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Alzheimer’s disease (AD) is the most common form of dementia. It was first described
more than a century ago, and scientists are acquiring new data and learning novel
information about the disease every day. Although there are nuances and details
continuously being unraveled, many key players were identified in the early 1900’s by
Dr. Oskar Fischer and Dr. Alois Alzheimer, including amyloid-beta (Aβ), tau, vascular
abnormalities, gliosis, and a possible role of infections. More recently, there has been
growing interest in and appreciation for neurovascular unit dysfunction that occurs
early in mild cognitive impairment (MCI) before and independent of Aβ and tau brain
accumulation. In the last decade, evidence that Aβ and tau oligomers are antimicrobial
peptides generated in response to infection has expanded our knowledge and
challenged preconceived notions. The concept that pathogenic germs cause infections
generating an innate immune response (e.g., Aβ and tau produced by peripheral organs)
that is associated with incident dementia is worthwhile considering in the context of
sporadic AD with an unknown root cause. Therefore, the peripheral amyloid hypothesis
to cognitive impairment and AD is proposed and remains to be vetted by future
research. Meanwhile, humans remain complex variable organisms with individual risk
factors that define their immune status, neurovascular function, and neuronal plasticity.
In this focused review, the idea that infections and organ dysfunction contribute to
Alzheimer’s disease, through the generation of peripheral amyloids and/or neurovascular
unit dysfunction will be explored and discussed. Ultimately, many questions remain to
be answered and critical areas of future exploration are highlighted.

Keywords: Alzheimer’s disease, neurovascular dysfunction, infection, modifiable risk factors, germs, peripheral
amyloid hypothesis

INTRODUCTION

What is Alzheimer’s disease (AD)? The answer to this question is challenging and varies
significantly depending on who you ask; whether it’s a medical or scientific expert or a caregiver to
an AD patient. Is AD only about cerebrospinal fluid (CSF) biomarkers of amyloid-beta (Aβ), tau,
and neurodegeneration? These biomarkers are central to defining AD according to the National
Institute on Aging and Alzheimer’s Association created diagnostic recommendations even though
they acknowledged that, “Although it is possible that β-amyloid plaques and neurofibrillary tau
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deposits are not causal in AD pathogenesis, it is these abnormal
protein deposits that define AD as a unique neurodegenerative
disease among different disorders that can lead to dementia.”
(Jack et al., 2018). Upon asking a caregiver this question,
the response will likely involve memory impairment and
the associated complications of daily living. Is it possible
to define AD without knowing the cause? For this review,
the definition of AD includes clinical symptoms such as
cognitive impairment, including loss of recent memory and
language ability, impairment of orientation, problem solving, and
abstract thinking.

What causes AD and how do we stop it? Scientists learn how
to formulate and rigorously test a hypothesis, how to design
experiments to test this hypothesis and how to discern correlation
from causation. If there is a fallen tree in the forest that has a
mushroom on it, did the fungus cause the tree to die? Likewise,
if there are Aβ plaques and tau tangles in the brain of a person
with no cognitive deficits, do they cause AD? Often, but not
always, Aβ plaques, neurofibrillary tau tangles and other amyloid
neuropathologies are abundant in the brain of AD patients. Why
and where were these amyloids produced and what leads to
their accumulation in the brain? Here, the literature related to
neuropathological, cellular, and subcellular changes and their role
in AD are evaluated.

When thinking about root causes of AD, it might be
helpful to consider the overarching umbrella of dementia
as an entity. From this perspective, there are three forms
of dementia: (1) sporadic neurodegenerative diseases (e.g.,
AD, Parkinson’s disease, multiple sclerosis, frontotemporal
lobar dementia, amyotrophic lateral sclerosis (ALS), etc.),
(2) genetic forms of dementia (e.g., autosomal-dominant AD
(ADAD), Huntington’s disease, etc.), and (3) incident dementia
[e.g., human immunodeficiency virus-1 (HIV-1)-associated
neurocognitive disorders, long-term cognitive impairment after
respiratory failure or shock]. It is unclear if “incidents” like
infection or organ dysfunction could cause or contribute to
sporadic dementias, like AD.

In the AD field, when reading “amyloid” it is often thought
to mean “Aβ.” However, the definition of an amyloid is any
polypeptide that polymerizes to form a cross-β structures.
Classically, they have been stained in histopathology using
dyes such as Congo red. There are many amyloids implicated
in neurodegenerative diseases including not only Aβ, but
also tau, transactive response DNA and RNA binding protein
43 kDa (TDP-43), α-synuclein, and superoxide dismutase-1.
Due to their cross-β sheet structure, all amyloid monomers are
capable of aggregating to form oligomers and fibrils (Verma
et al., 2015). Amyloid oligomers are soluble, whereas fibrils are
larger and insoluble. Neuropathological accumulates such as
tangles, plaques, or Lewy bodies are formed by highly ordered
amyloid fibrils. Evidence supports that oligomeric amyloids may
represent the primary pathogenic structure (Glabe, 2006). Many
types of amyloids co-exist in AD. Recent studies found that
cerebral amyloid angiopathy (CAA), limbic-predominant age-
related TDP-43 encephalopathy (LATE), and Lewy bodies all
accumulate alongside Aβ plaques and tau tangles (Robinson
et al., 2021). Many amyloids have prion-like seeding and spread

(Holmes and Diamond, 2014). The role of amyloids in innate
immune responses and as antimicrobial peptides will be detailed
below in section “The Battle Between Humans and Germs.”

Is there only one cause of AD or is it a multifactorial
syndrome? Humans and their unique genetic makeup, sex,
ethnicity, environment, lifestyle factors, etc. make determining
the cause of many human ailments challenging. Beyond humans
themselves, there is mounting evidence that the 39 trillion
germs residing in the human body play either beneficial and/or
pathogenic roles that impact cognitive function. The strongest
evidence currently impacting the globe and demonstrating
that microorganisms can lead to cognitive impairment is the
brain fog associated with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Recent developments regarding
how the interplay between human and microbes contributes to
incident dementia and perhaps AD have been quite intriguing.
An individual’s impact (self) and the role germs (non-self) play
and the possible relationships between these in the development
of AD will be discussed.

AN ACCELERATED HISTORICAL
PERSPECTIVE OF ALZHEIMER’S
DISEASE NEUROPATHOLOGY

Scientific discoveries described 115 years ago by Dr. Oskar
Fischer (Eikelenboom et al., 2006; Goedert, 2009) and Dr. Alois
Alzheimer (Alzheimer et al., 1995) provided the fundamental
basis of what we know about AD neuropathology today.
Notably, Dr. Fischer described neuritic plaques in 12 cases
of dementia (Goedert, 2009) and described that the crucial
step in plaque formation involves deposition of a foreign
substance, provoking an inflammatory reaction, and followed
by degeneration around nerve fibers (Eikelenboom et al., 2006).
Dr. Alzheimer described histological alterations in the brain of
dementia patient August D. as including vascular arteriosclerotic
changes, neurofibrils positive for Bielschowsky’s silver method
that appeared where neurons used to be, development of
fibers and adipose saccules in glia, growths on endothelial
cells, and proliferation of vessels (Alzheimer et al., 1995).
Over the last century, many great scientists have continued
to expand our knowledge about neuropathological changes in
the AD brain. Today, it is broadly accepted that AD brains
encompass gross neuropathology including brain atrophy and
enlargement of ventricles, microscopic amyloid neuropathologies
(e.g., Aβ plaques, CAA, neurofibrillary tau tangles, Lewy body
α-synuclein pathology, and TDP-43 aggregates), neurovascular
unit dysfunction [e.g., pericyte loss, blood-brain barrier (BBB)
breakdown], and altered subcellular players (e.g., BBB transporter
expression changes, post-translational modifications) (Figure 1).
Amyloids implicated in AD are described below in more detail.

Aβ
Aβ are peptides of various lengths (36–43 amino acids) are
formed by the cleavage of amyloid precursor protein (APP) by
β- and γ-secretases. Aβ1−40 and Aβ1−42 are the most studied
species. APP is expressed in various cell types in all tissues and
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FIGURE 1 | Alzheimer’s disease is characterized by gross pathologies (e.g., brain atrophy and ventricular enlargement, blue box), microscopic neuropathologies
(e.g., amyloid-β plaques, tau tangles, and TDP-43 aggregates, green box), neurovascular unit dysfunction (e.g., blood-brain barrier breakdown, pericyte loss,
neurodegeneration, and gliosis, pink box), and changes to subcellular players (e.g., blood-brain barrier transporters, mitochondria, autophagy, and post-translational
modifications, yellow box). Created with BioRender.com.

organs as reported in the Human Protein Atlas.1 Aβ peptides
can aggregate generating various forms of soluble oligomers.
Misfolded Aβ oligomers have prion-like properties as they can
induce other Aβ molecules to misfold. Experimental studies have
shown that prion protein antagonists rescue Aβ-related synaptic
and cognitive deficits (Gunther et al., 2019; Sagare et al., 2019).
Aβ is also an antimicrobial peptide as described below in section
“Antimicrobial Peptides.”

The “amyloid cascade hypothesis” has been the central focus
of AD research for nearly 30 years (Selkoe and Hardy, 2016). This
hypothesis initiated with the presence of Aβ plaques in the brain
of many AD patients, and gained strength and momentum as
carriers with genetic mutations in APP and presenilin (PSEN)
were found to have increased Aβ production and develop
autosomal dominant AD, and individuals with Down’s syndrome
have three copies of APP, develop Aβ plaques and many develop
dementia (Kolata, 1985; Selkoe and Hardy, 2016). Furthermore,
apolipoprotein E4 (APOE ε4) increases the risk of sporadic AD
and reduces clearance of Aβ from brain (Shibata et al., 2000;
Deane et al., 2008; Ramanathan et al., 2015). Aβ oligomers
decrease synapse density and reduce long-term potentiation, a
cellular correlate to learning and memory, in rodent brain slices
in some studies (Selkoe and Hardy, 2016).

Evidence disproving the amyloid cascade hypothesis has
been increasing. Not all people with plaques and increased Aβ

expression develop AD, including those with Down’s Syndrome
(Zigman et al., 2008). In a recent study of 747 individuals, subtle
cognitive difficulties associated with entorhinal cortex atrophy
were present prior to amyloid plaque formation (Thomas et al.,
2020). Recent estimates show that more than a third of cognitively
normal people over the age of 70 and more than a half of
individuals over the age of 95 have elevated Aβ42 in their CSF
(Jansen et al., 2022). Most disappointingly, more than 30 Phase
three clinical trials of drugs targeting Aβ have failed to slow
cognitive decline in AD (Ayton and Bush, 2020).

1www.proteinatlas.org/

Some studies have suggested that the link between Aβ

plaques and cognitive deficits might be due to immune status.
For example, increased plasma levels of the proinflammatory
cytokines interleukin-12 and interferon-γ predict improved
cognition among elderly subjects with Aβ detected by
neuroimaging (Yang et al., 2021), suggesting that peripheral
immune status may be the key between Aβ plaque presence and
cognitive impairment. Furthermore, central immune status may
also be critical as microglia-associated genes such as triggering
receptor expressed on myeloid cells 2 (TREM2) and CD33 have
been implicated in AD, as detailed below in sections “Triggering
Receptor Expressed on Myeloid Cells 2 and Others.”

Interestingly, APP and PSEN mutations cause neurovascular
abnormalities as described below in the section “Genetics.”

Tau
MAPT encodes for tau. MAPT is expressed in various cell
types in most tissues and organs (e.g., brain, heart, kidney,
lung, skeletal muscle, etc.) as reported in the Human Protein
Atlas (see footnote 1). Tau aggregates and inclusions occur in
multiple neurodegenerative diseases including not only AD, but
also progressive supranuclear palsy, corticobasal degeneration,
Pick’s disease, chronic traumatic encephalopathy, frontotemporal
dementia with parkinsonism, and many others (Strang et al.,
2019). Neurofibrillary tangles are also present during normal
aging and has been defined as “primary age-related tauopathy”
(PART) (Crary et al., 2014). Diseases in which tau aggregates are
referred to as tauopathies (Strang et al., 2019). More than 50
pathogenic mutations in MAPT have been reported and linked
to tauopathies (Strang et al., 2019).

In the brain, tau provides stability to microtubules for
axonal transport (Ballatore et al., 2007). There are many
exon splice variants and isoforms or “strains” of tau in
the brain and periphery all being dynamically regulated
by post-translational modifications (e.g., phosphorylations,
glycosylations, ubiquitinations, glycations, nitrations, oxidations,
etc.) (Strang et al., 2019). In addition, tissue transglutaminase
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cross-links tau into insoluble filamentous structures (Appelt
and Balin, 1997; Balin and Appelt, 2000). Recent studies have
suggested that misfolded four-repeat (4R) tau is associated with
rapid progression of AD (Kim et al., 2022).

In AD, tau no longer binds to microtubules and becomes
sequestered into neurofibrillary tangles in neurons and glia.
Neurofibrillary tau tangles have a routine pattern of spread
that has allowed for assessing the stage of AD, also known
as Braak stages (Hyman et al., 1984; Braak and Braak, 1991;
de Calignon et al., 2012). There is evidence that this spread
occurs through a combinatorial process of synaptic or exosomal
secretion followed by endocytic or exosomal uptake (Strang et al.,
2019). Some experimental studies, but not all, have found tau
aggregation and spreading in cell culture and animal models,
primarily those with humanized tau (e.g., hTauP301S) (Strang
et al., 2019). Tau tangles are comprised of multiple types of tau
isoforms (Goedert et al., 1989), and are thought to have both a
loss-of-function (e.g., microtubule stabilization) and toxic gain-
of-function in AD (Ballatore et al., 2007). Previous animal studies
found that reducing endogenous tau levels prevented behavioral
deficits and excitotoxicity in transgenic mice that overexpress
Aβ without changing Aβ levels (Roberson et al., 2007). Tau
lesions have been demonstrated to accumulate prior to Aβ in AD
and better correlate with cognitive impairment (Johnson et al.,
2016). However, in a three-dimensional human AD neural cell
culture model, Aβ induced the production of phosphorylated tau
aggregates (Choi et al., 2014).

Strikingly, several studies have shown that toxic tau is
transmissible (Clavaguera et al., 2009, 2013; Nonaka et al.,
2010), leading to the idea that progression of the diverse but
characteristic tau pathologies occurs through prion-like seed-
dependent aggregation (Hasegawa, 2016; Goedert and Spillantini,
2017). Importantly, transmissible tau can be generated not only
in the brain but also by peripheral organs in response to
an infection, including lung endothelial cells (Balczon et al.,
2013, 2017, 2019; Choi et al., 2021), and has been shown
to reduce dendritic spine density (Scott et al., 2020), impair
learning and memory (Balczon et al., 2019), and cause neuronal
tauopathy (Choi et al., 2021). The role of peripheral infections or
inflammation leading to brain tau tangles is an understudied and
vital area of research.

α-Synuclein
SNCA encodes for α-synuclein. SNCA is expressed in a few cell
types in many tissues and organs (e.g., brain, heart, kidney, lung,
skeletal muscle, etc.) as reported in the Human Protein Atlas
(see footnote 1). Mutations in SNCA have been implicated with
parkinsonism. α-synuclein aggregates to form insoluble fibrils
in Lewy bodies. Lewy bodies are neuropathologies commonly
associated with Parkinson’s disease and dementia with Lewy
bodies. Lewy bodies are also present in AD brain in proximity
to Aβ plaques and tau tangles (Robinson et al., 2021). These
disorders are known as synucleinopathies. There are at least three
isoforms of α-synuclein produced through alternative splicing.
The most investigated is the full-length 140 amino acid protein.
α-synuclein, like the aforementioned amyloids, can propagate in
a prion-like manner (Holmes and Diamond, 2014). Upregulation

of α-synuclein in response to an immune activation was recently
reviewed in the context of Parkinson’s disease (Kasen et al., 2022;
Linard et al., 2022).

Transactive Response DNA and RNA
Binding Protein 43 kDa
TARDBP encodes for TDP-43. TARDBP is expressed in many cell
types in all tissues and organs as reported in the Human Protein
Atlas (see footnote 1). TDP-43 is involved in the regulation
of RNA splicing, stability, transcriptional repression, and other
cellular functions (Huang et al., 2020). TDP-43 proteinopathy
was first identified in ALS and frontotemporal lobar degeneration
(Neumann et al., 2006). However, TDP-43 neuropathology was
also identified in post-mortem AD brain (Amador-Ortiz et al.,
2007; Uryu et al., 2008; Josephs et al., 2014, 2016), and is
often observed in older adults with LATE (Nelson et al., 2019;
Katsumata et al., 2020; Robinson et al., 2020; Uemura et al.,
2022). TDP-43 frequently coexists with tau and α-synuclein in
brain tissue of subjects with AD and dementia with Lewy bodies
(Higashi et al., 2007).

TDP-43 neuropathology had strong associations with
cognition, memory loss, and medial temporal atrophy in AD
(Josephs et al., 2014). Similar to tau, TDP-43 has staging and
spread with deposition beginning in the amygdala, then moving
to entorhinal cortex and subiculum; to the dentate gyrus of
the hippocampus and occipitotemporal cortex; insular cortex,
ventral striatum, basal forebrain, and inferior temporal cortex;
substantia nigra, inferior olive and midbrain tectum; and finally
to basal ganglia and middle frontal cortex (Josephs et al., 2016).
TDP-43 has been demonstrated to have prion-like seeding and
propagation (Furukawa et al., 2011). Mitochondria-associated
TDP-43 is increased in AD patients and transgenic mice for AD
(Gao et al., 2020). Suppression of TDP-43 prevents neuronal loss
and improves cognitive and motor function in 5XFAD transgenic
mice (Gao et al., 2020).

Lipopolysaccharide-induced inflammation promotes TDP-43
mislocalization and aggregation suggesting that inflammation
may contribute to the development and exacerbation of TDP-
43 in AD and other neurodegenerative diseases (Correia et al.,
2015). How peripheral insults lead to TDP-43 pathologies in AD
remains to be determined.

NEUROVASCULAR UNIT DYSFUNCTION
IN ALZHEIMER’S DISEASE

The neurovascular unit is comprised of endothelial cells,
mural cells (e.g., pericytes and smooth muscle cells), glia (e.g.,
astrocytes and microglia), and neurons (Figure 1) that precisely
regulate cerebral blood flow (CBF) to assure that brain energy
demands are met (Zlokovic, 2011; Zhao et al., 2015a; Nelson
et al., 2016b; Kisler et al., 2017a; Sweeney et al., 2019b). There
is growing appreciation and strong evidence that neurovascular
uncoupling, CBF reductions and dysregulation, and breakdown
of the BBB, including the loss of pericytes, are early events
in the AD pathophysiological cascade (Iadecola, 2004, 2013;
Zlokovic, 2011; Toledo et al., 2013; Montagne et al., 2015, 2020;
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Sweeney et al., 2015, 2018a,b, 2019a,b; Zhao et al., 2015a;
Arvanitakis et al., 2016; Halliday et al., 2016; Iturria-Medina
et al., 2016; Nelson et al., 2016b; Kisler et al., 2017a; Kirabali et al.,
2019; Miners et al., 2019; Nation et al., 2019; Bourassa et al., 2020;
Shi et al., 2020), and are independent of Aβ and tau alterations in
the brain (Nation et al., 2019; Montagne et al., 2020). However,
Aβ oligomers induce vasoconstriction reducing CBF (Thomas
et al., 1996; Nortley et al., 2019), and thus likely play a critical
role in neurovascular unit dysfunction in AD. Improperly
functioning blood vessels will fail to deliver essential nutrients,
including oxygen and glucose to, and remove metabolic waste
products from the brain (Zlokovic, 2011; Nelson et al., 2016b).
If CBF is halted, brain functions will cease in seconds and
permanent brain damage occurs in minutes (Moskowitz et al.,
2010). Below, cells of the neurovascular unit are described and
how they are altered in AD and with infections is discussed.

Endothelial Cells and the Blood-Brain
Barrier
The BBB inhibits uncontrolled entry of blood-derived products
and pathogens from entering the brain and regulates molecule
entry into and out of the brain by a specialized substrate-specific
transport system (Zlokovic, 2011; Zhao et al., 2015a; Nelson
et al., 2016b). Several studies used dynamic contrast enhanced
magnetic resonance imaging (DCE-MRI) to quantify BBB
permeability (BBBktrans) and found increased BBB breakdown in
individuals with normal aging (Montagne et al., 2015; Verheggen
et al., 2020a,b), MCI (Montagne et al., 2015, 2020; Nation
et al., 2019; Rensma et al., 2020), and early-AD (van de
Haar et al., 2016, 2017a,b). T2∗- and/or susceptibility weighted
imaging MRI sequences have identified perivascular hemosiderin
deposits/microbleeds in MCI (Yates et al., 2014) and individuals
with early AD (Goos et al., 2009; Brundel et al., 2012; Uetani
et al., 2013; Heringa et al., 2014; Olazarán et al., 2014; Yates et al.,
2014; Zonneveld et al., 2014; Shams et al., 2015; Poliakova et al.,
2016). Post-mortem human studies have shown reduced capillary
length and microvascular degeneration with diminished tight
junction proteins, basement membrane irregularities, and brain
endothelial degeneration (Salloway et al., 2002; Bailey et al., 2004;
Wu et al., 2005; Baloyannis and Baloyannis, 2012; Sengillo et al.,
2013; Halliday et al., 2016). Additionally, capillary leakages of
blood-derived products including fibrin(ogen), immunoglobulin
G (IgG), thrombin, albumin and hemosiderin have been detected
in the cortex, and hippocampus of AD post-mortem brain tissues
(Cullen et al., 2005; Zipser et al., 2007; Ryu and McLarnon,
2009; Hultman et al., 2013; Sengillo et al., 2013; Cortes-Canteli
et al., 2015; Halliday et al., 2016; Miners et al., 2018). Systemic
infections and inflammation often increase BBB permeability
allowing immune mediators and cells to enter the brain (Prinz
and Priller, 2017).

Brain Pericytes
Pericytes are critical for the maintenance of the BBB and have
many other functions including angiogenesis, clearance of toxic
metabolites (Ma et al., 2018), capillary hemodynamic responses
(Kisler et al., 2017a,b; Nelson et al., 2020), neuroinflammation,

and pluripotent stem cell activity (Sweeney et al., 2016).
Pericyte injury marker soluble platelet derived growth factor
β (sPDGFRβ) is elevated in cerebral spinal fluid in MCI and
early AD (Montagne et al., 2015, 2020; Nation et al., 2019).
Pericyte loss has been suggested using electron microscopy of
AD cortex (Farkas and Luiten, 2001; Baloyannis and Baloyannis,
2012) and by decreased levels of pericyte marker PDGFRβ

in the precuneus and underlying white matter (Miners et al.,
2018). By immunostaining, pericyte number and coverage of
brain capillaries were reduced in AD cortex and hippocampus
compared to control brain (Sengillo et al., 2013), and this loss
was accelerated in APOE ε4 carriers (Halliday et al., 2016). Recent
studies have shown that pericyte loss in the parietal cortex in
AD brain correlates with cognitive decline and TDP-43 pathology
(Bourassa et al., 2020).

Recent single nuclei RNAseq studies of vascular cells identified
two novel types of pericytes (e.g., transporter- and matrix-
type pericytes) in human post-mortem brain and identified a
reduction of matrix-type pericytes in AD hippocampus and
cortex (Yang et al., 2022). The consequence of the specific loss
of matrix-type pericytes on neurovascular dysfunction in AD has
yet to be determined.

Pericytes are the first line of brain defense when BBB integrity
is compromised. They play a role in the removal of Aβ via
the low-density lipoprotein receptor-related protein 1 (LRP1)
(Ma et al., 2018). Pericytes are a target of infections such as
HIV-1 (Bertrand et al., 2019), and SARS-CoV-2 (Bocci et al.,
2021). SARS-CoV-2 enters pericytes via its spike protein and
the angiotensin-converting enzyme-2 receptor (Khaddaj-Mallat
et al., 2021; McCracken et al., 2021). Pericytes may protect the
brain by clearing microorganisms and peripherally produced
amyloids (e.g., Aβ, tau, and others) attempting to enter the brain.
It remains to be determined how microorganisms and peripheral
amyloids impact pericyte functions, especially their regulation of
red blood cell flow and support of the BBB.

Astrocytes and Microglia
Astrocytes regulate many dynamic processes in the brain
including maintaining systemic homeostasis (e.g., pH,
neurotransmitters, trophic factors, and calcium), modulating
neuronal activity and plasticity, clearance of molecules from
the brain, and their endfeet structurally support the BBB and
neurovascular unit (De Strooper and Karran, 2016; Heithoff
et al., 2021). Importantly, astrocytes mediate neurovascular
signaling to pericytes contributing to CBF at the capillary level
(Mishra et al., 2016). Astrocytes highly express APOE and secrete
it to signal pericytes via LRP1 to suppress the activations of the
cyclophilin A-matrix metalloproteinase-9 pathway that degrades
the BBB (Bell et al., 2012). Preclinical (Bell et al., 2012; Jackson
et al., 2021) and clinical studies (Montagne et al., 2020) have
shown that APOE ε4 leads to BBB breakdown, as further detailed
in section “Apolipoprotein E.”

Studies have demonstrated reactive astrocytes in post-mortem
AD brain tissue using immunostaining (Beach and McGeer,
1988; Griffin et al., 1989; Meda et al., 2001), and around
Aβ plaques in post-mortem brain tissue from aged subjects
(Simpson et al., 2010). Using positron emission tomography
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to measure astrocytic marker monoamine oxidase B, studies
found astrocytosis in the brain of MCI and early-AD participants
(Carter et al., 2012). Activated astrocytes produce vascular
endothelial growth factor-A that is associated with BBB
breakdown in mice (Argaw et al., 2012).

Microglia are the macrophages of the brain. Although the total
number of microglia in the AD brain remains unchanged, there
are increased numbers of reactive microglia in post-mortem AD
brain tissue (McGeer et al., 1987; Akiyama and McGeer, 1990;
Cras et al., 1990; Styren et al., 1990). Microglia are able to bind
Aβ oligomers and fibrils via cell surface receptors (Paresce et al.,
1996; Bamberger et al., 2003; Liu et al., 2005; Stewart et al.,
2010) and may be part of the inflammatory response observed
in AD (Heneka et al., 2015). Reactive microglia are often found
associated with dense Aβ plaques (Itagaki et al., 1989; Mattiace
et al., 1990; Mackenzie et al., 1995; Sasaki et al., 1997), but
have also been demonstrated to be surrounding approximately
half of diffuse Aβ plaques in human brain (Itagaki et al., 1989).
Studies using transgenic APP mice with microglial ablation
demonstrate that microglia are not required for the formation
or maintenance of Aβ plaques or associated neuritic dystrophy
(Grathwohl et al., 2009). However, more recent studies in
APP/PS1 mice demonstrated that microglia play a role in dense-
core plaque formation (Huang et al., 2021). Using transcriptional
single-cell sorting, recent studies identified a novel microglia
type associated with neurodegenerative diseases (Keren-Shaul
et al., 2017; Olah et al., 2020). The TREM2-APOE pathway
drives the transcriptional phenotype of dysfunctional microglia
in AD and other neurodegenerative diseases (Krasemann et al.,
2017). Genome-wide association studies (GWAS) have identified
AD risk genes CD33 and TREM2 as being linked to immune
responses and microglia (Griciuc and Tanzi, 2021), as detailed
below in sections “Triggering Receptor Expressed on Myeloid
Cells 2 and Others.”

Like in AD and other neurodegenerative diseases, astrocytes
and microglia become reactive in response to inflammation or
infection. The interaction and communication between these
two cell types are starting to be unraveled with the ever-
increasing amount of -omics and functional studies and data
(Liddelow et al., 2020).

Neurons
Neurons in the brain can be classified by their morphology and
functions, including the release of specific neurotransmitters. The
most abundant neurotransmitters are glutamate and gamma-
Aminobutyric acid (GABA). However, neurons often implicated
in AD and other neurodegenerative diseases often release other
neurotransmitters, as further described below.

Post-mortem histology studies that found reductions in
cholinergic markers in the brain and neurons in the nucleus
basalis of Meynert laid the foundation for the “cholinergic
hypothesis of AD” (Bowen et al., 1976; Davies and Maloney,
1976; Mesulam, 1976; Whitehouse et al., 1982; Mann et al.,
1984) and were the motivation for acetylcholinesterase inhibitor
drug treatments used in AD patients. The loss of cholinergic
innervation in AD is often associated with neurofibrillary
tau tangles and Aβ plaques (Geula and Mesulam, 1995;

Braak and Del Tredici, 2013; Mesulam, 2013). Also, cholinergic
neurons that degenerate in AD rely on retrograde transport
of nerve growth factor (NGF) from hippocampus and cortex
for proper function (Mufson et al., 2008; Schliebs and Arendt,
2011; Cattaneo and Calissano, 2012; Triaca and Calissano,
2016), and an imbalance in proNGF to mature NGF has
repeatedly been implicated in AD (Cuello and Bruno, 2007;
Cuello et al., 2007; Iulita and Cuello, 2014). While clinical
studies found that cholinesterase inhibitor therapies provided
significant symptomatic improvement in AD patients (Summers
et al., 1986; Hampel et al., 2018, 2019), the cognitive benefit has
not been generally perceived as profound and the treatments
are often accompanied by negative side effects. The argument
has been made that improved dosing and treatment regimens
with cholinesterase inhibitors may prove to be more beneficial
(Hampel et al., 2018). The production and presence of
sufficient acetylcholine in brain is critical for proper function.
APOE ε4 aged mice have reduced evoked acetylcholine release in
hippocampus as compared to APOE ε3 mice (Dolejší et al., 2016).
Also, APOE ε4 allele copy number showed an inverse relationship
with residual brain choline acetyltransferase activity and nicotinic
receptor binding sites in the hippocampus and temporal cortex
of AD subjects (Poirier et al., 1995). Interestingly, increased
dietary choline improves cognitive function, prevents age-related
memory decline and protects against AD neuropathological
changes (Blusztajn et al., 2017; ScienceDaily, 2020). Humans fed a
choline-deficient diet had lymphocyte DNA damage and caspase-
3-dependent apoptosis of lymphocytes (da Costa et al., 2006).
Choline oxidation metabolites improve cognitive prognosis in
APOE ε4 carriers (Hildre et al., 2020).

Noradrenergic neurons of the locus coeruleus are some
of the first neurons to form fibrillar tau (Braak and Del
Tredici, 2012) and degenerate in AD (Iversen et al., 1983;
Mann et al., 1984; Förstl et al., 1994; Matthews et al., 2002;
Zarow et al., 2003; Liu et al., 2013). High-resolution fast spin-
echo T1-weighted imaging showed decreased locus coeruleus
density in AD patients compared to controls (Takahashi et al.,
2015). While there is agreement in the field with regards
to noradrenergic degeneration in locus coeruleus, the levels
of norepinephrine have been variably reported as decreased,
unchanged or increased, as recently reviewed (Gannon et al.,
2015). Elevated cerebral spinal fluid levels of norepinephrine have
been detected and implicated in causing increased agitation and
aggression in AD patients (Raskind and Peskind, 1994; Elrod
et al., 1997). One potential source of elevated norepinephrine is
from noradrenergic sympathetic sprouting (Nelson et al., 2014).
Alterations to other monoaminergic neurons in AD, including to
serotonergic, adrenergic, histaminergic, and melatonergic, have
been recently reviewed (Šimić et al., 2017).

SUBCELLULAR CHANGES IN
ALZHEIMER’S DISEASE

Blood-Brain Barrier Transporters
Blood-brain barrier transporters are essential for moving
essential molecules in and out of the brain that are otherwise
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unable to cross the BBB. For example, 70–85% of Aβ is cleared
from the brain by transvascular clearance across the BBB (Deane
et al., 2008; Ramanathan et al., 2015; Nelson et al., 2016b,
2017). Here, key BBB transporters altered in AD are described.
Additional details can be found in previous reviews (Ramanathan
et al., 2015; Nelson et al., 2016b; Sweeney et al., 2019b) and a book
chapter (Nelson et al., 2016a). Whether microorganisms and/or
virulence factors use BBB transporters to enter the brain has yet
to be determined.

Glucose Transporter-1
Glucose Transporter-1 (GLUT1) is the primary brain endothelial
transporter of glucose into the brain. There is a significant
reduction of GLUT1 in cognitively normal individuals with
genetic risk for AD and in early AD (Simpson et al., 1994;
Liu et al., 2008). There is also an impairment in brain glucose
utilization in brain regions impacted by AD (Mosconi, 2005).
In addition to AD, GLUT1 deficiency syndrome, also known
as De Vivo disease, is a rare genetic metabolic disorder caused
by SLC2A1 gene, is inherited as an autosomal dominant trait,
and is associated with mild to severe cognitive impairment
(Pearson et al., 2013).

Low-Density Lipoprotein Receptor-Related Protein 1
Lipoprotein Receptor-Related protein 1 (LRP1) is a receptor
for Aβ (Shibata et al., 2000; Deane et al., 2008; Ramanathan
et al., 2015; Nelson et al., 2016b,a, 2017) and tau (Rauch et al.,
2020). Aβ is cleared across the BBB as a free peptide and/or
bound to APOE ε2 and APOE ε3, but not ε4 (Shibata et al.,
2000; Deane et al., 2008) via receptor-mediated transcytosis that
is regulated by phosphatidylinositol binding clathrin assembly
protein (PICALM) (Zhao et al., 2015b). In normal aging and
AD, there is a significant reduction in LRP1 expression in brain
endothelial cells (Donahue et al., 2006) and vascular smooth
muscle cells (Bell et al., 2009; Kanekiyo et al., 2012, p. 1). The
decrease of LRP1 in microvessels negatively correlates with an
increase of Aβ in the brain (Donahue et al., 2006). Astrocytic
LRP1 is also involved in Aβ uptake in the brain (Liu et al., 2017).
A recent study found that tau uptake and spread is regulated
by LRP1 (Rauch et al., 2020). The genetic interplay between
LRP1 and tau increases AD risk (Vázquez-Higuera et al., 2009).
Interestingly, LRP1 has been identified as a receptor for Rift
Valley fever virus (Bopp et al., 2021) and the major virulent factor
of Clostridioides difficile, toxin B (Guo et al., 2021).

Receptor for Advanced Glycation Endproducts
Receptor for Advanced Glycation Endproducts (RAGE) is the
major Aβ influx receptor at the luminal side of the BBB that
transports Aβ from the blood into the brain (Deane et al.,
2003). RAGE is normally expressed at low levels at the BBB,
but its expression is increased in normal aging and in AD brain
endothelium and is associated with increased cerebrovascular
and brain accumulation of Aβ (Yan et al., 1996; Silverberg et al.,
2010; Deane et al., 2012).

Clusterin (Also Known as Apolipoprotein J)
Clusterin (CLU) is involved in the clearance of misfolded
proteins, regulation of apoptosis, inflammation, atherosclerosis,

and cancer (Nuutinen et al., 2009). CLU has been identified
as a genetic risk factor for sporadic AD by several GWAS
(Harold et al., 2009; Lambert et al., 2009; Carrasquillo et al.,
2010; Corneveaux et al., 2010). CLU interacts with Aβ and
regulates its clearance from brain via LRP2 (also known as
megalin or gp330) (Zlokovic et al., 1994, 1996; Bell et al.,
2007; Nelson et al., 2017). Studies have reported elevated blood
levels of CLU in AD (Abdi et al., 2022), however it is unclear
whether this increase is beneficial or detrimental. A recent study
found that plasma levels of CLU are increased with exercise
and that injecting CLU intravenously in mouse models of acute
brain inflammation or AD had reduced neuroinflammatory gene
expression (De Miguel et al., 2021).

It remains to be determined whether GLUT1, LRP1, RAGE,
or CLU play a role in incident dementia. Interestingly, CLU
gene expression is elevated in the lungs of SARS-CoV-2 patients
(Singh et al., 2021). RAGE levels were significantly increased in
intensive care unit SARS-CoV-2 patients compared to healthy
controls (Passos et al., 2022), and RAGE has been implicated in
COVID-19 morbidity and mortality (Sellegounder et al., 2021).
Mice treated with the RAGE antagonist FPS-ZM1 had improved
survival and reduced inflammation upon SARS-CoV-2 infection
(Jessop et al., 2022).

Mitochondria
Mitochondria, the powerhouse of the cell, are altered in aging
and AD (Navarro and Boveris, 2007; Eckert et al., 2011;
Swerdlow et al., 2017). Studies using in situ hybridization
to mitochondrial DNA (mtDNA), immunocytochemistry of
cytochrome oxidase, and morphometry of electron micrographs
found that neurons with increased oxidative damage in AD
have increased mtDNA and cytochrome oxidase in the neuronal
cytoplasm and in vacuoles associated with lipofuscin (Hirai
et al., 2001). Morphometric analyses showed that mitochondrial
numbers were significantly reduced in Alzheimer’s disease
(Hirai et al., 2001). Another study investigating mitochondria
in AD post-mortem brain tissue found altered mitochondrial
cristae, accumulation of osmiophilic material, and decrease
in mitochondrial size (Baloyannis, 2006). Also in AD, there
is a reduction in α-ketoglutarate dehydrogenase complex
and of pyruvate dehydrogenase complex enzymes (Sorbi
et al., 1983; Gibson et al., 1988, 1998). Cyclooxygenase
activity is lower in brain and platelet mitochondria in AD
patients (Swerdlow, 2012). Targeting mitochondrial α-F1-
adenosine triphosphate synthase increased intracellular calcium
leading to sustained calcium/calmodulin-dependent protein
kinase kinase β-dependent activation of the 5′ adenosine
monophosphate-activated protein kinase/mammalian target of
rapamycin (AMPK/mTOR) pathway, a canonical longevity
mechanism (Goldberg et al., 2018).

Interplay between mitochondria and AD neuropathologies
and cellular changes have been reported. Recent studies
found that mitochondria-associated TDP-43 is increased in
AD patients and transgenic mice for AD (Gao et al., 2020).
Also, hyperphosphorylated or aggregated tau prevents axonal
transport of mitochondria to meet high energy demands and
regulate calcium buffering of neurons (Cheng and Bai, 2018).
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Pathological tau impairs mitochondrial dynamics by regulating
mitochondrial fission/fusion proteins (Cheng and Bai, 2018).
Interestingly, mild inhibition of complex I mitigates cognitive
decline in AD transgenic mice via AMPK activation, reduction
of Aβ, pTau, glycogen synthase kinase-3β, and restoration of
axonal trafficking (Zhang et al., 2015). However, a natural
mitochondrial complex I inhibitor, annonacin, caused tau
pathology in cultured neurons (Escobar-Khondiker et al., 2007).
Also, non-glycosylated full-length and C-terminal truncated APP
accumulates in protein import channels of mitochondria of
human AD susceptible brain regions and neurons and directly
correlated with mitochondrial dysfunction (Devi et al., 2006).
Fragmented microglial mitochondria triggered an astrocytic
response and propagated neurodegeneration (Joshi et al., 2019).
Of significance, reduced CBF may induce oxidative stress,
largely due to reactive oxygen species, and over time initiates
mitochondrial failure (Aliev et al., 2009; Parodi-Rullán et al.,
2019).

Autophagy
Autophagy is a lysosome-dependent, homeostatic mechanism of
cells that degrades unnecessary or dysfunctional organelles and
other proteins, and recycles them into energy. Autophagy or
autophagy proteins interact with other cellular processes such as
apoptosis, secretion, and endocytic pathways. PSEN1 is required
for lysosomal acidification and protein degradation (Lee et al.,
2010). Moreover, aberrant tau appears to disrupt axonal vesicle
transport by impairing the dynein-dynactin complex, increasing
the number of autophagosomes, and contributing to tau-induced
toxicity in AD (Butzlaff et al., 2015). Aβ may be degraded by
autophagy, and upregulation of autophagy has been shown to
reduce Aβ levels (Boland et al., 2008; Spilman et al., 2010;
Tian et al., 2011; Vingtdeux et al., 2011). Recent studies have
implicated an interplay between autophagy and inflammasomes
(Biasizzo and Kopitar-Jerala, 2020).

Post-Translational Modifications
Post-translational modifications include phosphorylation,
ubiquitination, acetylation, nitrosylation, glycation, and many
others. These modifications alter protein function and signaling.
AD-related proteins like APP, Aβ, tau, beta-secretase 1 undergo
post-translational modifications (Marcelli et al., 2018). Perhaps
the most recognized post-translational modification in AD is
the hyperphosphorylation of tau. Similarly, tau can undergo
the post-translational modification known as O-linked-N-
acetylglucosaminylation (O-GlcNAcylation) (Arnold et al.,
1996), and reduced O-GlcNAcylation of tau is thought to
allow for increased tau hyperphosphorylation (Smet-Nocca
et al., 2011; Yuzwa et al., 2012). O-GlcNAcylation occurs on
nucleoplasmic and cytoplasmic proteins and relies on glucose
and the hexosamine biosynthetic pathway and is ubiquitously
expressed in rodent and human brain (Taylor et al., 2014).
The combination of reduced CBF slowing the rate of glucose
delivery and decreased GLUT-1 receptors (Simpson et al.,
1994; Liu et al., 2008) hamper the availability of glucose
to be utilized in the brain (Mosconi, 2005). Some studies
have reported a reduction in O-GlcNAcylation in AD brain

(Liu et al., 2004, 2009; Zhu et al., 2014; Pinho et al., 2018), while
others have reported the opposite (Griffith and Schmitz, 1995;
Förster et al., 2014). Forebrain-specific loss of the enzyme,
O-GlcNAc transferase, required for O-GlcNAcylation, in
adult mice leads to progressive neurodegeneration, including
widespread neuronal cell death, neuroinflammation, increased
production of hyperphosphorylated tau and amyloidogenic Aβ-
peptides, and memory deficits (Wang et al., 2016). Furthermore,
human cortical brain tissue from Alzheimer’s disease patients
has significantly reduced levels of O-GlcNAc transferase (Wang
et al., 2016). Overexpressing neuronal O-GlcNAc transferase in
aged mouse brain improved learning and memory (Wheatley
et al., 2019). Interestingly, diminished O-GlcNAcylation strongly
correlates with mitochondrial abnormalities and loss of cell
viability in AD (Pinho et al., 2018). O-GlcNAcylation has been
postulated to be the missing link between metabolism and
immune responses in AD (de Jesus et al., 2018). Future studies
should further characterize post-translational modifications
of proteins at various stages of AD (Kelley et al., 2019) and
incident dementia.

THE HUMAN ELEMENT OF
ALZHEIMER’S DISEASE

Every person is different. There are many things that make
us unique including age, genetic makeup, sex, race/ethnicity,
environment/pollution, traumatic brain injuries, alcohol
consumption, income, exercise, diet, health disparities,
education, cardiovascular disease, or amount and quality of
sleep, etc. In the case of AD, there are known genetic variants
causing ADAD, and several identified genetic risk factors for
sporadic AD (Longhe, 2020). Females are more likely than
males to develop AD (Longhe, 2020). African, Native, and
Hispanic Americans are more likely than non-Hispanic white
Americans to develop AD (Longhe, 2020). Cardiovascular
risk factors (e.g., hypertension, diabetes, atherosclerosis, and
hyperhomocysteinemia), diet, exercise, and pollution influence
AD risk (Nelson et al., 2016b; Longhe, 2020). Many AD cases
may be attributed to modifiable risk factors (Baumgart et al.,
2015; Andrews et al., 2020; Longhe, 2020; Wang et al., 2020).
All of these factors impact neurovascular function and immune
status and ultimately play into AD risk (Figure 2), as previously
described (Baumgart et al., 2015; Nelson et al., 2016b; Longhe,
2020; Takeda et al., 2020). Assessing and altering modifiable risk
factors for AD on an individualized basis may perhaps prevent or
delay the onset and/or severity of AD. In section “Genetics,” we
describe genes incriminated in AD, especially those implicated in
neurovascular dysfunction and/or those impacting immunity.

Genetics
Amyloid Precursor Protein
About 40 mutations in APP cause ADAD (Filley et al., 2007;
Basun et al., 2008; Karch et al., 2014; Karch and Goate, 2015).
ADAD accounts for ∼1% of all AD cases and exhibits early
age of onset (<65 years of age) (Longhe, 2020). Several of
these mutations lead to BBB breakdown and cerebrovascular
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pathology in humans and animal models (Grabowski et al., 2001;
Ujiie et al., 2003; Kumar-Singh et al., 2005; Levy et al., 2006;
Basun et al., 2008; Beckmann et al., 2011; Klohs et al., 2011, 2013;
Merlini et al., 2011; Kruyer et al., 2015; Zarranz et al., 2016). The
Icelandic mutation (e.g., A673T) of APP is less of a substrate for
β-secretase resulting in less Aβ production. Even though carriers
of this mutation in Finland had reduced Aβ plaques, there were
reports of mild CAA suggesting that the vasculature may be less
protected against Aβ accumulation than the brain parenchyma
(Kero et al., 2013).

Presenilin
PSEN1 and PSEN2 encode presenilins 1 and 2, respectively,
that act as aspartyl proteases to facilitate γ-secretase cleavage
of APP to produce Aβ (Tanzi, 2012). There are 185 mutations
reported in PSEN1 and 13 mutations in PSEN2 that have been
identified in ADAD (Tanzi, 2012). These mutations increase
the ratio of Aβ42:Aβ40 in the brain (Tanzi, 2012). PSEN1
mutations lead to neurovascular pathology in humans including
disruption of small cerebral blood vessels, degeneration of
pericytes, BBB breakdown, and Aβ deposits in small cerebral
arteries, arterioles, and capillaries (Armstrong, 2008; Niwa
et al., 2013) and similar cerebrovascular dysfunction has been
identified in animal models (Wen et al., 2005; Gama Sosa et al.,
2010).

Case reports of APP (Suarez et al., 2019) and PSEN (Janssen
et al., 2000; Stoychev et al., 2019) mutation carriers detailed the
presence of severe infections, often times pneumonia, at the end
stage of life. More comprehensive studies evaluating infection
susceptibility and incident dementia rates in APP and PSEN
mutation carriers are warranted.

Apolipoprotein E
There are three alleles of APOE in humans: APOE ε2, APOE ε3,
and APOE ε4. APOE ε4 is the strongest and most highly replicated
risk factor for late-onset sporadic AD (Corder et al., 1993; Tanzi,
2012). A single APOE ε4 allele increases an individual’s risk of
AD by 3.7 and 12 times in carriers of two APOE ε4 alleles,
compared to APOE ε3 carriers (Verghese et al., 2011). APOE ε4
carriers have increased BBB damage, CAA, pericyte degeneration,
and fibrinogen deposits in human brain (Zipser et al., 2007;
Halliday et al., 2013, 2016; Hultman et al., 2013; Montagne
et al., 2020). Recent studies in mice found that ApoE in brain
pericytes regulate endothelial function by modulating basement
membrane components (Yamazaki et al., 2020). APOE ε4
increases the severity of infections such as herpes simplex virus
type 1 (HSV-1) (Linard et al., 2020; Zhao et al., 2020), HIV-1
(Corder et al., 1998), and SARS-CoV-2 (Kurki et al., 2021) and
worsens cognitive impairment.

Phosphatidylinositol Binding Clathrin Assembly
Protein
Phosphatidylinositol binding clathrin assembly protein is a key
player in Aβ clearance across the BBB (Zhao et al., 2015b).
Approximately 20 single nucleotide polymorphisms (SNPs) in
the non-coding region of PICALM have been associated with
AD in several GWAS (Harold et al., 2009; Lambert et al., 2009;

FIGURE 2 | Humans are complex, variable organisms who sum up to have
differential neurovascular function, immune status, and neuronal plasticity that
impacts cognitive status (blue box). Furthermore, beneficial, pathogenic, and
commensal germs also play a pivotal role. There are modifiable behaviors that
may help in maintaining and promoting healthy cognition. A healthy balance of
both self and non-self is key for a healthy body and mind. Created with
BioRender.com.

Carrasquillo et al., 2010; Corneveaux et al., 2010; Seshadri et al.,
2010; Tanzi, 2012). Importantly, PICALM levels are reduced in
AD brain endothelium, which correlated with elevated Aβ levels,
Braak stage, and the level of cognitive decline (Zhao et al., 2015b).

Clusterin
Recent GWAS studies have identified a SNP within CLU on
chromosome 8p21.1, rs11136000, that is significantly associated
with sporadic AD (Harold et al., 2009; Lambert et al., 2009;
Corneveaux et al., 2010; Seshadri et al., 2010; Tanzi, 2012). The
C allele is an AD risk factor; whereas the minor T allele is
protective and reduces the risk of AD by 16% (Harold et al., 2009;
Lambert et al., 2009). Carriers of the CLU rs11136000 risk C allele
exhibit reduced white matter integrity and hyperactivation of the
prefrontal and limbic areas (Lancaster et al., 2014).

Triggering Receptor Expressed on Myeloid Cells 2
Triggering receptor expressed on myeloid cells 2 is expressed
on microglia membranes and recognizes lipoproteins including
APOE, phospholipids, and apoptotic cells and has been
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implicated in microglial phagocytosis and AD pathogenesis.
Genetic variants in TREM2 increase AD risk. In tauopathy,
TREM2 deficiency exacerbates microglial responses to tau
pathology (Bemiller et al., 2017). TREM2, together with PLCG2
and ABI3, implicate innate immunity in AD pathophysiology
(Sims et al., 2017). Increased TREM2 expression in associated
with the CD33 risk allele (Chan et al., 2015).

Others
There are other genes including sortilin related receptor (SORL1),
complement receptor 1 (CR1), and bridging integrator 1 (BIN1)
that have been implicated in increasing AD risk (Lambert et al.,
2009; Carrasquillo et al., 2010; Seshadri et al., 2010; Tanzi, 2012).
CR1 is a molecule of interest in the susceptibility and severity of
infections, and autoimmune and inflammatory diseases (Khera
and Das, 2009). Interestingly, individuals homozygous for minor
BIN1 SNP rs744373, an AD associated risk allele, had the highest
mortality rate from SARS-CoV-2 compared to the major non-AD
risk allele (Lehrer and Rheinstein, 2021a).

GERMS

The Microbiome
There is growing evidence linking germs, whether beneficial,
pathogenic, and/or commensal, to cognitive impairment and
AD raising the infection hypothesis of AD (Panza et al., 2019;
Seaks and Wilcock, 2020). Both alterations in gut microbiome
(Tremlett et al., 2017; Vogt et al., 2017), and oral microbiome
(Noble et al., 2009; Paganini-Hill et al., 2012; Kamer et al., 2015;
Tremlett et al., 2017) have been connected to early cognitive
dysfunction. Poor oral hygiene, oral inflammation, and tooth loss
worsen with age and are risk factors for AD (Singhrao et al.,
2014). Historically, it has been thought that the BBB protects the
brain by preventing entry of “bugs” (Zlokovic, 2011; Zhao et al.,
2015a). However, gut microbiota are known to influence BBB
permeability in mice (Braniste et al., 2014), and several microbes
disrupt BBB integrity in humans (Kang and McGavern, 2010).

Experimental studies have shown that gut microbiome
regulate Aβ pathology (Minter et al., 2016, 2017; Dodiya et al.,
2019), and that different pathogens elicit Aβ pathology by
promoting its antimicrobial activity (Soscia et al., 2010; Kumar
et al., 2016). There are differences in gut microbiome with APOE
genotype in mice and humans (Tran et al., 2019). A recent study
examined the gut microbiota on AD pathogenesis in an AD-like
pathology with amyloid and neurofibrillary tangles (ADLPAPT)
transgenic mouse model of AD, which showed amyloid plaques,
neurofibrillary tangles, and reactive gliosis in the brain along
with memory deficits (Kim et al., 2020). ADLPAPT mice had
a loss of epithelial barrier integrity and chronic intestinal and
systemic inflammation that differed from wild-type mice (Kim
et al., 2020). Fecal transplant from wild-type to ADLPAPT mice
ameliorated formation of Aβ plaques and tangles, gliosis and
cognitive deficits, reversed abnormal macrophage-related gene
expression in colon (Kim et al., 2020). Together these findings
indicate that gut microbiome and systemic immune aberrations

contribute to AD pathogenesis and suggest that correcting gut
microbiome may be beneficial in AD (Kim et al., 2020).

Incident Dementia, Infection, and
Alzheimer’s Disease
Individuals who survive a critical illness such as respiratory
failure or shock often have long-term cognitive impairment
(Pandharipande et al., 2013). Bacterial pneumonia, congestive
heart failure, dehydration, duodenal ulcer, and urinary tract
infection are significantly higher among those with dementia
(Phelan et al., 2012). More research is needed to fully
understand the relationship between incident, sporadic, and
genetic forms of dementia.

The concept that AD may stem from an infection was initially
proposed by Dr. Fischer (Goedert, 2009; Buxbaum, 2017).
Infectious agents including pneumonia, Borrelia burgdorferi,
Helicobacter pylori, and HSV-1 have been reported in AD post-
mortem brain tissue (Nicolson and Haier, 2009). Porphyromonas
gingivalis have also been documented in AD brain tissue (Dominy
et al., 2019). A cross-sectional study investigating associations
between AD and prior infection with HSV-1, Cytomegalovirus,
Borrelia burgdorferi, Chlamydia pneumonia, and Helicobacter
pylori showed that patients with AD were significantly more likely
than age-matched controls to have evidence of prior infection
with Cytomegalovirus (odds ratio: 2.3) or Chlamydia pneumonia
(odds ratio: 2.4) (Bu et al., 2015). AD subjects serum-positive
for 4–5 microorganisms had the highest odds ratio (4.1) (Bu
et al., 2015). Fungus was also observed in post-mortem brain
tissue from AD subjects (Pisa et al., 2015a) and was found to
localize around blood vessels in AD brain tissue (Pisa et al.,
2015b). In AD, infectious agents likely enter the brain more easily
due to an already leaky, disrupted BBB and cause even more
detrimental effects.

Herpes
One of the earliest studies linking infection to AD used
polymerase chain reaction and identified HSV-1 DNA,
specifically the viral thymidine kinase gene, in control and
AD brain samples (Jamieson et al., 1991). Interestingly, HSV-1
infections are found more often in APOE ε4 carriers (Lin et al.,
1996), which have increased BBB permeability (Montagne et al.,
2020). Also, APOE ε4 and HSV-1 together form an increased
risk of AD than each one individually (Itzhaki et al., 1997). In
post-mortem human brain HSV-1 DNA localizes within Aβ

plaques (Wozniak et al., 2009b). Interestingly, HSV-1 induces
tau phosphorylation via glycogen synthase kinase 3β and protein
kinase A at several sites (e.g., serine 202, threonine 212, serine
214, serine 396, and serine 404) (Wozniak et al., 2009a).

Recent studies analyzed genes from almost 1,000 post-mortem
brains and concluded that human herpes virus 6A (HHV-6A) and
human HHV-7 were increased in AD (Readhead et al., 2018).
However, HHV-6 detection across three independent AD brain
repositories using RNA sequencing datasets and DNA samples
extracted from AD and non-AD control brains were unable to
identify an association between HHV-6 and AD (Allnutt et al.,
2020). Aβ oligomers bind HSV-1 and human HHV- 6A and
B surface glycoproteins, seeding β-amyloid deposition in 3D
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human neural cell cultures (Eimer et al., 2018). Furthermore,
HSV-1 induced Aβ deposition in the subiculum of 5–6-week-old
transgenic mice that overexpress Aβ (e.g., 5XFAD) that was not
observed in wild-type littermate controls.

Pneumonia
Dementia patients have a 2-fold increased mortality rate
from pneumonia (Foley et al., 2015), and pneumonia patients
have elevated MMP-9 levels in their serum (Bircan et al.,
2015), which is known to be linked to BBB breakdown
(Halliday et al., 2013). Furthermore, there is long-term
cognitive impairment following hospitalization for pneumonia
(Girard et al., 2018). Pulmonary endothelial cells infected
with Pseudomonas aeruginosa produced and released cytotoxic
amyloid molecules with prion characteristics such as resistance to
nucleases and proteases (Balczon et al., 2017). Lung endothelium
infected with clinical isolates of either P. aeruginosa, Klebsiella
pneumoniae, or Staphylococcus aureus produced and released
cytotoxic amyloid and tau proteins (Balczon et al., 2019).
P. aeruginosa infection elicited accumulation of detergent
insoluble tau protein in mouse brain, inhibited synaptic plasticity,
and impaired learning and memory (Balczon et al., 2019).
Likewise, Aβ and tau isolated from P. aeruginosa infected patients
and delivered intracerebroventricularly reduced dendritic spine
density and reduce long-term potentiation (Scott et al., 2020).
In another study, co-infection of lung with Streptococcus
pneumoniae and influenza A virus leads to microglial activation
in hypothalamus and expression of pro-inflammatory cytokines
including tumor necrosis factor α, interleukin-1β, interleukin-6,
and C-C motif chemokine ligand-2 (Wang et al., 2018a).

Early studies identified that Chlamydia pneumoniae is present,
viable, and transcriptionally active in areas of neuropathology
in AD brain (Balin et al., 1998). More recent studies also
demonstrate a relationship between C. pneumoniae and AD
(Gérard et al., 2006; Paradowski et al., 2007). C. pneumoniae
infection promoted neurovascular inflammation (MacIntyre
et al., 2003). Astrocytes infected with C. pneumoniae had altered
expression and activity of secretases involved in the generation of
β-amyloid (Al-Atrache et al., 2019).

Perhaps the timeliest pneumonia-associated incident
dementia is that induced by SARS-CoV-2. It is too soon to know
the long-term consequences of SARS-CoV-2 on AD prevalence,
age of onset, and/or severity.

ANTI-AMYLOID ANTIBODIES

Several studies have investigated the presence of Aβ

autoantibodies in biofluids and changes in their levels in
AD with mixed results. Aβ autoantibodies were detectable
in plasma but did not correlate with the plasma Aβ levels or
dementia development in a cohort of 365 subjects (Hyman
et al., 2001). An examination of 20 subjects found that Aβ

autoantibody levels of the IgG1 and IgG3 subclass were lower
in patients with posterior cortical atrophy and evidence of AD
(Dorothée et al., 2012). Furthermore, the titer of anti-Aβ42
peptide autoantibodies were lower in AD than elderly control

serum (Weksler et al., 2002). Another investigation measured Aβ

autoantibody production at the cellular level and found that both
healthy and AD patients have B cells that produced antibodies
binding Aβ40 monomers and Aβ42 protofibrils and that number
of Aβ42 antibody producing cells were higher in AD (Söllvander
et al., 2015). Aβ autoantibodies in CSF were increased during
CAA-related inflammation (Piazza et al., 2013; Crosta et al.,
2015).

The link between Aβ autoantibodies and CAA are remarkable,
as AD patients treated with anti-Aβ monoclonal antibody
treatments often have a side effect of amyloid-related imaging
abnormalities (ARIA) in the form of vasogenic edema and
hemorrhage (Sperling et al., 2011; Ferrero et al., 2016; Mintun
et al., 2021). In two large Phase 3 studies, 41% of patients receiving
a higher dose of aducanumab developed iatrogenic ARIA,
compared to 10% of controls (Salloway et al., 2022). ARIA could
be especially problematic for patients with vascular dysfunction
(e.g., cerebral small vessel disease, CAA, and APOE ε4 carriers)
(Sperling et al., 2011).

There have been a few studies measuring autoantibodies
to other amyloids. Tau autoantibodies were detected in
AD and non-demented control plasma but there was
no significant difference between cohorts or correlation
between tau autoantibodies and cognitive impairment
(Yu et al., 2020). Interestingly, autoantibodies to tau, α-
synuclein, microtubule associated protein-2, and others
have been detected in the plasma of Gulf War veterans
with myalgic encephalomyelitis/chronic fatigue syndrome
(Abou-Donia et al., 2020). TDP-43 autoantibodies have
been measured and found to be decreased (Nielsen
et al., 2021) or increased (Conti et al., 2021) in ALS
patient plasma or serum, respectively. More research is
needed to understand the role and connections between
amyloids, autoantibodies to amyloids and their impact
on immune status.

THE BATTLE BETWEEN HUMANS AND
GERMS

Peripheral Amyloid Hypothesis to
Cognitive Impairment and Alzheimer’s
Disease
It has long been thought and taught that amyloids such as Aβ

and tau are produced predominantly in the brain, and that
impaired clearance of amyloids, rather than production drives
accumulation in the brain (Ramanathan et al., 2015; Nelson et al.,
2016a, 2017). However, with the scientific growth of omics studies
such as Human Protein Atlas (see footnote 1) (Uhlén et al.,
2015), data is becoming more readily available suggesting the
presence of amyloid genes and proteins in peripheral organs. For
example, RNAseq studies from the Betsholtz lab in mice2 (He
et al., 2018; Vanlandewijck et al., 2018) and from the Human
Protein Atlas in humans show that MAPT gene is expressed

2https://betsholtzlab.org/VascularSingleCells/database.html
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in lung endothelial cells. We recently confirmed that tau is
indeed expressed in lung capillary endothelial cells, is released in
response to P. aeruginosa infection, and is able to seed neuronal
tau (Choi et al., 2021).

In addition to the lung, podocytes in the kidney express tau
(Xu et al., 2015). Parabiosis mouse studies found that the kidneys
are involved in the clearance of tau from the circulation (Wang
et al., 2018b). A large cohort study with 329,822 residents of
Stockholm found that dementia occurred more frequently with
poor kidney function assessed by higher estimated glomerular
filtration rate (Xu et al., 2021). Transgenic mice that only express
Aβ in the liver had capillary dysfunction, increased lipoprotein-
Aβ entry into brain, neuroinflammation, and neurodegeneration
(Lam et al., 2021).

Questions remain about how peripherally produced amyloids
enter the brain, whether across a disrupted BBB, transported
across the BBB (e.g., RAGE, LRP1, LRP2, etc.) or through
the choroid plexus. It is critical to determine if the amyloids
(e.g., Aβ, tau, TDP-43, and α-synuclein) associated with AD
brain pathologies are initially produced in the periphery rather
than central nervous system, and/or if peripheral amyloids
induce or trigger brain plaques and tangles. In the case that
peripheral amyloids are causative to cognitive impairment in
dementia and AD, knowing what kickstarted the production
and where (e.g., which organ and why), could be critical to
determining the right treatment path for patients ideally early
at the MCI stage. Taking together these concepts, the peripheral
amyloid hypothesis to cognitive impairment and AD states that
amyloids (e.g., Aβ, tau, TDP-43, and α-synuclein) are produced
in the periphery as an innate immune response to infection
or organ dysfunction, inducing neurovascular dysfunction,
neurodegeneration, cognitive impairment, and ultimately AD
(Figure 3). An individual’s risk factors (e.g., genetic, vascular,

FIGURE 3 | The peripheral amyloid hypothesis to cognitive impairment and
AD states that amyloids (e.g., Aβ, tau, and perhaps TDP-43) are produced in
the periphery as an innate immune response to infection or organ dysfunction,
inducing neurovascular dysfunction, neurodegeneration, cognitive impairment,
and ultimately AD. An individual may have risk factors that provoke and
promote infection and/or organ dysfunction or that directly impact
neurovascular unit function. A healthy lifestyle may help mitigate this
pathological cascade. Created with BioRender.com.

and environmental) superimposed with infection or organ
dysfunction may exacerbate this cascade to dementia. Modifying
an individual’s lifestyle (e.g., diet, exercise) for the better may
dampen or slow the progression to dementia. Future studies are
warranted to fully vet this new hypothesis.

A major question that remains in the AD field is why
there is a specific pattern of spread of tau and TDP-43
in the brain, and why Aβ does not. Studies investigating
microvascular architecture and/or density, pericyte type and/or
coverage, BBB tight junction abundance and/or expression, and
other potential neurovascular unit alterations from the point of
view that the culprits are attacking from the bloodstream are
timely and important.

Antimicrobial Peptides
Neurodegenerative diseases, including AD, share several
common pathologies including alterations to the levels of
oligomeric amyloids in the blood and/or CSF (Klein et al.,
2001; Tokuda et al., 2010; Benilova et al., 2012; Pietroboni
et al., 2019; Majbour et al., 2020; Montalbano et al., 2020;
Singh et al., 2020). Studies have shown that several oligomeric
amyloids (Voth et al., 2020) including Aβ (Soscia et al.,
2010; White et al., 2014; Bourgade et al., 2015; Kumar et al.,
2016; Eimer et al., 2018), tau (Kobayashi et al., 2008), α-
synuclein (Tulisiak et al., 2019; Linard et al., 2022), superoxide
dismutase-1 (Pasupuleti et al., 2009) and perhaps others,
such as TDP-43 (Bandea, 2013), are antimicrobial peptides
generated as an innate immune response. These studies and
others have encouraged the formation of the antimicrobial
protection hypothesis of AD (Moir et al., 2018). In support
of this idea, synthetic Aβ reduces the growth of common
pathogens by up to 200-fold in vitro (Soscia et al., 2010).
Aβ peptide strongly inhibit the infectivity of influenza A
virus (White et al., 2014) and HSV-1 (Bourgade et al., 2015)
in cell culture. Pharmacologically lowering Aβ levels with
tarenflurbil in early AD patients caused increased infections
(Green et al., 2009). Human Aβ protects and increases host
survival, in transformed cell culture and transgenic C. elegans
and mouse infection models (Kumar et al., 2016). Aβ being
an antimicrobial peptide is further supported by Aβ oligomers
that bound HSV-1 and HHV-6A and B surface glycoproteins,
seeding Aβ deposition in transgenic mice and in 3D human
neural cell cultures (Eimer et al., 2018). Recent studies found
that SARS-CoV-2 Spike S1 protein receptor binding domain
theoretically binds to Aβ, tau, TDP-43, prion and α-synuclein
by examining protein-protein interactions (Idrees and Kumar,
2021). Antimicrobial peptides are potent immunomodulators
(Moir et al., 2018). Are they prions? Questions remain about
whether antimicrobial peptides such as Aβ and tau are also
prions and transmissible (Asher et al., 2020), whether amyloids
are helpful/cytoprotective, harmful/cytotoxic, neither or both,
and if their role is dependent on folding and conformation,
and/or on post-translational modifications.

Vaccinations
Provocative data support the idea that AD is perhaps
amyloid, infection, and immune dependent. Several vaccines
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(e.g., for influenza, tetanus, diphtheria and pertussis,
herpes zoster, and others) have been demonstrated to
reduce the incidence of AD (Verreault et al., 2001;
Gofrit et al., 2019; Amran et al., 2020; Klinger et al., 2021;
Lehrer and Rheinstein, 2021b; Scherrer et al., 2021). Further
research on this topic is of the essence.

FINAL THOUGHTS

The substantial investment in AD research over the last century
has generated an energy of hope for a resolution to the mystery of
this devastating disease. The field has moved beyond Aβ plaques
and tau tangles in the brain as the only causes of AD to a more
open mindset seeking to identify the root cause of the disease. At
the same time, the large body of research publications related to
AD all seem to be converging and connecting in ways that link
back to the original descriptions of the disease, including a role of
Aβ and tau in the disease pathogenesis. However, this role might
be different than originally thought. How amyloids, including
Aβ and tau, are innate immune mediators generated in the
periphery in response to infection or organ dysfunction should
be further explored. Furthermore, more information is needed
about the role of amyloids as antimicrobial peptides. Is there a
difference in sequence and/or structure between the amyloids
that are antimicrobial peptides vs. those that are cytotoxic? Are
peripheral amyloids generated in response to an infection or
organ dysfunction involved in the seeding of brain amyloid or
are they the same amyloids accumulating in the brain? Is the tau
generated by lung endothelial cells in response to P. aeruginosa
that seeded neuronal tau (Choi et al., 2021) a possible contributor
to sporadic AD?

One critical aspect that remains to be determined is if
peripheral pathways known to contribute to incident dementia,
similarly and/or synergistically contribute to AD. Perhaps it is
time to move beyond the brain to the periphery for causes of
AD, and start early, at the MCI stage. Because every person
and their lifestyle are unique, individualized medicine may be
essential to determine the root cause of MCI with the hopes of
preventing AD. This is especially the case since several peripheral
organs can generate amyloids related to dementia. Could it be
that one person had kidney dysfunction, another had pneumonia,
etc., and that these incidents initiate a pathological cascade to
dementia and ultimately AD? If so, the prevention and treatment
to AD will likely require a combination of therapeutics on a
case-by-case basis.

Thankfully, there have been substantial advances in
neuroimaging and biomarkers of AD key players. We can identify
early neurovascular dysfunction by detecting BBB breakdown
(e.g., BBBktrans DCE-MRI, albumin quotient in biofluids),
pericyte injury (e.g., sPDGFRβ in biofluids), neurodegeneration

(e.g., neurofilament-L in biofluids), and gliosis (e.g., GFAP
in biofluids). This could be coupled with not only cognitive
assessment but also a complete medical history of potential
peripheral contributors, keeping in mind that incidents
influencing AD pathogenesis may occur years prior to MCI onset.
Additionally, there are commercially available sensitive assays for
detecting peripheral amyloids, including Aβ and tau, in plasma
or serum. However, the antibodies used in these assays may not
be able to differentiate where the amyloids were produced. To
answer this question, it might perhaps be interesting to use Aβ

and tau positron emission tomography radiotracer imaging in
the periphery to determine if an organ other than the brain could
be responsible for elevated production of amyloids.

Are we missing the root cause of AD by looking predominately
at the brain? The probable answer is yes. If damage to blood
vessels is the first hit to the brain in AD, perhaps the cause
of neurovascular dysfunction is being transported to the brain
via the circulation. There are experts in incident dementia who
have likely been thinking about the links between incident
dementia and AD for many years. Recent research is tying the
AD-associated amyloids Aβ and tau with incident dementia.
Bridging experts in incident dementia and AD may accelerate
new discoveries to know the true root cause of AD, ways to
prevent disease development and how to treat it. The peripheral
amyloid hypothesis to cognitive impairment and AD warrants
further research and will require a collaborative team from
diverse trainings and backgrounds to answer.
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