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High throughput evaluation of 
macrocyclization strategies for 
conformer stabilization
Dan Sindhikara    & Ken Borrelli

While macrocyclization of a linear compound to stabilize a known bioactive conformation can be 
a useful strategy to increase binding potency, the difficulty of macrocycle synthesis can limit the 
throughput of such strategies. Thus computational techniques may offer the higher throughput 
required to screen large numbers of compounds. Here we introduce a method for evaluating the 
propensity of a macrocyclic compound to adopt a conformation similar that of a known active 
linear compound in the binding site. This method can be used as a fast screening tool for prioritizing 
macrocycles by leveraging the assumption that the propensity for the known bioactive substructural 
conformation relates to the affinity. While this method cannot to identify new interactions not present 
in the known linear compound, it could quickly differentiate compounds where the three dimensional 
geometries imposed by the macrocyclization prevent adoption of conformations with the same 
contacts as the linear compound in their conserved region. Here we report the implementation of this 
method using an RMSD-based structural descriptor and a Boltzmann-weighted propensity calculation 
and apply it retrospectively to three macrocycle linker optimization design projects. We found the 
method performs well in terms of prioritizing more potent compounds.

Macrocycles are an important and pervasive class of molecule for drug design1. Though definitions vary, they 
are typically described as molecules with ring sizes of at least 8, 10, or 12 atoms2,3. They span a molecular weight 
range typically larger than small molecules and smaller than biological therapeutics4. Though some design pro-
jects begin with a macrocyclic native ligand, often a cyclization will be performed to introduce a conformational 
restriction to an otherwise linear molecule5–7. Regardless, the cyclization topology can drastically affect the con-
formational propensity of the molecule and alter the affinity of the molecule for its target receptor. Understanding 
this conformational effect on bioactivity is essential to macrocycle design.

In silico sampling of macrocycles is particularly difficult due to the conformational restriction imposed 
by the cyclization. Several methods have been developed to overcome this sampling challenge includ-
ing distance-geometry-based8, low-mode based9, normal-mode-based10, inverse kinematics-based11, and 
loop-sampling-based12 conformational searches.

Previous work has created workflows to screen macrocycles by combining these sampling methods with 
scoring functions such as molecular mechanics simulated annealing combined with quantum mechanical 
strain scoring13, inverse kinematics with ROSETTA14, implicit solvent/molecular mechanics scoring15, and 
normal-mode-based sampling with molecular mechanics scoring16. In this work, we implement an integrated, 
high-throughput method utilizing a loop-sampling-based macrocycle conformational sampling protocol along 
with a simple molecular mechanics strain-based scoring function.

The ability to access a given binding conformation is one of the many factors that determine the binding affin-
ity of a specific ligand for a specific protein. When the binding mode is assumed to be both known and constant, 
this can be treated as a necessary, but not sufficient, condition for high affinity binding. While this applies to all 
molecules, it is especially important for macrocyclic ligands due to the restriction of conformational space caused 
by the cyclization. When comparing different potential cyclizations of a linear molecule where the linker is not 
interacting with the protein, this could even become the primary factor affecting the relative binding energy of 
a series of compounds. In these cases, determining the relative ability of a various cyclized versions of the same 
linear molecule to adopt a known binding model may be able to serve as a proxy for the relative binding affinity 
of those compounds. In this work we will show that the propensity of a macrocycle to adopt a specific binding 
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mode, also termed the bioactive conformation of that macrocycle, can explain the differences in binding affinity 
for sets of congeneric macrocyclic molecules when the only differences between those macrocycles are in the 
linker region and that linker region is not making any contacts with the protein.

Previous work has shown the ability of Prime Macrocycle Sampling to efficiently sample the conforma-
tional space of macrocycles12 and here we combine it with the OPLS3 force17 field to evaluate whether molecular 
mechanics approaches, which are significantly computationally cheaper than quantum approaches, are adequate 
to determine the relative strain energies of these compounds. Unlike the inverse kinematic approach previously 
reported, this method would be expected to be work with macrocycles that did not have additional crosslinks to 
reduce the conformational space to be sampled. The approach presented here is similar to that used by McCoul 
et al. to design macrocyclic BCL6 inhibitors16, however here we demonstrate an integrated workflow and validate 
it on diverse test sets.

Methods
Conformer generation.  Although generation of conformational ensembles of macrocycles is difficult, many 
methods have been developed to overcome the particular difficulties of sampling introduced by macrocycliza-
tion. Here we use the Prime Macrocycle Conformational Sampling algorithm (Prime-MCS) which can quickly 
produce accurate, diverse macrocycle conformations12. Default calculation parameters were used including unbi-
ased PrimeMCS sampling and OPLS3.0 force field parameters17 in vacuum. This assumes that unbiased default 
sampling is sufficient to cover representative conformational space and that the OPLS3 force field can sufficiently 
represent the compound. It is possible that, depending on the design context, especially the macrocycle topolog-
ical complexity, that these assumptions will be broken and the sampling protocol should be modified. Some such 
modifications are discussed in the Discussion section.

Ensemble scoring.  Conformer structural metric.  To properly score the conformational ensemble, a metric 
for the similarity to the bioactive substructure is required. For many projects, the conserved substructure is obvi-
ous since the linker modifications leave the original acyclic molecule largely unchanged. Here, we apply the max-
imum common substructure (MCS) algorithm, as implemented in Canvas software18, to the designed macrocycles 
and the bioactive linear reference to determine the conserved region. Though this approach may not be optimal 
for use in prospective projects, the MCS is useful under the assumption that the topological differences between 
the macrocyclic designs and the reference are purely in the cyclization linker, and thus the bioactive conforma-
tion of the remaining substructure is intended to be conserved. We take the RMSD of the heavy atoms in the 
conserved region, RMSDcons as a simple metric for similarity to the bioactive substructure under the assumption 
that, for the sets of macrocycles we will be considering, the ability for these atoms to adopt a conserved binding 
mode is the primary determinant of binding affinity. Alternate structural metrics are discussed below in the 
Discussion section. When measuring the RMSDcons, we account for symmetry by generating a SMARTS pattern 
from the MCS atoms in the reference ligand and choosing the minimum RMSD for all matches to the SMARTS 
patterns in the test compounds. Here, the MCS atoms were calculated using Schrodinger’s canvas_MCS utilitity 
($SCHRODINGER/utilities/canvas_MCS) using default settings in Schrodinger release 2017-318. This MCS tech-
nique distinguishes atoms by atomic number, bond order, and aromaticity.

Ensemble weighting and the proxy metric for affinity.  If the conformational ensemble were complete and rep-
resentative, ensemble weighting would not be necessary. However for biased or clustered methods, reweight-
ing is necessary to recover the correct ensemble. The conformer generation algorithm here, Prime-MCS, uses 
structure-based cluster output. Such clustered structures may be weighted to the canonical ensemble using simple 
Boltzmann-weighting (assuming these clusters are evenly distributed in conformational state space). That is, that 
each conformer is weighted according to its energy (Pi = exp(−Ei/kT)/Z). This approach has been used, for exam-
ple, for finite-reservoir sampling methods19–21.

After weighting the ensemble, we can calculate the probability distribution of observables. We assume that the 
affinity is a function of this conformational distribution. Here, we simply use the expectation value of the metric, 

= ∑⟨ ⟩RMSD PRMSDcons i i cons i,  as the proxy for affinity. The expectation value is useful if the affinity gets better the 
closer the compound gets to the bioactive structure. Alternate proxy metrics are discussed later in the Discussion 
section.

Dataset preparation.  For this study we use systems from macrocycle design projects taken from the liter-
ature. In a related paper submitted recently, seven macrocyclization projects were curated to evaluate free energy 
perturbation (FEP) technology on affinity calculations for macrocycles22. For that article, papers were chosen 
describing projects which contained macrocyclizations (conversion of linear compounds to macrocyclic), modi-
fication of macrocycle linker sizes, or both. Projects were only used if there were no apparent issues with the data 
that would complicate an evaluation by atom-scale biophysical modeling such as significant missing structural 
data and insufficient affinity data. Here we select from those seven projects the only three where there were at least 
two macrocycles within the set. Those systems were Chk1 (PDBID 2E9P), Bace-1 (PDBID 2Q15)23, and Hsp90 
(PDBID 3RKZ)24, see Table 1 and Figure 1. Though protein structures are available, they were not used for any 
part of these calculations except to confirm that the various modifications to the linker are on the solvent exposed 
side of the ligand and therefore less likely to be involved in specific protein-ligand interactions that could affect 
the binding affinities of these molecules.

For the calculations here, the experimental structural data for the macrocyclic structures were removed by 
converting the structures to SMILES then back to 3D. These 3D structures were then inspected to ensure correct 
stereoisomer states as well as trans amide bonds. These, as well as the linear reference structure, were prepared 
using LigPrep25.
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Chk1

Cpd R n Exp. dGbind

 1 H 2 −10.88

 2 CN 1 −11.18

 3 CN 2 −11.09

 4 CN 3 −10.27

Hsp90

 Cpd R1 R2 R3 R4 n1 n2 Exp. dGbind

 5 0 1 −6.67

 6 CH3 CH3 0 2 −9.32

 7 1 2 −8.89

 8 CH3 CH3 0 2 −9.28

 9 -CH2-CH2-CH2- -CH2-CH2-CH2- 0 2 −8.45

 10 CH3 CH3 0 2 −13.14

 11 CH3 CH3 0 2 −12.74

Bace1

 Cpd R1 R2 n1 n2 Exp. dGbind

 12 H Cyclohexyl 1 2 −9.82

 13 Cyclohexyl Cyclohexyl 2 1 −11.29

 14 Cyclohexyl Cyclohexyl 2 2 −10.21

 15 Cyclohexyl 2 1 −10.57

Table 1.  Markush representations of enumerated macrocycles with associated substitutions and experimental 
affinities (ΔGbind in kcal/mol).

Figure 1.  (a–c) Markush representations of macrocycle candidate compounds.
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Results
Determining conserved bioactive substructure.  Figure 2a–c shows the macrocyclic designs restrained 
to and superimposed onto their crystal bioactive references with conserved atoms highlighted. As is shown in 
this figure, the conserved atoms comprise the majority of the heavy atoms. While the MCS approach to determin-
ing the conserved atoms may be a reasonable naive guess, the MCS atoms do not necessarily represent the most 
important atoms in terms of bioactive structure. For example in Chk1, the conserved includes atoms span across 
the aryl ethers. It could be conjectured that these ethers serve only as structural atoms and thus the representative 
bioactive substructure should be curtailed at the aromatic rings. Additionally, the MCS algorithm is unaware of 
conformation, so for Chk1, there is an off-linker carbon included in the conserved region. Since the RMSDcons 
calculations use the minimum RMSD across all degenerate matches, this is partially accounted for. But the cal-
culation could still incorrectly favor macrocycles which prefer the wrong conformation of this MCS atom. Such 
issues would not occur if conserved atoms were manually selected by the macrocycle designer.

RMSD vs energy plots.  Figure 3 shows the relative energy of each output conformation (strain) vs the 
RMSDMCS. The nature of the conformation generation algorithm generates an ensemble of conformers spanning 
both RMSDcons and strain space. Different compounds will have different conformational landscapes, and, impor-
tantly, may or may not be able to adopt low strain, low RMSDcons conformations (bottom left corner of the graphs). 
As can be seen, the compounds with better affinity (lower ΔGbind) tend to better occupy this space. The only clear 
exception is Chk1 ligand 3 which despite having binding affinity only 0.09 kcal/mol greater (within experimental 
error) of compound 5, does not contain any conformations in this space. This is likely due to the conserved atom 
selection (discussed in the Discussion section).

Expected RMSD vs affinity.  Though the RMSDcons vs energy plots can be useful for analyzing the con-
formational space of these candidate compounds, for quantitative comparison, a single metric as a function of 
these data is necessary. Figure 4a–c shows the Boltzmann-weighted expectation value of the RMSDcons among the 
output ensemble. Here, we expect the lower expected RMSD to have the lower ΔGbind. For Hsp90 and Bace-1, the 
more potent compounds are clearly separated from the rest. For Chk1 despite correctly ranking the most potent 
compound (ligand 2) as having the lowest expected RMSD, the intermediate compounds do not correlate well 
(especially ligand 3 as noted in the previous section). The Pearson correlation coefficients were 0.21, 0.90, and 
0.90 for Chk1, Hsp90, and Bace-1 respectively, giving a weighted average R2 of 0.60. But for Chk1 and Bace1, 
which had only four data points each and dynamic ranges less than 1.5 k cal/mol, these correlations were not 
significant (p-values were 0.78 and 0.10 respectively). The Hsp90 set rather, containing seven data points across 
7 kcal/mol, had a p-value of 0.005.

Figure 2.  (a–c) Macrocyclic ligands restraint and superimposed to their bioactive linear references. Reference 
ligands shown with green carbons. MCS atoms shown as balls and sticks. For Chk1, Bace-1 and HSP90, the 
MCS SMARTS patterns were, c1c(Cl)ccc(OC)c1NC(=O)Nc2cncc(n2)OCC, CCCN(C1)C(N)=[N+]c(c12)
ccc(c2)Oc3ccccc3, and c1cc(C(N)=O)ccc1n(c(c2C)CC)c(c23)CC(C)(C)CC3=O respectively.
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Calculation time.  The vast majority of the calculation time for this algorithm is in the sampling since the 
RMSDcons and <RMSDcons> algorithm takes only a few seconds per compound on a CPU. The PrimeMCS sam-
pling algorithm is parallelized over 10 threads per compound. For all the sets here, the median parallel calculation 
time on commodity CPU workstations was 88 seconds per compound, or about 12 minutes per compound on a 
single CPU. Thus, each CPU could profile over 120 compounds in a single day, giving designers with even modest 
resources the ability to screen thousands of compounds per day for similarly-sized macrocycles. As noted in the 
PrimeMCS reference12, speed will vary depending on the conformational complexity of the macrocycle and addi-
tional sampling or appropriate restraints may increase the accuracy of the method.

Discussion
Limitations of the hypothesis.  As mentioned previously, there are strong assumptions in the hypothesis 
underlying this method. It assumes that higher propensity for the purported bioactive substructural conforma-
tion leads to higher affinity. First, this assumption excludes possibility of interactions of the nonconserved regions 
with the protein and any binding solvation effects. However, since many linker designs are in solvent exposed 
regions, such effects may be small depending on the choice and size of linker. Secondly, the assumption excludes 
the possibility that the known active structure may not adopt the ideal geometry, that alternate conformations 
may also imbue activity, or even that some ligand flexibility is required to maintain interactions in a flexible active 
site. The ability to dismiss these possibilities must be determined on a per-project basis. Due to these limitations, 
the method may not be applicable to all macrocycle design projects or may only be applicable in portions of the 
project when the assumptions hold true.

Limitations of the metric.  Here, we applied the <RMSDcons> as our proxy for affinity. With respect to 
RMSDcons, for example, the linker may contribute, only a small subset of the conserved region could contribute, 
or other structural features may be more important, such as r-group torsional propensity or relative polar group 
vectors. Though RMSDcons may offer a good naive metric, we recommend that designers use judgment and testing 
to choose the appropriate structural metric. Although the expectation value is a simple non-parametric measure 
of the distribution of the values, it may not be the ideal way to combine results from multiple conformers. An 
alternative metric could be, for example, the probability of the compound meeting an RMSDcons threshold. This 

Figure 3.  (a–c) Relative energy of conformation (strain) vs RMSD in the MCS region relative to the reference 
for Chk1, Hsp90 and Bace1. Each conformation represents one point. Only the 12 lowest strain conformations 
for each compound are shown. In parentheses the legends indicate the experimental binding affinity.
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would make sense if the compound only binds if it meets that RMSD threshold (but binds no better or worse 
the otherwise larger or smaller the RMSDcons gets). For example, if a 1.0 Å structure were necessary to bind, the 
function would be P(RMSDcons <=1.0 Å). A similar metric was applied by McCoull et al. in a BCL6 macrocycle 
design project16.

Diagnosing the method.  Due to the many assumptions of the method, it may not be clear a priori whether 
this method is applicable to the macrocycle design project at hand. It is recommended that the designers confirm 
that the strain-rmsd profiles (Fig. 3a–c) behave as expected, that the low energy conformations of any known 
macrocyclic binders can access the bioactive substructure. Limitations of the metric (as mentioned above), and 
sampling protocol may need to be adjusted. For example, if we were to use the Chk1 results as a retrospective 
to propose prospective linkers, the aberrant behavior of compounds 3 would draw further critique. This could 
possibly be explained by the large MCS region (visible in Fig. 2a) which extends through most of the linker. One 
could argue that though this region is “conserved” (at least by the MCS method), it is not a good representation 
of the bioactive substructure. Performing the calculation with an abbreviated SMARTS pattern to determine the 
conserved region, n1c(O)cncc1NC(=O)Nc2c(O)ccc(c2)Cl, which removes now omits most of the linker other than 
the first atom on each end, suggests improved results (R2 goes from from 0.05 to 0.27, though the p-value, 0.48, 
does not suggest this is statistically significant), see Fig. 5.

The sampling itself can potentially be an area where modification to the protocol is necessary. For example, 
for an extremely large macrocycle (>40 ring atoms), increasing sampling settings or constraints to focus the 
sampling may be necessary. Additionally, since the hypothesis relies on the impact of the cycle topology on the 
conformation, interactions of extended side chains, for example, may introduce noise into the strain calculation.

Additional concerns about proxy metric, force field, and solvent parameters may also be investigated by the 
modeller in a project-dependent manner. The default solvent and force field parameters were used here. We did 
also redo these calculations in VSGB2.1 solvent model26 to see if that would significantly affect the results. The 
results were approximately unchanged, yielding a weighted R2 of 0.61 (from 0.60). This change is insignificant and 
we do not believe the improvement is worth rationalization.

Use as a screening tool.  The assumptions of this method can be managed when evaluating a large number 
of cyclizations or otherwise enumerated macrocycle topologies for purpose of structural stabilization. For such 
cases, thousands of compounds can be quickly triaged down to those few compounds likely to maintain the 
bioactive conformation. This tool could potentially be coupled with automated design tools such as linker enu-
meration or genetic-algorithm-type linker evolution methods. However, beyond this, more accurate screening 
methods, such as free energy perturbation, will be necessary to further probe interactions, solvent effects, or more 
precisely determine entropic factors contributing to the free energy of binding.

Figure 4.  (a–c) Proxy affinity metric, <RMSDcons> vs experimentally measured affinity for Chk1, Hsp90 and 
Bace1. Here, no effort was made to optimize the conserved region (see Discussion).
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Conclusions
We have described a high-throughput method for profiling macrocycles propensity to adopt the bioactive confor-
mation of their linear progenitor and shown that this propensity is a useful proxy for the binding affinity in cases 
where the binding mode is both constant and known and when the linker is not forming interactions with the 
protein. The systems here were limited to publically available data. But despite this limitation and the simplicity 
of the macrocycle stabilization algorithm, good performance was observed (R2 weighted average 0.60). We expect 
that in a design context, the datasets will be larger and the <RMSDcons> metric will likely have to be modified 
to properly test the macrocyclization strategy based on the particular structural motivation. For example, as 
demonstrated in the discussion section, a slight, rational modification significantly improved the correlation. We 
have also proposed options and rationales for varying the metric for such cases. We note that, though care must 
be taken to ensure that the results here are not over-extrapolated (e.g. since the metric cannot, in any way, predict 
new interactions or differential solvation effects), this method could be extremely useful in rapidly triaging large 
numbers macrocycle candidate compounds.
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