inter-
acting protein and inflammasome activity (Liu et al. 2018b).

Nonalcoholic fatty liver disease (NAFLD)

Recently, there has been an increase in the incidence of met-
abolic diseases, including a hepatic manifestation of these 
diseases known as NAFLD. Its major risk factors include 
obesity and diabetes (Friedman et al. 2018; Lee et al. 2019). 
NAFLD ranges from fatty liver to nonalcoholic steatohepa-
titis, cirrhosis, and hepatocellular carcinoma (HCC), and 
is highly associated with the dysregulated expression of 
genes involved in hepatic metabolism of lipids and energy 
(Gjorgjieva et al. 2019). Given the ability of miRNAs to reg-
ulate various gene expression, they have been investigated 
as potential regulators of the pathogenic mechanisms of 
NAFLD, and several miRNAs (e.g., miR-34a, miR-122, and 
miR-192) have been suggested as biomarkers for NAFLD 
(Liu et al. 2018a). In mice, levels of NAFLD-associated 
miRNAs such as miR-122 and miR-192 were substantially 
elevated in circulating EVs after 20 weeks of feeding cho-
line-deficient l-amino acid-defined diet, which causes severe 
steatosis and inflammation in the liver (Povero et al. 2014; 
Yang et al. 2017a). miR-199a-5p was highly upregulated in 
the steatotic liver of mice on a high-fat diet (HFD; Li et al. 
2020b). Exosome-associated delivery of miR-199a-5p in 
mice promoted hepatocyte fat accumulation by downregu-
lation of macrophage stimulating 1 and modulation of genes 
involved in fatty acid metabolism (Li et al. 2020b).

The additional role of exosomal miRNAs in the progres-
sion of steatosis to nonalcoholic steatohepatitis (NASH) has 
also been investigated. Feeding mice a methionine–choline-
deficient diet caused NASH-related fibrosis and increased 
serum exosomal miR-122 levels while reducing hepatic miR-
122 levels (Csak et al. 2015). A decrease in hepatic miR-122 
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activated hypoxia-inducible factor (HIF)-1α, vimentin, and 
mitogen-activated protein kinase kinase kinase 3, which are 
regulated by miR-122, thereby promoting fibrosis (Csak et al. 
2015). Cholesterol has emerged as a crucial inducer of liver 
injury and inflammation that contributes to NASH develop-
ment (Ioannou 2016). Cholesterol increased the release of 
miR-122-5p-enriched exosomes from Huh7 hepatoma cells, 
and treatment of THP-1 macrophages with these exosomes 
promoted M1 polarization in an miR-122-5p-dependent 
manner (Zhao et  al. 2020b). Serum miR-192-5p levels 
were also correlated with the severity of NAFLD in human 
patients, and exosomal miR-192-5p derived from lipotoxic 
hepatocytes activated M1 macrophages by targeting Rictor, 
which suppressed the phosphorylation of protein kinase B 
(Akt) and forkhead box protein O1 (FOXO1). This in turn 
triggered the FOXO1-mediated inflammatory response (Liu 
et al. 2020).

Besides the hepatocyte-released miRNAs mentioned 
above, exosomal miRNAs released by myeloid cells have 
also attracted attention as mediators of NAFLD develop-
ment. miR-223 is predominantly expressed in myeloid cells 
and participates in inflammation regulation (Ye et al. 2018), 
but can also be transferred to other liver cell types (e.g., 
hepatocytes) via exosomes (He et al. 2020). Myeloid-specific 
deletion of the Il6ra gene in mice accelerated HFD-induced 
fibrosis development by lowering miR-223 levels in hepato-
cytes and subsequently activating fibrogenic mediators, such 
as transcriptional activator with PDZ-binding motif (TAZ) 
(Hou et al. 2020).

Alcoholic liver disease

Alcohol consumption was the 7th leading risk factor for 
death and disability-adjusted life-years in 2016 (Collabo-
rators GBDA 2018). Moreover, excessive alcohol intake 
causes alcoholic liver disease, which is one of the most com-
mon causes of cirrhosis (Collaborators GBDC 2020). More 
than 90% of heavy drinkers develop alcoholic fatty liver, and 
a certain population of patients can progress to alcoholic 
hepatitis (Basra and Anand 2011).

The total number of circulating EVs/exosomes was ele-
vated in patients with alcoholic hepatitis compared with 
healthy individuals (Momen-Heravi et al. 2015b). Simi-
larly, chronic alcohol feeding [5% (v/v) ethanol containing 
Lieber–DeCarli diet for 4 weeks] increased the number of 
EVs in mice sera. Chronic alcohol consumption increased 
miR-155 levels in mouse livers, hepatocytes, and Kupffer 
cells isolated from alcohol-fed mice compared to the miRNA 
levels in the control mice (Babuta et al. 2019). Increased 
miR-155 by ethanol decreased lysosomal-associated mem-
brane protein 1 (LAMP1) and LAMP2 levels, which regulate 
the fate of multivesicular bodies and exosome biogenesis. 
miR-155 deficiency or inhibition of LAMP1 and LAMP2 

reduced alcohol-induced exosome production in hepatocytes 
and Kupffer cells (Babuta et al. 2019). Exosome-mediated 
delivery of a functionally active miR-155 inhibitor was 
investigated (Momen-Heravi et al. 2014). The delivery of 
the miR-155 inhibitor was effectively achieved using B 
cell-derived exosomes. This approach led to reduced LPS-
induced TNFα production in macrophages and increased 
mRNA expression of suppressor of cytokine signaling 
(SOCS) 1 protein, a miR-155 target gene (Momen-Heravi 
et al. 2014). Exosome-based miRNA inhibitor delivery may 
be beneficial for the regulation of exosome production as 
well as for the modification of miR-155 target genes.

Increased miRNA signatures of EVs derived from sera 
of chronic alcohol-fed mice were identified: miR-122, 
miR-192, miR-30a/b, miR-1246, miR-130a, and miR-744 
(Momen-Heravi et al. 2015b). miR-122 and miR-192 are 
major liver-enriched miRNAs (Yang et al. 2015). miR-192 
showed excellent diagnostic value in both mice and humans 
(Momen-Heravi et al. 2015b); therefore, it can be a potential 
diagnostic biomarker for alcoholic liver disease.

miR-122 is the most abundant miRNA in the liver (Yang 
et al. 2012). Circulating miR-122 in exosomes is a good 
indicator of hepatocyte injury and inflammation. Serum 
miR-122 levels were elevated not only in alcoholic liver dis-
ease, but also in drug-induced liver injury and inflammatory 
liver diseases (Bala et al. 2012). Serum miR-122 levels and 
alanine aminotransferase levels were positively correlated 
in alcoholic liver disease. Toll-like receptor (TLR) 4 sign-
aling or oxidative stress regulate serum miR-122 levels in 
ethanol-fed mice (Bala et al. 2012). Endoplasmic reticulum 
stress also contributes to ethanol-induced exosomal miR-122 
and acute liver injury (Wang et al. 2019). Ethanol-treated 
hepatocytes secrete exosomes containing miR-122, which 
is horizontally transferred to monocytes (Momen-Heravi 
et  al. 2015a). Exosomal miR-122 recipient monocytes 
inhibited the HO-1 pathway, sensitization to LPS stimula-
tion, and induction of pro-inflammatory cytokine production 
(Momen-Heravi et al. 2015a). Increased exosomal miR-122 
by ethanol mediates intracellular communication between 
hepatocytes and monocytes.

The Szabo group investigated the miRNA cargo of 
EVs from alcohol-exposed monocytes. Ethanol treatment 
increased the number of EVs in monocytes. miR-27a levels 
were increased in plasma EVs of patients with alcoholic 
hepatitis. EVs isolated from ethanol-treated monocytes 
contained higher levels of miR-27a compared to those from 
vehicle-treated cells (Saha et al. 2016). miR-27a-loaded 
EVs stimulate naïve monocytes to differentiate into mac-
rophages and promote anti-inflammatory cytokine produc-
tion and phagocytosis (Saha et al. 2016). Monocyte-derived 
extracellular vesicular miR-27a can affect monocyte pheno-
types and macrophage polarization even when neighboring 
EV recipient cells are not directly stimulated by ethanol. 
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These findings suggest that alcoholic liver disease promotes 
the total number of exosomes containing specific miRNA 
cargoes, which contributes to exosome biogenesis and 
pathophysiological processes, such as cytokine production. 
Exosomal miRNAs, especially miR-192, could be used as a 
potential diagnostic marker for alcoholic liver disease.

Viral hepatitis

In response to a hepatitis B or C infection, the host innate 
immunity acts as a first line defense to eliminate the virus. 
To overcome the evasion of host innate immunity by viruses, 
understanding of intercellular communications between 
hepatocytes and immune cells is important.

Liver macrophages are activated by TLRs in response to 
phagocytosed viral DNAs and/or RNAs released from hepa-
titis C virus (HCV)-infected hepatocytes (Heydtmann 2009). 
TLR3-activated macrophages produce exosomal anti-viral 
miRNAs, such as miR-29 family members. Exosomes are 
taken up by hepatocytes, where anti-viral miRNAs induce an 
anti-HCV response or directly target HCV gene expression 
(Zhou et al. 2016).

Hepatitis B surface antigen particles can carry miRNAs, 
especially pools of HCC, and they are released into the cir-
culation within exosomes or microvesicles (Novellino et al. 
2012). In patients with a hepatitis B virus (HBV) infection, 
HBV-encoded miRNA (called HBV-miR-3) is secreted into 
the bloodstream by exosomes and HBV virions (Yang et al. 
2017b). HBV-miR-3 inhibits HBV replication and protein 
production (Yang et al. 2017b). HBV-miR-3 targets SOCS5 
expression, leading to an interferon-α-induced anti-HBV 
effect, as mediated by the Janus kinase (JAK)/STAT path-
way in hepatocytes. In addition, inhibition of SOCS5 by 
exosomal HBV-miR-3 facilitated M1 macrophage polariza-
tion and stimulated IL-6 secretion (Zhao et al. 2020a). Taken 
together, HBV-miR-3 directly restrained HBV replication, 
whereas it enhanced the host innate immune response.

Liver fibrosis

NAFLD, alcoholic liver disease, viral hepatitis, and drug- or 
toxicant-induced liver injury can cause liver fibrosis. Liver 
fibrosis is characterized by excessive extracellular matrix 
(ECM) deposition (Yang et al. 2019, 2021). Hepatic stellate 
cells (HSCs) are the major players in the fibrosis process. 
They are activated during liver fibrogenesis. Activated HSCs 
acquire proliferative, migratory, and fibrogenic phenotypes 
(Bataller and Brenner 2005).

Connective tissue growth factor (CCN2), a profibrogenic 
inducer, activates HSCs and the progression of liver fibrosis 
(Rachfal and Brigstock 2003). CCN2 promotes HSC prolif-
eration and ECM production. The Brigstock group showed 
the regulation of CCN2 by exosomal miRNAs. Exosomal 

miR-214 derived from HSCs mediated HSC-HSC intercel-
lular signaling by epigenetic regulation of CCN2 (Chen et al. 
2014). The following studies from the same group demon-
strated that endogenous or exosomal components of the 
Twist1-miR-199a-5p/miR-214 axis regulated CCN2 in HSCs 
(Chen et al. 2015, 2016). In quiescent HSCs, miR-199a-5p 
and miR-214 were highly expressed by the regulation of the 
Twist1 transcription factor. High levels of exosomal miR-
199a-5p and miR-214 suppressed CCN2 expression. In 
activated HSCs, Twist1, miR-199a-5p, and miR-214 levels 
were low, and therefore, the deposition of collagen 1 α was 
increased in association with higher expression of CCN2 
(Chen et al. 2015, 2016). The activated HSC phenotype can 
be reversed by the uptake of exosomes from quiescent HSCs.

In patients with NAFLD, liver fibrosis was associated 
with liver-related morbidity (Taylor et al. 2020). Treatment 
with palmitic acid stimulated exosome production in hepato-
cytes (Lee et al. 2017). The exosomal miRNA profile was 
altered by palmitic acid. In particular, miR-122, miR-192 
miR-24, miR-19b, and miR-34a were greatly increased in 
exosomes from palmitic acid-treated Huh7 cells. Exosomes 
derived from palmitic acid-treated hepatocytes showed 
increased fibrotic gene expression in HSCs (Lee et al. 2017). 
Serum miR-122 levels increased, whereas hepatic miR-122 
levels decreased (Csak et al. 2015). Decreased hepatic miR-
122 was responsible for the induction of miR-122 targets, 
HIF-1α and vimentin in hepatocytes. HIF-1α overexpres-
sion was correlated with liver fibrosis (Csak et al. 2015). 
MSC transplantation can be considered as a potential thera-
peutic strategy in treating liver fibrosis. miR-122-modified 
adipose tissue-derived MSCs efficiently packaged miR-122 
into exosomes (Lou et al. 2017). This approach exhibited an 
anti-fibrotic effect (Lou et al. 2017).

Lipid overload modulates autophagy, an intracellular 
pathway that mediates the breakdown of lipid droplets. 
Lipids including retinyl esters, triglycerides, cholesteryl 
esters, cholesterol, phospholipids, and free fatty acids are 
present in quiescent HSCs (Blaner et al. 2009). Increased 
autophagic flux causes loss of lipid droplets and HSC acti-
vation (Kim et al. 2018). miR-30a was under-expressed in 
exosomes of transforming growth factor (TGF)-β1-treated 
LX-2 cells (a human HSC cell line) (Chen et al. 2017). 
miR-30a downregulated the expression of Beclin-1, which 
ameliorates autophagy and HSC activation (Chen et al. 
2017). Exosomal miRNAs can modulate central players in 
autophagy (i.e., Beclin-1) under fibrotic stimuli.

Excessive alcohol consumption is one of the major risk 
factors for liver fibrosis. The association between the miR-
17/92 cluster and alcoholic liver fibrosis has been inves-
tigated. The miR-17/92 cluster has various roles in many 
pathological situations, such as liver, immune, and car-
diovascular diseases, neurological disorders, and cancers 
(Mogilyansky and Rigoutsos 2013). The miR-17/92 cluster 
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consists of miR-17, miR-18a, miR-19a, miR-20a, miR-
19b-1, and miR-92a-1. The expression profile of the miR-
17/92 cluster in exosomes has been proposed as a non-inva-
sive diagnostic marker for several cancers (Komatsu et al. 
2014). Previously, Koo et al. demonstrated that dysregula-
tion of miR-18a, is responsible for upregulating SMAD2 
protein in HSCs, and thereby, promoting liver fibrosis under 
ER stress conditions (Koo et al. 2016). The expression of 
other miR-17/92 cluster members (miR-19b and miR-92) 
was downregulated in activated HSCs, but was upregulated 
in HSC exosomes (Brandon-Warner et al. 2016). In addition, 
miR-19b and miR-92 levels were increased in exosomes iso-
lated from the sera of rats fed the Lieber–DeCarli diet with 
biweekly intraperitoneal LPS injections compared to the 
pair-fed control diet. Consistently, exosomes isolated from 
plasma samples of patients with alcoholic liver cirrhosis or 
alcoholic liver cirrhosis associated with HCC had higher 
expression of miR-19b and miR-92 compared to healthy 
controls (Brandon-Warner et al. 2016). This suggests that 
exosomal miR-19b and miR-92 can serve as novel biomark-
ers for alcoholic cirrhosis.

HCV infection is another major risk factor for liver fibro-
sis progression. However, the underlying mechanisms are 
poorly understood. Two groups showed that intercellular 
communication between HCV-infected hepatocytes and 
HSCs through exosomal transmission of miRNAs can con-
tribute to HCV-mediated liver fibrosis. Exosomes derived 
from HCV-infected hepatocytes were internalized into HSCs 
and increased profibrogenic gene expression (Devhare et al. 
2017). miR-19a is highly expressed in the exosomes derived 
from HCV-infected hepatocytes as well as in the sera of 
HCV-infected patients with liver fibrosis. As miR-19a targets 
SOCS3, exosomes derived from HCV-infected hepatocytes 
and miR-19a activated the STAT3/TGF-β signaling axis 
(Devhare et al. 2017). Exosomal miR-192 was derived from 
HCV-infected hepatocytes and delivered to HSCs. Exosomal 
miR-192 also promoted the activation and transdifferentia-
tion of HSCs into myofibroblasts (Kim et al. 2019). These 
results suggest that miR-19a and miR-192 can be diagnostic 
and therapeutic targets for HCV-mediated liver fibrosis.

The therapeutic value of EVs for liver fibrosis treatment 
was explored. Administration of EVs from normal mice 
ameliorated  CCl4- or thioacetic acid-induced liver fibrosis 
(Chen et al. 2018). EVs from normal mice contain higher 
expression of miR-34c, miR-151-3p, miR-483-5p, miR-
532-5p, and miR-687, as compared to EVs from fibrotic 
mice. These miRNAs individually suppress the fibrotic 
response in HSCs and hepatocyte proliferation (Chen et al. 
2018). In conclusion, EVs from healthy subjects may be a 
potential strategy to treat liver fibrosis.

The potential use of exosomal microRNAs as biomark-
ers for liver fibrosis has been investigated. The levels of 
exosomal miR-16 were decreased in patients with liver 

cirrhosis, and downregulation of exosomal miR-16 was asso-
ciated with poor overall survival of these patients (Fründt 
et al. 2021). Moreover, exosomal miR-155 levels gradually 
increased with the degree of liver fibrosis (Niu et al. 2021). 
Increased exosomal miR-155 positively correlated with the 
progression of cirrhosis in patients, suggesting that it can be 
used as a biomarker for liver fibrosis diagnosis and progres-
sion. In addition, serum exosomal miR-103-3p levels were 
also overexpressed in patients with liver fibrosis (Chen et al. 
2020). Furthermore, in the advanced stage of liver fibrosis, 
the levels of exosomal miR-103-3p were increased. Schis-
tosomiasis, an infection caused by Schistosoma mansoni 
and S. japonicum, can lead to the development of periportal 
fibrosis and liver cirrhosis (Cai et al. 2020). Serum exoso-
mal miR-146a-5p has the potential to serve as a biomarker 
for grading liver fibrosis due to schistosomiasis (Cai et al. 
2020). Furthermore, exosomal microRNA biomarkers that 
enable us to predict the effects of prognostic anti-fibrotic 
treatments, such as the phosphodiesterase 5 inhibitor were 
identified in vivo; these included exosomal miR-99b, miR-
100, and miR-142-3p (Broermann et al. 2020). Their clinical 
implications should be further evaluated. In summary, exo-
somal microRNAs could potentially be used as diagnostic, 
prognostic, and/or surrogate biomarkers for liver fibrosis.

Inter‑organ crosstalk between liver and adipose tissue 
in the regulation of glucose and lipid metabolism

Exosomes mediate intercellular communication. They 
deliver bioactive cargoes to target cells and have autocrine 
and paracrine actions. Moreover, exosomes are important 
conduits for inter-organ communication. The liver is a vital 
metabolic organ that governs systemic glucose and lipid 
homeostasis. Here, we will discuss the roles of exosomes 
in crosstalk between the liver and other metabolic organs 
(Fig. 2).

Obesity is associated with insulin resistance and NAFLD. 
Obesity-associated exosomal miRNAs, miR-122, miR-192, 
miR-27a-3p, and miR-27b-3p, are liver abundant miRNAs 
with increased expression in obesity (Castano et al. 2018). 
Lean mice treated with exosomes isolated from obese 
mice developed glucose intolerance and insulin resistance. 
Administration of exosomes transfected with obesity-asso-
ciated exosomal miRNAs downregulated the expression of 
Ppara in white adipose tissue (WAT) and resulted in dyslipi-
demia. Obesity-associated exosomal miRNAs contribute to 
glucose intolerance, insulin resistance, as well as epididy-
mal WAT inflammation and hepatic steatosis (Castano et al. 
2018). A study by Castano et al. showed that miR-122 and 
miR-192 expression was decreased in WAT but increased 
in the liver. However, there is no direct evidence of the 
source of obesity-associated exosomal miRNAs (Castano 
et al. 2018). Wu et al. investigated the role of exosomes 
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derived from the liver in liver-fat crosstalk. Hepatic exo-
some-derived miR-130a-3p improved glucose intolerance 
by targeting the PH domain leucine-rich repeat-containing 
protein phosphatase 2 (PHLPP2). PHLPP2 dephosphoryl-
ates Akt. Therefore, hepatic exosome-derived miR-130a-3p 
activated Akt/glucose transporter type 4 signaling in adi-
pocytes (Wu et al. 2020). Hepatic exosome-derived miR-
130a-3p also suppressed peroxisome proliferator-activated 
receptor (PPAR)-γ in adipocytes, which in turn attenuated 
adipogenesis (Wu et al. 2020). Thus, exosomal miRNAs pro-
duced by the liver can regulate glucose and lipid metabolism 
via liver-fat communication.

Adipose tissue is a key organ for energy storage. Adi-
pocytes regulate whole-body energy metabolism via the 
production of adipokines. Adipose tissue also secretes 
exosomes and communicates with distant organs, including 
the liver. Humans with lipodystrophy exhibited a decrease 
in circulating exosomal miRNAs (Thomou et al. 2017). 
Adipose-tissue-specific knockout of the miRNA-processing 
enzyme Dicer (ADicerKO) in mice exhibited lipodystrophy 

and insulin resistance, and these mice showed higher expres-
sion of fibroblast growth factor (FGF) 21. The Kahn group 
showed that fat tissue is a primary source of exosomal miR-
NAs in ADicerKO mice (Thomou et al. 2017).

Fat transplantation reconstituted circulating exosomal 
miRNA profiling. Transplantation of subcutaneous inguinal 
WAT, intraabdominal epididymal WAT, and brown adipose 
tissue (BAT) from wild-type donor mice to ADicerKO mice 
showed distinct circulating exosomal miRNA signatures. 
Fat-derived exosomal miRNAs play an important role in 
regulating glucose and lipid metabolism through fat-to-liver 
communication. ADicerKO mice that received transplanta-
tion of fat, especially BAT, exhibited substantially improved 
insulin sensitivity. Fat-derived exosomal miR-99b is respon-
sible for the robust inhibition of FGF21 in the liver (Thomou 
et al. 2017). Brown adipocyte-derived exosomal miR-132-3p 
targets Srebf1 in the liver, which is the major regulator of 
lipid homeostasis (Kariba et al. 2020).

Obese adipose tissue-derived exosomal miRNAs may 
promote systemic insulin resistance. In the sera from 

WAT

Liver

BAT

miR-130a

miR-130a

PHLPP2
PPAR

Insulin
resistance &
Adipogenesis

miR-132-3p

miR-132-3p

SREBP1

Lipogenesis

miR-222
miR-222

IRS1

miR-155

PPAR

Insulin sensitivity

miR-155
ATM

Adipocyte
obesity

norepinephrine or
cold exposure

Fig. 2  Role of exosomal miRNAs in crosstalk between liver and fat in the regulation of glucose and lipid metabolism. The liver secretes 
exosomes containing miR-130a-3p, which target PHLPP2 and PPARγ in adipocytes. Downregulation of PHLPP2 and PPARγ by miR-130a-3p 
results in the inhibition of glucose intolerance and adipogenesis, respectively. Brown adipocytes produce exosomes carrying miR-132-3p. Brown 
adipocyte-derived miR-132-3p downregulates Srebf1 (encoding a SREBP1 precursor protein) in the liver, leading to suppression of lipogenic 
gene expression. In the obese state, adipose tissue macrophage-derived miR-155 targets PPARγ in the liver. Obese gonadal white adipose tissue-
derived miR-222 targets hepatic IRS1. Exosomal miR-155 and exosomal miR-222 contribute to glucose intolerance and insulin resistance. ATM 
adipose tissue macrophage, BAT brown adipose tissue, IRS1 insulin receptor substrate 1, PHLPP2 PH domain leucine-rich repeat-containing 
protein phosphatase 2, PPARγ peroxisome proliferator-activated receptor γ, SREBP1 sterol regulatory element-binding protein 1, WAT  white 
adipose tissue
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patients with type 2 diabetes, exosomal miR-222 was 
mainly produced by gonadal WAT (Li et  al. 2020a). 
Gonadal WAT-derived exosomal miR-222 downregulated 
insulin receptor substrate-1 (IRS1), which resulted in insu-
lin resistance in the liver and skeletal muscle of HFD-fed 
obese mice (Li et al. 2020a). In addition to adipocytes, adi-
pose tissue macrophages (ATMs) secrete exosomes. Treat-
ment of lean mice with obese ATM exosomes promoted 
insulin resistance in the liver, skeletal muscle, and visceral 
adipose tissues, whereas treatment of obese mice with lean 
ATM exosomes attenuated insulin resistance (Ying et al. 
2017). One of the cargoes overexpressed in ATM-derived 
exosomes is miR-155, which represses PPARγ expression 
and impairs cellular insulin signaling. ATM-derived exo-
somal miR-155 promoted obesity-induced insulin resist-
ance conferred by other obese ATM-exosomes (Ying et al. 
2017). These studies suggest that exosomal miRNAs pro-
duced by the adipose tissue compartment can influence 
metabolic events in distant tissues, such as the liver and 
skeletal muscles.

Conclusions and perspectives

Given that multiple types of liver cells release miRNAs 
within exosomes, which may represent the physiological 
and pathological status of the liver, exosomal miRNAs have 
been actively investigated as biomarkers of various liver dis-
eases. Emerging studies have also established the critical 
role of exosomal miRNAs in communication between dif-
ferent cells as well as in different organs, which may further 
provide mechanistic evidence for the pathogenic properties 
of exosomes. Recently, the safety of exosomes in patients 
and the therapeutic effect of exosomes have been evaluated 
in various diseases, such as COVID-19, type I diabetes mel-
litus, and cutaneous wound healing have been evaluated in 
clinical trials (www. clini caltr ials. gov/). Although clinical 
evidence supporting the feasibility of miRNA therapy in 
liver diseases is still lacking, the potential benefit of exo-
some therapy has been demonstrated at the animal level in 
experimental models of various liver diseases, which has 
established an empirical foundation for its clinical applica-
tion. Continuous efforts to reveal the biological and patho-
logical knowledge of miRNAs at the bench- and bedside will 
open new avenues for the discovery of potential therapeutic 
options for the treatment of liver diseases.
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