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Abstract
Introduction: Over the last two decades, the incidence of hepatitis C virus (HCV) co-infection among men who have sex with
men (MSM) living with HIV began increasing in post-industrialized countries. Little is known about transmission of acute or
recent HCV, in particular among MSM living with HIV co-infection, which creates uncertainty about potential for reinfection
after HCV treatment. Using phylogenetic methods, clinical, epidemiological and molecular data can be combined to better
understand transmission patterns. These insights may help identify strategies to reduce reinfection risk, enhancing effective-
ness of HCV treatment as prevention strategies. The aim of this study was to identify multi-risk profiles and factors associated
with phylogenetic pairs and clusters among people with recent HCV infection.
Methods: Data and specimens from five studies of recent HCV in Australia and New Zealand (2004 to 2015) were used.
HCV Core-E2 sequences were used to infer maximum likelihood trees. Clusters were identified using 90% bootstrap and 5%
genetic distance threshold. Multivariate logistic regression and latent class analyses were performed.
Results: Among 237 participants with Core-E2 sequences, 47% were in a pair/cluster. Among HIV/HCV co-infected partici-
pants, 60% (74/123) were in a pair/cluster, compared to 30% (34/114) with HCV mono-infection (p < 0.001). HIV/HCV co-
infection (vs. HCV mono-infection; adjusted odds ratio (AOR), 2.37, 95% confidence interval (CI), 1.45, 5.15) was independently
associated with phylogenetic clustering. Latent class analysis identified three distinct risk profiles: (1) people who inject drugs,
(2) HIV-positive gay and bisexual men (GBM) with low probability of injecting drug use (IDU) and (3) GBM with IDU & sexual
risk behaviour. Class 2 (vs. Class 1, AOR 3.40; 95% CI, 1.52, 7.60), was independently associated with phylogenetic clustering.
Many clusters displayed homogeneous characteristics, such as containing individuals exclusively from one city, individuals all
with HIV/HCV co-infection or individuals sharing the same route of acquisition of HCV.
Conclusions: Clusters containing individuals with specific characteristics suggest that HCV transmission occurs through dis-
crete networks, particularly among HIV/HCV co-infected individuals. The greater proportion of clustering found among HIV/
HCV co-infected participants highlights the need to provide broad direct-acting antiviral access encouraging rapid uptake in
this population and ongoing monitoring of the phylogeny.
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1 | INTRODUCTION

Globally, the prevalence and incidence of hepatitis C virus
(HCV) infection among people who inject drugs (PWID) is
high, with approximately 42.4% to 62.1% of PWID estimated

to be HCV antibody positive [1]. The prevalence and incidence
of HCV infection among human immunodeficiency virus (HIV)-
positive gay and bisexual men (GBM) is also considerable, with
prevalence estimated to be between 5.3% and 7.3% [2-7].
While variations exist in the incidence and prevalence of HCV
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infection among HIV-positive GBM across geographical
regions, transmission of HCV has been sustained among this
population in recent years [8,9]. Ongoing and overlapping
transmission of HCV among these groups highlights the need
for further investigation of factors that influence transmission
of this virus [10,11]. While it is hypothesized that treatment
as prevention strategies using direct-acting antiviral (DAA)
therapies may contribute to HCV elimination [12-18], more
detailed characterization of the transmission of HCV is
needed to guide the implementation of these strategies
[19,20].
Beginning in the late 1990s, the incidence of HCV co-infec-

tion in HIV-positive GBM began to increase in high-income
countries [3,21], such as Switzerland [22] and the United
Kingdom [23]. The incidence of HCV infection in these popula-
tions remains high to the present time [9]. The findings were
mirrored in Australia, with specific transmission networks
identified among HIV-positive GBM [5,24]. A model including
both sexual and drug use risk behaviour [25-27] was proposed
to explain HCV transmission among HIV-positive GBM, high-
lighting the complex nature of transmission. Phylogenetic stud-
ies of recent HCV infection found that HIV co-infection and
HCV genotype 1a were associated with transmission clusters
[28,29].
Phylogenetic analyses can uncover patterns of disease

transmission [30,31], rather than just patterns of disease
acquisition, such as in traditional epidemiological studies. While
phylogenetic techniques cannot determine the exact direction
of transmission, sources and trends can be identified on a
population level [32,33]. By combining data from these analy-
ses with detailed behavioural, clinical and demographic data,
underlying networks can be detected, that may otherwise
remain hidden [34,35].
Latent class analysis (LCA) has been used to characterize

patterns of polydrug use and other types of multi-risk profiles
in relation to HIV and HCV acquisition [36-38]. However, it
has only recently been combined with phylogenetic data to
understand transmission risk for HIV and HCV [39,40]. LCA
assumes the population consists of sub-populations (latent
classes) that differ in their distributions of included variables
and provides the ability to identify these latent classes. The
ability to stratify analyses based on HIV infection status with
increased study size, and insights provided by LCA, combined
with phylogenetic analysis, delivers a unique opportunity to
better understand transmission of HCV among different
groups. These insights could identify potential targets for the
optimal implementation of treatment as prevention and pro-
vide a foundation for the future evaluation of the effective-
ness of treatment as prevention.
The aim of this study was to identify multi-risk profiles

and factors associated with phylogenetic clustering of
recent HCV infection in Australia and New Zealand
between 2004 and 2015 among people with and without
HIV infection.

2 | METHODS

2.1 | Study population and design

Data and specimens from five studies of recent HCV (dura-
tion of infection <18 months) in Australia and New Zealand

were used for this study: ATAHC [5], RAMPT-C [41],
ATAHC II/DARE-C I [42] and DARE-C II [43]. Participants
were recruited through a network of tertiary clinics and
hospitals between 2004 and 2015 (published elsewhere
[5,41-43] and described in Data S1). For inclusion in this
study, participants had to have recent HCV defined as initial
detection of serum anti-HCV antibody and/or HCV RNA
within six months of enrolment and either (i) documented
recent HCV seroconversion (anti-HCV antibody negative
result in the 18 (DARE-C II) or 24 (ATAHC, ATAHC II,
DARE-C I, RAMPT-C) months prior to enrolment) or (ii)
acute clinical hepatitis (jaundice or alanine aminotransferase
(ALT) greater than 10 times the upper limit of normal
(ULN)) within the previous 12 months with exclusion of
other causes of acute hepatitis, and estimated duration of
HCV infection <12 (DARE-C II) or 18 (ATAHC, ATAHC II,
DARE-C I, RAMPT-C) months at screening. Calculation of
the estimated date of infection for subjects is described in
Data S1. The first available HCV RNA-positive Ethylenedia-
minetetraacetic acid or acid-citrate-dextrose plasma sample
following detection of HCV was selected. All participants
provided a written informed consent and protocols were
approved by appropriate Human Research Ethics Commit-
tees.

2.2 | HCV RNA sequencing and phylogenetic
analysis

HCV RNA was extracted, Core-E2 region amplified (nu-
cleotides 347 to 1750 in H77 reference sequence (GenBank
accession no. NC_004102)), then Sanger sequenced (method
published elsewhere [44] and described in Data S1). The frag-
ment analysed was 1104 bp long following removal of hyper-
variable region one (HVR1) to improve cluster resolution [44].
Sequences were aligned using ClustalW [45] with reference
sequences from the Los Alamos National Laboratory HCV
database [46] and unrelated sequences from overseas [47,48]
to disrupt spurious clustering and support identification of
locally expanding of clusters [49]. Maximum likelihood phyloge-
netic trees were inferred for genotypes 1, 3 and 2/4/6 com-
bined in RAxML [50] through CIPRES Science Gateway [51]
under the general time reversible model of nucleotide substi-
tution with substitution rate heterogeneity and 1000 boot-
strap replicates. JModelTest [52,53] was used to determine
the nucleotide substitution model. Clusters and pairs were
identified using ClusterPicker [54] with 90% bootstrap support
threshold and 5% mean maximum genetic distance cutoff. Sen-
sitivity analyses, performed by varying genetic distance thresh-
old between 1.5% and 5% with and without 90% bootstrap
threshold, and previous studies [28,44], determined 5% mean
maximum genetic distance was the most epidemiologically rel-
evant cutoff to define clustering for this population.

2.3 | Study outcomes

The primary study outcome was phylogenetic clustering of
HCV infections, as defined by two or more participants with
HCV genome sequence within the bootstrap and genetic dis-
tance threshold cutoff. A pair was defined as two participants
within the cutoff and a cluster was defined as three or more
participants within the cutoff.
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2.4 | Latent class analysis

LCA was used to identify groups of participants sharing beha-
vioural and epidemiological characteristics, to identify multi-
risk profiles associated with phylogenetic clustering [39]. LCA
models were built using only risk behaviour and basic demo-
graphic variables to enhance real-world applicability of result-
ing multi-risk profiles. The LCA model included all available
variables indicating risk behaviours related to HCV transmis-
sion; mode of HCV acquisition (sexual acquisition or injecting
drug use (IDU) acquisition, defined by clinician), IDU (never
injected, injected but not within the last six months or injected
within the last six months and the last drug that was injected)
[55-58], sex and older age (in categories: <45, >45 years).
Multiple models were estimated with varying numbers of
classes (from one to eight classes) and no covariate in SAS
(version 9.4: Sas Institute Inc., Cary, NC, USA), using the
PROC LCA plugin [59,60]. Bayesian information criterion
(BIC), Akaike information criterion (AIC), adjusted BIC (aBIC)
and adjusted AIC (aAIC) were used to determine the best-fit-
ting model, in addition to entropy and epidemiological mean-
ingfulness of class structure. The best-fitting model was run
with distal outcome (phylogenetic clustering) and each partici-
pant had posterior probability of belonging to each latent class
of the fitted model calculated. For subsequent analysis
[39,61], participants were allocated to the latent class for
which they had the highest posterior membership probability,
with class treated as an observed variable in adjusted logistic
regression analysis.

2.5 | Statistical analyses

Multivariate logistic regression analysis was used to identify
multi-risk profiles and factors associated with being in a pair
or cluster. Factors hypothesized to be associated with being in
a pair or cluster that were assessed included: older age
[5,62,63], male sex (vs. female sex) [64], HIV infection or sex-
ual acquisition of HCV [5-7,65] and recent injection drug use
(defined as injecting anytime in the last six months prior to

screening) [12,66,67]. Due to collinearity between HCV/HIV
co-infection and sexual acquisition of HCV (all persons with
clinician assigned sexual acquisition were HCV/HIV co-
infected), models were constructed adjusting for these factors
separately. Analyses were also stratified by HIV infection sta-
tus, and to account for potential unmeasured confounding
introduced by cohort characteristics, adjusted logistic regres-
sion analysis was performed using mixed modelling, with a
random intercept for cohort. For all analyses, statistically sig-
nificant differences were assessed at p < 0.05; p-values are
two-sided. All analyses were performed using STATA software
(version 14; StataCorp L.P., College Station, TX, USA).

3 | RESULTS

3.1 | Study population

In total, 296 subjects were eligible for inclusion in this study
(Figure 1), with 237 HCV Core-E2 sequences obtained. The
characteristics of participants with a Core-E2 sequence are
shown in Table 1. The median age was 37 (interquartile range
29 to 46) years, 79% were male, 84% were White people and
52% were HIV positive. Homosexual exposure was universally
reported as a risk factor for HIV acquisition among those with
HCV/HIV co-infection (n = 123).

3.2 | Phylogenetic pair and cluster composition

Phylogenetic trees were constructed separately for genotypes
1, 3 and G2/4/6 combined (Figure S1). Overall, 46% of partic-
ipants were in a pair or cluster, with 60% (74/123) of HCV/
HIV co-infected participants in a pair or cluster compared to
30% (34/114) of HCV mono-infected participants (p < 0.001).
Clusters ranged in size from three to eight participants,
shown in Figure 2. Many clusters displayed homogeneous
characteristics, such as clusters containing exclusively HCV/
HIV co-infected individuals (Clusters 1 to 4, 8, 9, 29, Fig-
ure 2), individuals with sexual acquisition of HCV infection
(Clusters 2 and 31, Figure 2) or IDU acquisition (Cluster 6,

Figure 1. Flow chart of sources of participants and sequences from five studies of recent hepatitis C virus (HCV) infection in Australia
between 2004 and 2015.
ATAHC, Australian Trial in Acute Hepatitis C; RAMPT-C, Defining risk and mechanisms of permucosal transmission for acute HCV infection within
high-risk populations; ATAHC II, Australian Trial in Acute Hepatitis C II; DARE-C I, DAA-based therapy for recently acquired hepatitis C I; DARE-
C II, DAA-based therapy for recently acquired hepatitis C II; E2, envelope 2; G, genotype.
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Table 1. Characteristics of participants with an available hepatitis C virus (HCV) Core-E2 sequence from five studies of recent HCV

infection in Australia and New Zealand recruited between 2004 and 2015

Characteristic Overall ATAHC I RAMPT-C ATAHC II DARE-C I DARE-C II

Period of study

recruitment/follow-up 2004 to 2007 2009 to 2013 2011 to 2013 2013 to 2015 2014 to 2015

Period of study recruitment/follow-up 2004 to 2007 2009 to 2013 2011 to 2013 2013 to 2015 2014 to 2015

Total n (%) (n = 237) (n = 119) (n = 25) (n = 60) (n = 15) (n = 18)

Age (median years,

Q2 to Q3)

38 (29 to 46) 33 (25 to 41) 45 (37 to 50) 41 (32 to 47) 46 (44 to 53) 44 (31 to 50)

Gender

Female 37 (16%) 28 (24%) a 8 (13%) 0 (0%) 1 (6%)

Male 187 (79%) 81 (68%) 25 (100%) 52 (87%) 13 (87%) 16 (89%)

Otherb 13 (5%) 10 (8%) 0 (0%) 0 (0%) 2 (13%) 1 (6%)

City

Sydney 109 (46%) 46 (39%) 14 (56%) 28 (47%) 13 (87%) 8 (44%)

Melbourne 88 (37%) 50 (42%) 11 (44%) 22 (37%) 0 (0%) 5 (28%)

Adelaide 27 (11%) 15 (13%) a 10 (17%) 2 (11%) a

Otherc 13 (6%) 8 (7%) a a a 5 (28%)

HIV infection

Positive 123 (52%) 36 (30%) 24 (96%) 38 (63%) 11 (73%) 14 (78%)

Negative 114 (48%) 83 (70%) 1 (4%) 22 (37%) 4 (27%) 4 (22%)

Acquisition of HCVd

Sexual 97 (41%) 36 (30%) 18 (72%) 26 (43%) 9 (60%) 8 (44%)

Injecting drug use 121 (51%) 68 (57%) 7 (28%) 33 (55%) 4 (27%) 9 (50%)

Unknown 19 (8%) 15 (13%) 0 (0%) 1 (2%) 2 (13%) 1 (6%)

Estimated year of HCV acquisition

2003 to 2005 72 (30%) 72 (%) a a a a

2006 to 2008 48 (20%) 47 (%) 1 (4%) a a a

2009 to 2011 43 (19%) a 22 (88%) 20 (33%) 1 (7%) a

2012 to 2014 74 (31%) a 2 (8%) 40 (67%) 14 (93%) 18 (100%)

HCV genotype

1a 131 (55%) 59 (50%) 17 (68%) 30 (50%) 14 (93%) 11 (61%)

1b 10 (4%) 8 (7%) 0 (0%) 1 (2%) 1 (7%) 0 (0%)

3a 89 (38%) 48 (40%) 7 (28%) 28 (46%) 0 (0%) 6 (33%)

2/4/6 7 (3%) 3 (3%) 1 (4%) 1 (2%) 0 (0%) 1 (6%)

Injection drug use

Never injected 57 (24%) 18 (15%) 14 (56%) 15 (25%) 7 (47%) 3 (16%)

Injected ever, but not recentlye 78 (33%) 52 (44%) 5 (20%) 10 (17%) 2 (13%) 9 (50%)

Injected recentlye 89 (37%) 42 (35%) 6 (24%) 34 (56%) 2 (13%) 5 (28%)

Unknown 13 (5%) 7 (6%) 0 (0%) 1 (2%) 4 (27%) 1 (6%)

Drug recentlye injectedf

Heroin 16 (18%) 14 (33%) 0 (0%) 2 (6%) 0 (0%) 0 (0%)

Methadone/buprenorphine 18 (20%) 18 (43%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Other opioids 7 (8%) 5 (12%) 0 (0%) 1 (3%) 1 (50%) 0 (0%)

Methamphetamine/amphetamine 30 (34%) 0 (0%) 6 (100%) 18 (53%) 1(50%) 5 (100%)

Unknown 18 (20%) 5 (12%) 0 (0%) 13 (38%) 0 (0%) 0 (0%)

Opioid substitution therapy ever 25 (11%) 16 (13%) 0 (0%) 8 (13%) 1 (7%) 0 (0%)

Percentages indicate column percentages, except for drug last injectedf.
ATAHC, Australian Trial in Acute Hepatitis C; RAMPT-C, Defining risk and mechanisms of permucosal transmission for acute HCV infection within
high-risk populations; ATAHC II, Australian Trial in Acute Hepatitis C II; DARE-C I, DAA-based therapy for recently acquired hepatitis C I; DARE-
C II, DAA-based therapy for recently acquired hepatitis C II; Q, quartiles; NA, variable not available for study.
aVariable not applicable to study; bother includes one transgender subject and 12 subjects for which variable was unavailable; cNewcastle, Bris-
bane, Auckland or Perth; dacquisition was determined by the clinician according to reported risk factors; ewithin last six months prior to sample
date; famong people who reported recent injecting (within last six months prior to sample date).
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Figure 2), individuals with history of IDU (Clusters 2 and 6,
Figure 2) or individuals from one city (Clusters 1, 3, 6, 7, 9,
29 to 31, Figure 2). Some clusters displayed heterogeneous
characteristics, such as mixing of age categories, route of
acquisition of HCV and IDU history.

3.3 | Factors associated with membership in a pair
or cluster overall

In a logistic regression model adjusting for age, gender and
city, only HIV infection remained associated with membership
in a pair/cluster (vs. HCV mono-infection; adjusted odds ratio
(AOR), 2.30; 95% confidence interval (CI), 1.07, 4.94)
(Table S1). In a logistic regression model adjusting for age,

gender, city and mode of HCV acquisition, only HCV genotype
3a infection (vs. genotype 1a; AOR, 2.09, 95% CI, 1.11, 3.95)
and infection with an HCV genotype other than 1a or 3a (vs.
genotype 1a; AOR, 3.98, 95% CI, 1.21, 13.02) remained asso-
ciated with being in a pair/cluster (Table S1).

3.4 | Factors associated with membership of a pair
or cluster, stratified by HIV infection status

In logistic regression analysis stratified by HIV infection status,
among HCV mono-infected participants, only HCV genotype 3a
(vs. genotype 1a; AOR, 4.35, 95% CI, 1.42, 13.30) was associ-
ated with being in a pair/cluster (Table S2). Among HCV/HIV
co-infected participants, no factors were significant (Table S3).

Figure 2. Clusters from maximum likelihood phylogenetic trees, constructed with sequences from Core-E2 region of hepatitis C virus (HCV)
obtained from people with recent infection in Australia between 2004 and 2015 (full trees in Figure S1).
All identified clusters at <5% mean maximum genetic distance cutoff are displayed (genotype 1a numbered #1 to 9 and genotype 3a numbered
#28 to 31). Scale bars indicate nucleotide substitutions per site. Tip names are coloured by latent class analysis (LCA) highest posterior probability
classes (Class 1: PWID; Class 2: HIV-positive GBSM or Class 3: GBSM with injecting drug use (IDU)). Numbers at tips represent estimated year
of infection for each participant (if available) and letters represent the city where participants were recruited. Squares represent males, circles
females, filled circles or squares represent a participant with HCV/HIV co-infection, empty circles or squares represent HCV mono-infection, and
light green represents participants who are over 45 years of age, with blue representing under 45 years of age. Small diamonds represent partici-
pants who acquired HCV infection sexually, with pentagons representing IDU acquisition. A triangle represents participants never reporting IDU,
an empty star represents reporting IDU ever but not recently and a filled star represents reporting recent IDU.
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3.5 | Multi-risk profiles

After comparison of fit statistics, a model with three classes
was found to be best fit (Table S4). Based on item response
probabilities for observed classes, multi-risk profiles were
named according to relative distributions of participant char-
acteristics (Table 2). Class 1 was named “PWID,” as class
probability for having recently injected drugs or acquiring
HCV through IDU were highest for this class, and no partici-
pants assigned to this class had HIV infection. Class 2 was
named “HIV-positive GBM with low probability of IDU,” as
class probability for being male was almost 1, probability of
acquiring HCV sexually was almost 1, probability of having
never injected drugs was highest in this class, and almost all
participants assigned to this class had HIV co- infection. Class
3 was named “GBM with IDU & sexual risk behaviour,” as
class probability for being male was almost 1, probability of
recently injecting methamphetamine was highest, and the

majority of participants had HIV co- infection. Almost all clus-
ters contained mostly participants assigned to Class 2, with
small numbers of participants assigned to Class 3 distributed
among these clusters. Only three clusters contained partici-
pants assigned to Class 1, with this class having the lowest
likelihood of being in a cluster.

3.6 | Multi-risk profiles associated with being in a
pair or cluster

In unadjusted logistic regression analysis, both Class 2 “HIV-
positive GBM with low probability of IDU’’ and Class 3 “GBM
with IDU & sexual risk behaviour” (vs. Class 1 PWID) were
associated with membership in a pair/cluster (Table 3). In
adjusted analysis, membership in a pair/cluster was associated
with Class 2 (vs. Class 1; AOR, 3.40, 95% CI, 1.52, 7.60), HCV
genotype 3a infection (vs. genotype 1a; AOR, 1.94, 95% CI,
1.06, 3.57) and infection with a non 1a/3a HCV genotype (vs.
genotype 1a; AOR, 4.26, 95% CI, 1.31, 13.84).

4 | DISCUSSION

This study characterizes associations between overlapping and
co-occurring risk factors and HCV phylogenetic clustering
among participants from five studies of recent HCV infection in
Australia and New Zealand between 2004 and 2015. HIV/HCV
co-infection, recruitment in Melbourne and HCV genotype 3a
infection were independently associated with being in a pair or
cluster. LCA identified three multi-risk profiles that included: (1)
“PWID”, (2) “HIV-positive GBM with low probability of IDU” and
(3) “GBM with IDU & sexual risk behaviour.” Phylogenetic clus-
tering was independently associated with membership in risk
profile (2) “HIV-positive GBM with low probability of IDU” after
adjusting for other factors. These findings suggest that there
are different sub-populations at risk of HCV transmission even
within those identifying as having a sexual or drug use risk. Thus,
although both risk groups 2 and 3 had potential for sexual
transmission, networks were able to be potentially identified
based on combinations of risk factors. Different strategies may
be warranted to address transmission within different net-
works. These findings identify a combination of participant char-
acteristics that may be associated with HCV transmission or
acquisition, providing potential targets for the implementation
of public health interventions. This study describes a robust
methodology for understanding populations at greater risk of
viral transmission where risk factors overlap or co-occur.
The association between HCV subtype 3a and phylogenetic

clustering, with all clusters containing individuals infected over
multiple years, is consistent with other reports of an increased
proportion of incident HCV infection as a result of subtype 3a,
compared to 1a, particularly among HIV-negative PWID [68], a
smaller population of infected people, and more recent intro-
duction of subtype 3a to Australia, compared to 1a [69]. This
phenomenon has also been observed in countries such as Scot-
land [70], Germany [71,72], England [73], Canada and the Uni-
ted States [69]. This contrasts with a previous analysis which
found an association between HCV subtype 1a and phyloge-
netic clustering [28], which may be explained by the more
recent period of recruitment and higher proportion of partici-
pants with HCV/HIV co-infection sampled in this study. This

Table 2. Response probability for characteristics of the three

multi-risk profiles identified by Latent Class Analysis among

five studies of recent hepatitis C virus (HCV) infection in Aus-

tralia and New Zealand recruited between 2004 and 2015

Characteristic

Class response probability

Class 1 Class 2 Class 3

PWID

HIV-positive

GBM with

low probability

of IDU

GBM with

IDU &

sexual

risk

behaviour

Probability of class

membership

0.31 0.39 0.30

Aged over 45 years <0.01 0.52 0.33

Male 0.53 0.96 0.98

Acquisition of HCVb

IDU >0.99 <0.01 0.79

Sexual <0.01 >0.99 0.21

IDU history

Most recently^ injected

heroin

0.31 0.01 <0.01

Most recently^ injected

methamphetaminea
0.29 0.11 0.52

Have injected ever, but

not recently

0.38 0.25 0.48

Never injected 0.02 0.63 <0.01

HIV positivec <0.01 0.96 0.60

HCV, hepatitis C virus; PWID, people who inject drugs; GBM, gay and
bisexual men; IDU, injecting drug use; HIV, human immunodeficiency
virus.
^recent defined as within last 6 months; aMethamphetamine or amphe-
tamine; bacquisition was determined by the clinician according to
reported risk factors; cHIV co-infection was not included in model used
to build latent classes due to collinearity with sexual acquisition of HCV.
However, proportion of people with HIV co-infection in each class was
estimated here by assigning individuals to the class with highest
posterior membership probability.
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observed recent increase in transmission of subtype 3a sup-
ports broad availability and uptake of potent pan-genotypic
DAA regimens.
This study found that HCV/HIV co-infection was indepen-

dently associated with phylogenetic clustering. HIV infection
was acquired exclusively homosexually among participants with
HCV/HIV co-infection in this study; however, many participants
with HCV/HIV co-infection reported both sexual and drug risk
factors for HCV acquisition. While evidence has emerged that
supports sexual transmission of HCV among GBM, both with
and without HIV co-infection [41,74,75], the presence of co-
occurring and overlapping risk factors among participants may
conceal the contribution that sexual networks have on HCV
transmission. While sexual acquisition of HCV infection was
not associated with phylogenetic clustering, membership in the
multi-risk profile Class (2) “HIV-positive GBM with low proba-
bility of IDU” was independently associated with phylogenetic
clustering. This multi-risk profile consisted of males who exclu-
sively had HCV/HIV co-infection, acquired HCV infection sexu-
ally and reported very little IDU, either recently or ever. This
pattern was also evident in clusters observed that contained

HIV-positive men with no history of IDU and reported sexual
acquisition of HCV (e.g. Clusters 3 and 31, Figure 2). This sup-
ports previous findings suggesting the sexual networks among
HIV-positive GBM through which HCV is transmitted are
highly connected in Australia [24], and have potentially been
densely sampled in this study, particularly compared to inject-
ing networks among heterosexual PWID. It is also possible that
IDU is under-reported in this population, due to stigma associ-
ated with it [26,76,77], particularly in healthcare settings such
as where these studies were recruited from.
The diagnosis of acute HCV infection has recently

increased among HIV-negative GBM [78-80]. While this may
be driven by increased testing and heightened awareness of
HCV infection risk among this population, it has raised con-
cern that with increased uptake of pre-exposure prophylaxis
(PrEP) to prevent HIV infection [81,82], HCV infections may
continue to rise among HIV-negative GBM. It is possible that
real time detection of this type of phylogenetic signal could
be useful as a trigger to implement more in depth public
health monitoring and interventions, such as increasing
awareness around risk of sexual transmission of HCV among

Table 3. Multivariate logistic regression of factors associated with phylogenetic clustering, including multi-risk profiles, among hep-

atitis C virus (HCV) Core-E2 sequences (at 5% genetic distance threshold) among participants from five studies of recent HCV infec-

tion in Australia and New Zealand recruited between 2004 and 2015

Characteristic Overall Unclustered Clustered
Membership in cluster n ≥ 2

Total n (%) (n = 237) (n = 129) (n = 108)

Unadjusted

Adjusted for HIV

infection

Adjusted for multi-risk

profile

Odds

ratio 95% CI p

Odds

ratio 95% CI p

Odds

ratio 95% CI p

City

Othera 40 (17%) 28 (21%) 12 (11%) Ref – – Ref – – Ref – –

Sydney 109 (46%) 57 (44%) 52 (48%) 2.13 0.98, 4.61 0.056 1.15 0.47, 2.81 0.753 1.41 0.60, 3.29 0.433

Melbourne 88 (37%) 44 (34%) 44 (41%) 2.33 1.05, 5.17 0.037 1.71 0.73, 4.02 0.217 2.18 0.93, 5.09 0.072

HIV infection

Negative 114 (48%) 80 (62%) 34 (31%) Ref – – Ref – – NI NI NI

Positive 123 (52%) 49 (38%) 74 (69%) 3.55 2.07, 6.09 <0.001 2.73 1.45, 5.15 0.002 NI NI NI

HCV genotype

1a 131 (55%) 86 (67%) 45 (42%) Ref – – Ref – – Ref – –

3a 89 (38%) 38 (29%) 51 (47%) 2.56 1.47, 4.46 0.001 1.83 0.99, 3.37 0.052 1.94 1.06, 3.57 0.032

Other 17 (7%) 5 (4%) 12 (11%) 4.59 1.52, 13.83 0.007 3.28 1.02, 10.54 0.046 4.26 1.31, 13.84 0.016

Multi-risk profileb

Class 1 PWID 59 (25%) 45 (34%) 14 (13%) Ref – – NI NI NI Ref – –

Class 2 HIV-positive

GBM with low

probability of IDU

97 (41%) 42 (33%) 55 (51%) 4.21 2.05, 8.66 <0.001 NI NI NI 3.40 1.52, 7.60 0.003

Class 3 GBM with

IDU & sexual risk

behaviour

81 (34%) 42 (33%) 39 (36%) 2.98 1.42, 6.26 0.004 NI NI NI 2.22 0.96, 5.15 0.062

Percentages indicate column percentages. Factors remaining significant in adjusted analyses (p < 0.05) are highlighted in bold.
HIV, human immunodeficiency virus; HCV, hepatitis C virus; PWID, people who inject drugs; GBM, gay and bisexual men; IDU, injecting drug use,
CI, confidence interval; NI, not included; Ref, reference.
aAdelaide, Newcastle, Auckland, Brisbane or Perth; bmulti-risk profile assigned corresponds to the profile with the highest posterior probability for
that individual.
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GBM [83,84], and tailoring education to individuals based on
their HIV infection status [85]. Phylogenetic analysis of HCV
NS5B sequences from HIV-negative GBM receiving PrEP in
Amsterdam demonstrated GBM-specific HCV clusters con-
taining both HIV-positive and HIV-negative individuals [86].
Interventions implemented because of real time detection of
phylogenetic signals in HCV are being developed and evalu-
ated in the Netherlands and the United States [87], and may
be useful in Australia to reduce transmission of HCV and
investigate HCV outbreaks.
The multi-risk profile Class (3) “GBM with IDU & sexual risk

behaviour” had a combination of HCV acquisition through both
sexual and drug use, and reported high proportions of recent
methamphetamine injection, indicating the overlapping concur-
rent transmission risks present. Membership in this group was
not independently associated with phylogenetic clustering. This
finding suggests that members were more likely to have
acquired their infection from people who were not sampled in
this study, and that these networks are both broader and have
not been sampled densely in this study. Those not sampled in
this study were people with chronic HCV infection, and poten-
tially people who are less likely to attend tertiary clinics or hos-
pitals where participants in these studies were recruited.
People who may be less likely to attend such settings are
marginalized people or those not engaged in the healthcare sys-
tem, particularly PWID [88,89]. This highlights the need to pro-
vide HCV testing and treatment in non-tertiary clinics and
other places where the people who need to access these ser-
vices are most likely to visit. This also suggests that different
strategies to prevent and treat HCV infection among GBM who
inject methamphetamine may be needed to reduce transmission
of HCV infection in this group.
This study demonstrates that LCA can be extremely useful

to identify critical differences in potential transmission risk
between groups that remain otherwise hidden. The methods
described here can be used to examine unmeasured sub-
groups of participants based on multiple indicators, rather
than individual factors, and overcomes some of the difficulties
with traditional epidemiological methods used to investigate
risk factors. While the classes identified do not represent
actual individuals in the population, the LCA provides a useful
mechanism for representing the heterogeneity of factors
across the population.
Limitations include limited sampling of extremely high-risk

populations, such as PWID, particularly those in prison or other-
wise unengaged in tertiary care, and the exclusion of chronically
infected individuals. The network through which HCV is trans-
mitted among HIV-positive GBM has been sampled densely, in
comparison to the network through which HCV is transmitted
among HIV-negative PWID. This is likely to have influenced the
high overall proportion of phylogenetic clustering observed in
this study. There is also difficulty in distinguishing between sex-
ual and IDU as the route of HCV infection acquisition among
people who report both categories of risk factors. However,
creating multi-risk profiles as done in this analysis can help to
overcome this issue. There were also sampling bias in the way
people were recruited to these studies, as they were conducted
in tertiary care settings, and without any network-based or
respondent-driven recruitment. Sampling was also limited by
geographical area, with only selected sites in a limited number
of Australian and New Zealand cities recruiting subjects;

therefore, this study is not a random sample of the eligible pop-
ulations and contains some bias.

5 | CONCLUSIONS

A high proportion of phylogenetic clustering observed among
participants with HCV/HIV co-infection suggests transmission
of HCV may occur through highly connected networks of
HIV-positive GBM. Increased screening and rapid delivery of
HCV DAA treatment as prevention among HIV-positive GBM
should be considered, as it may be effective to reduce trans-
mission of HCV in this population. There may also be a role
for real time monitoring of the phylogeny, to detect signals
related to transmission “hot spots” and trigger implementation
of public health interventions. Transmission of HCV and HIV
can occur rapidly through injecting and sexual networks
[90,91], and outbreak investigation using phylogenetic cluster-
ing analyses could improve monitoring and detection of
emerging epidemics. This study provides a foundation upon
which transmission of HCV among people with recent infec-
tion can be evaluated in the future, particularly in the setting
of implementation of treatment as prevention to eliminate
HCV infection among particular populations.
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version of this article:
Data S1. Supplementary Materials and Methods.
Figure S1. Maximum likelihood phylogenetic trees inferred
from available hepatitis C virus (HCV) Core-E2 sequence from
five studies of recent HCV infection in Australia and New
Zealand recruited between 2004 and 2015.

Table S1. Multivariate logistic regression of factors associated
with phylogenetic clustering among hepatitis C virus (HCV)
Core-E2 sequences (at 5% genetic distance threshold) among
participants from five studies of recent HCV infection in Aus-
tralia and New Zealand recruited between 2004 and 2015
Table S2. Multivariate logistic regression of factors associated
with phylogenetic clustering among hepatitis C virus (HCV)
Core-E2 sequences (at 5% genetic distance threshold) strati-
fied among HCV mono-infected participants from five studies
of recent HCV infection in Australia and New Zealand
recruited between 2004 and 2015
Table S3. Multivariate logistic regression of factors associated
with phylogenetic clustering of hepatitis C virus (HCV) Core-E2
sequences (at 5% genetic distance threshold) among HIV/HCV
co-infected participants from five studies of recent HCV infection
in Australia and New Zealand recruited between 2004 and 2015
Table S4.Comparison of fit statistics for latent class analysis mod-
els built with 1 to 8 classes for participants from five studies of
recent HCV infection in Australia and New Zealand recruited
between 2004 and 2015
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