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Abstract: The pathological diagnosis of lung cancer has largely been based on the morphological
features observed microscopically. Recent innovations in molecular and genetic technology enable us
to compare conventional histological classifications, protein expression status, and gene abnormalities.
The introduction of The Cancer Genome Atlas (TCGA) project along with the widespread use of the
next-generation sequencer (NGS) have facilitated access to enormous data regarding the molecular
profiles of lung cancer. The World Health Organization classification of lung cancer, which was revised
in 2015, is based on this progress in molecular pathology; moreover, immunohistochemistry has come
to play a larger role in diagnosis. In this article, we focused on genetic and epigenetic abnormalities
in non-small cell carcinoma (adenocarcinoma and squamous cell carcinoma), neuroendocrine tumor
(including carcinoids, small cell carcinoma, and large cell neuroendocrine carcinoma), and carcinoma
with rare histological subtypes. In addition, we summarize the therapeutic targeted reagents that are
currently available and undergoing clinical trials. A good understanding of the morphological and
molecular profiles will be necessary in routine practice when the NGS platform is widely used.
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1. Introduction

In the present era of precision medicine, the paid cost and timewise availability of genome
sequencing has made it possible to screen oncogenic genetic alterations and epigenetic abnormalities
in a patient. The mortality rate of lung cancer is the highest among all cancers worldwide [1].
This condition has been treated using molecular targeted therapy since early days. Epidermal growth
factor (EGFR) and anaplastic lymphoma kinase (ALK) inhibitors are some of the widely available
targeted agents in non-small lung cancer (NSCLC), demonstrating dramatic clinical effects when
compared to conventional cytotoxic chemotherapy. Needless to say, targetable treatments predispose
specific gene alterations, and their prevalence differs according to the histology of the lung cancer.
The Cancer Genome Atlas (TCGA) project and numerous other studies have shown molecular
characteristics in each major histological subtype of lung cancer (Figure 1) [2].

In this article, we focused on the association between morphological classifications and molecular
alterations of epithelial lung cancer. In addition, we have listed the targeted therapies that are currently
available and may be used in future against lung cancers.
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Figure 1. Summary of genetic mutations in lung adenocarcinoma, squamous cell carcinoma, and small 
cell carcinoma detected by The Cancer Genome Atlas project. [3–5]. 

In this article, we focused on the association between morphological classifications and 
molecular alterations of epithelial lung cancer. In addition, we have listed the targeted therapies that 
are currently available and may be used in future against lung cancers. 

2. Adenocarcinomas and Squamous Cell Carcinomas 

2.1. Morphological and Immunohistochemical Diagnosis 

Adenocarcinoma (ADC) is classically defined as a cancer that presents in a glandular pattern or 
bears cytoplasmic mucus whereas, squamous cell carcinoma (SQC) is characterized by the presence 
of intercellular bridges and keratinization. These morphological characteristics are occasionally 
obscure due to the limitation of tissue availability, especially in advanced diseases. Such cases have 
been summarized as “large cell carcinoma” in the past. However, some therapeutic reagents 
(pemetrexed and bevacizumab) cannot be administrated in SQC patients due to the risk of 
hemorrhagic adverse events; moreover, targeted therapies according to background molecular 
alterations are different between ADC and SQC. Therefore, immunohistochemical analysis (IHC) 
should be utilized to distinguish between these two histological types in tiny tissue samples and/or 
poorly-differentiated NSCLC. TTF-1 and Napsin A are assumed as ADC markers, while p40 and 
Cytokeratin 5/6 are used as SQC markers. 

2.2. Adenocarcinoma 

2.2.1. Histological Subtypes of ADC 

Precursor lesions such as atypical adenomatous hyperplasia, adenocarcinoma in situ (mucinous 
and non-mucinous), and microinvasive ADC (≤0.5 cm invasive component; mucinous and non-
mucinous) were newly introduced in the World Health Organization (WHO) classification of lung 
ADC (2015) [2]. Relationships between histological subtypes (lepidic, acinar, papillary, 
micropapillary and solid ADC) and prognosis have been evaluated in a previous study where lepidic 
was regarded as low-grade, acinar and papillary as intermediate-grade, and micropapillary and solid 
as high-grade [3]. Invasive mucinous ADC presents with abundant cytoplasmic and extracellular 
mucus, and harbors unique molecular profiles when compared with the non-mucinous ADC as 

Figure 1. Summary of genetic mutations in lung adenocarcinoma, squamous cell carcinoma, and small
cell carcinoma detected by The Cancer Genome Atlas project. [3–5].

2. Adenocarcinomas and Squamous Cell Carcinomas

2.1. Morphological and Immunohistochemical Diagnosis

Adenocarcinoma (ADC) is classically defined as a cancer that presents in a glandular pattern or
bears cytoplasmic mucus whereas, squamous cell carcinoma (SQC) is characterized by the presence of
intercellular bridges and keratinization. These morphological characteristics are occasionally obscure
due to the limitation of tissue availability, especially in advanced diseases. Such cases have been
summarized as “large cell carcinoma” in the past. However, some therapeutic reagents (pemetrexed and
bevacizumab) cannot be administrated in SQC patients due to the risk of hemorrhagic adverse events;
moreover, targeted therapies according to background molecular alterations are different between
ADC and SQC. Therefore, immunohistochemical analysis (IHC) should be utilized to distinguish
between these two histological types in tiny tissue samples and/or poorly-differentiated NSCLC. TTF-1
and Napsin A are assumed as ADC markers, while p40 and Cytokeratin 5/6 are used as SQC markers.

2.2. Adenocarcinoma

2.2.1. Histological Subtypes of ADC

Precursor lesions such as atypical adenomatous hyperplasia, adenocarcinoma in situ (mucinous
and non-mucinous), and microinvasive ADC (≤0.5 cm invasive component; mucinous and
non-mucinous) were newly introduced in the World Health Organization (WHO) classification of lung
ADC (2015) [2]. Relationships between histological subtypes (lepidic, acinar, papillary, micropapillary
and solid ADC) and prognosis have been evaluated in a previous study where lepidic was regarded as
low-grade, acinar and papillary as intermediate-grade, and micropapillary and solid as high-grade [3].
Invasive mucinous ADC presents with abundant cytoplasmic and extracellular mucus, and harbors
unique molecular profiles when compared with the non-mucinous ADC as described below. Other
relatively rare subtypes of ADC (colloid ADC, fetal ADC, and enteric ADC) are also mentioned [2].

2.2.2. Molecular Abnormalities in ADC Confirmed by TCGA

A comprehensive molecular analysis was performed against 230 lung ADCs in the TCGA project [3].
The histological breakdown was as follows: acinar (33.5%), solid (25.2%), micropapillary (14.3%),
papillary (9.1%), lepidic (5.2%), invasive mucinous (3.9%) and colloid ADC (0.4%). Eighteen significant
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gene mutations were detected: TP53 (46%), KRAS (33%), KEAP1 (17%), STK11 (17%), EGFR (14%),
NF1 (11%), BRAF (10%), SETD2 (9%), RBM10 (8%), MGA (8%), MET (7%), ARID1A (7%), PIK3CA (7%),
SMARCA4 (6%), RB1 (4%), CDKN2A (4%), U2AF1 (3%) and RIT1 (2%). In the RTK/RAS/RAF signaling
pathway, around 75% of the examined ADCs presented with driver gene mutations (KRAS, EGFR,
BRAF, ERBB2, MAP2K1, NRAS and HRAS), gene fusions (ROS1, ALK, and RET), gene amplifications
(ERBB2 and MET) and exon skipping (MET). They also discovered NF1 (RTK/RAS/RAF pathway
suppressor gene, 8.3%) and RIT1 (constitutes RTK/RAS/RAF pathway, 2.2%) mutations.

mRNA profiling subdivided ADC into three transcriptional subtypes: the terminal respiratory
unit (TRU), the proximal-inflammatory (PI) and the proximal-proliferative (PP) mRNA subtypes [3].
The TRU subtype presented with frequent EGFR mutations and kinase fusions, while the PI subtype
was characterized by co-mutations of NF1 and TP53. The PP subtype was enriched with KRAS mutation
and STK11 inactivation. This clustering was partially overlapped by those observed in the protein
expression profiles.

DNA methylation profiling also divided the ADC into three categories; CpG island methylator
phenotype (CIMP)-high, CIMP-intermediate and CIMP-low subtypes [3]. CIMP-high tumors have
frequent methylated CDKN2A, GATA2, GATA5, HIC1, HOXA9, HOXD13, RASSF1, SFRP1, SOX17
and WIF1.

2.2.3. Molecular Abnormalities and Histological Pattern in ADC

In the TCGA report, the PI subtype was characterized by a solid morphology. Here we summarize
the studies which have demonstrated certain molecular alterations and morphological patterns.

EGFR mutation, the most common therapeutic targeted driver mutation in ADC, is associated
with a micropapillary pattern [6]. Lepidic ADC (categorized as bronchioloalveolar carcinoma in the
previous WHO classification) is also reported to be related to EGFR mutations [7–9].

ALK rearrangements are observed in approximately 4–5% of ADCs [10], and are characterized
by the presence of signet ring cells forming an acinar structure with mucin production [11–13].
The morphological characteristics of ROS1- and RET-rearranged ADCs, which comprise 1% each of
ADCs [10], are also reported to be similar to the ALK-rearranged ADCs [14]. Some reports have shown
the association between ROS1 fusions and psammomatous calcifications [15,16]. ADCs with RET
fusions presented with poorly-differentiated histology when compared to those with EGFR mutations
or ALK rearrangements [17].

Micro-RNAs are now considered as attractive targets of diagnostic and predicting markers.
Nadal et al. performed clustering of 356 miRNAs, and identified three major clusters of lung ADCs that
were correlated with the histologic subtype of lung ADC [18]. Cluster 1 included lepidic or mucinous
invasive ADCs, while clusters 2 and 3 comprised acinar and solid tumors. Nineteen miRNAs were
detected with solid pattern and 30 with lepidic pattern. Three miRNAs encoded at 14q32 (miR-411,
miR-370 and miR-376a) were associated with poor survival.

The mucin-rich subtype including mucinous ADC (IMA) and colloid ADC (CA), is shown to
harbor KRAS mutations more often than the non-mucinous subtype [19–23]. NRG1 fusion genes have
been observed in 13–27% of KRAS-wild type tumors [21,24]. NTRK1-rearrangement is also identified
in IMA [25]. Other mutations, including EGFR, STK11, TP53, CDKN2A, RB1, PIC3CA, APC, STK11,
SMAD4, SMO, c-KIT and HFN1A, have been detected by NGS analysis [20,26]. KRAS mutations
have been observed along with NKX2-1/TTF1 repression, and associated with mucinous carcinoma
development [27] and Napsin A downregulation [28].

The most common genetic abnormality in enteric carcinomas (EC) was KRAS mutation followed
by EML4-ALK fusion, NRAS mutations and EGFR mutations [29,30]. Moreover, four out of five enteric
ADCs had mutations in mismatch-repair genes, and tumor mutational burden (TMB) levels were
higher than those seen in control ADCs [29].

CDX2 and MUC2, the intestinal IHC markers frequently positive in EC, are reported to be
expressed in CA [31]. Furthermore, IMA, CA and EC are occasionally assumed as tumors on the
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same spectrum [20,26,28]. A recent study attempted to reclassify these tumors according to the IHC
status [26].

Fetal ADC (FA) is occasionally subdivided into low- and high-grade carcinomas according to
the nuclear characteristics. Genetic abnormalities in the Wnt pathway and aberrant beta-catenin
overexpression are observed due to CTNNB1 mutation in low-grade FA [32]. A recent analysis
with NGS showed BRCA2 and TSC2 mutations in FA [33]. High-grade FA, on the other hand, was
characterized by p53 overexpression and mutations in both EGFR (20%) and PIC3CA (7%) [34].

2.3. Squamous Cell Carcinoma

2.3.1. Morphological Subtypes

SQCs are divided into keratinizing, non-keratinizing, and basaloid types. Non-keratinizing SQC
is sometimes difficult to distinguish from poorly-differentiated solid ADCs, and due to which, IHC
analysis is warranted for diagnosis. Basaloid type SQC is also positive for the IHC markers of SQC,
but consists of unique molecular profiles. The prognostic difference between each histological subtype
is controversial [2].

2.3.2. Molecular Abnormalities in SQC Confirmed by TCGA

In 2012, the TCGA project released the results of the molecular analysis for 178 SQC [4]; 360
exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per one
SQC were observed on an average. This complex alteration is assumed to be caused by smoking. The
significant genetic mutations observed in their study were TP53, CDKN2A, PTEN, PIK3CA, KEAP1,
MLL2, HLA-A, NFE2L2, NOTCH1, RB1 and PDYN, with nearly 90% of the tumors harboring TP53
mutations. Mutations in the oxidative stress-related pathway (KEAP1 and NFE2L2), squamous cell
differentiation-related genes (SOX2 and TP63) and the PI3K/RTK/RAS pathway were seen in 34%, 44%
and 69% cases, respectively; CDKN2A inactivation was noted in 72% of the cases.

The mRNA profiling categorized SQC into four subtypes; classical, basal, secretory and
primitive. The classical subtype is characterized by alterations in KEAP1, NFE2L2 and PTEN genes,
hypermethylation and chromosome instability. The basal subtype presents with a high frequency of
NF1 mutations. The secretory subtype is characterized by TP53 and RB1 activation. The primitive
subtype frequently harbors RB1 and PTEN mutations.

Furthermore, SQC was categorized into four subtypes following DNA methylation and miRNA
profiling, which overlapped, to some extent, with the mRNA profiling subtypes. For example,
methylation cluster 4 (which shows little DNA hypermethylation) and miRNA cluster 3 contain most
of the primitive subtypes defined by mRNA. The majority of the SQCs in cluster 3 comprise classical
mRNA subtypes with NFE2L2 mutations. The authors in TGCA report finally divided SQC into three
categories based on integrative clustering of somatic mutations, DNA copy numbers, DNA methylation
and mRNA expression data using the iCluster method.

3. Molecular Alterations as Diagnostic Markers between ADC and SQC

As mentioned earlier, ADC and SQC have distinct molecular profiles. The diagnostic values of
these alterations have been evaluated in several studies; Shinmura et al. identified 6 and 24 genes
specifically expressed in ADC and SQC, respectively, in the RNA-seq data of TCGA database [35].
CLCA2 was found as a specific IHC marker of SQC [35]. Sun et al. identified 778 genes and 7 miRNA
that were differently expressed between ADC and SQC via bioinformatics analysis of TCGA data [36].
Common core transcriptional factors of the networks, which is composed with transcriptional factor,
miRNA and gene, were shown between ADC and SQC. Meanwhile, miR-29b-3p was demonstrated
to be upregulated only in ADC, whereas in SQC, miR-1, miR-105-5p and miR-193b-5p were altered.
Campbell et al. utilized exome sequence and copy number profiles from tumor and normal tissue
pairs [37], and revealed PPP3CA, DOT1L and FTSJD1 mutations and MIR21 amplification in ADC;
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alternatively, RASA1 mutation and MIR205 amplification were reported in SQC. Shoshan-Barmatz et
al. demonstrated 23 potential proteins that were differently expressed in ADC and SQC, and detected
via proteomics and RNA-seq data [38]. They proposed that nuclear staining of SMAC protein by IHC
can be used as a diagnostic biomarker between ADC and SQC.

4. Neuroendocrine Tumor

4.1. Morphological Definition

Neuroendocrine tumors (NETs) include typical carcinoid (TC), atypical carcinoid (AC), small cell
carcinoma (SCC), and large cell neuroendocrine carcinoma (LCNEC). TC and AC are considered as
low-grade NET, while SCC and LCNEC are regarded as high-grade NET. The morphological features
including necrosis and Ki-67 index (widely used cutoff value, 4–5% [39]) divides low-grade NETs into
TC and AC. All of the NETs demonstrate neuroendocrine differentiation, which is confirmed with IHC
markers (synaptophysin, chromogranin A and CD56). SCC and LCNEC are discriminated based on
morphological features, such as the size of the tumor cell, prominent nucleoli in LCNEC, and amount
of cytoplasm. However, inter-observer variability is generally high, particularly in biopsy specimens
due to the amount of tissue available and the presence of crush artifacts [40,41]. Some IHC markers
(BAI3, CDX2 and VIL1) distinguishing SCC and LCNEC have been studied, but they are not widely
used in daily practice [42].

4.2. Molecular Abnormalities

4.2.1. Typical and Atypical Carcinoids (Low-Grade NET)

An NGS analysis targeting 48 genes showed non-activating mutations in EGFR (6%, TC; 12%,
AC), ERBB2 (12%, TC and AC), RET (6%, TC and AC), MET (12%, AC), KIT (12%, AC), KRAS (6%, AC),
KDR (6%, AC) and FGFR1 mutations (6%, AC) [43]. In another NGS study, only one out of 25 TC and
AC cases harbored BRAF, SMAD4, PIK3CA and KRAS mutations in the tissues. These findings indicate
that common mutations in NSCLC are relatively rare in low-grade NET [44].

PCR-based microRNA analysis of TC and AC with lymph node metastases demonstrated the
presence of 24 miRNAs that were differently regulated between TC and AC [45]. Among them,
miR-129-5p, miR-409-3p, miR-409-5p, miR-185 and miR-497 were significantly upregulated in TC.
The expressions levels of the 29 miRNAs were different between the metastatic and non-metastatic
cases indicating that miRNA profile may be used as a predictive biomarker.

4.2.2. SCC and LCNEC (High-Grade NET)

Molecular Abnormalities of SCC Confirmed by TCGA

The TCGA project showed extremely high frequencies of bi-allelic inactivation of both TP53 (98%)
and RB1 (91%) in 110 SCC [5]. Alternative deregulation pathway of RB1 was also observed as cyclin D1
upregulation coded in the CCND1 gene (2%). Notch family genes were found to be inactivated in 25% of
SCC, leading to neuroendocrine differentiation. In addition, oncogenic TP73 rearrangement (13%) was
discovered. Other gene alterations including CREBBP (15%), EP300 (13%), MYCL1 (9%), PTEN (9%),
MYC (6%), KIT (6%), FGFR1 (6%), MYCN (4%) and PIK3CA (3%) have been noted [5]. SCC was further
divided into two clusters based on the expression analysis; the majority (77%) were characterized by
highly-expressed CHGA (chromogranin A), GRP (gastrin releasing peptide), DLK1 (an inhibitor of
Notch signaling) and ASCL1 (whose expression is inhibited by active Notch signaling) [5].

Molecular Alterations of LCNEC

It is implied that LCNEC is made up of subgroups that resemble SCC and NSCLC by their
molecular profiles. Rekhtman et al. performed an NGS analysis in 45 LCNEC and demonstrated
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alterations in TP53 (78%), RB1 (38%), STK11 (33%), KEAP1 (31%) and KRAS (22%) [46]. They identified
two major and one minor subsets: SCC-like LCNEC, characterized by TP53 + RB1 co-mutation/loss
and MYCL amplification; NSCLC-like LCNEC, characterized by the lack of co-altered TP53 + RB1 and
almost universal occurrence of NSCLC-type mutations (STK11, KRAS and KEAP1); and carcinoid-like
LCNEC, characterized by MEN1 mutations and low mutational burden. Mitotic activity in the SCC-like
subset is significantly higher than that in the NSCLC-like subset, with different cytomorphological
features. Alterations in the Notch family genes were observed in 28% of the NSCLC-like subtype
indicating neuroendocrine differentiation. Miyoshi et al. also showed consistent profiles of LCNEC
with TP53 (71%) and RB1 (26%) mutations [47]. Additionally, PIK3CA/AKT/mTOR pathway alterations
were reported in 15% of the LCNEC. Notably, LCNEC combined with NSCLC shared the same driver
mutations previously reported in NSCLC [47]. Thus, these molecular alterations in LCNEC may be
used as targets.

Transformed SCC from NSCLC after Treatment with EGFR-Tyrosine Kinase Inhibitors (TKI)

EGFR mutation-positive ADCs treated with tyrosine kinase inhibitors occasionally acquire
resistance, and 15% of them transform into SCC [48]. A TKI-resistant NSCLC cell line demonstrated
RB1 inactivation associated with SCC transformation [49]. Sequencing of SCC-transformed NSCLC has
revealed high proportions of inactivated RB1 and TP53 [50]. Moreover, these mutations are suggested
to have occurred before TKI treatment; therefore, the identification of these mutations in advance may
predict the risk of resistance to TKI [51]. In another study, alterations in the Notch-ASCL1 signaling
pathway appeared to play a role during the early phase of secondary SCC induction [52].

4.2.3. Genetic Differences Between Low- and High-Grade NET

Recent studies compared the molecular profiles between low-grade (TC and AC) and high-grade
(SCC and LCNEC) NET. MEN1, PSIP1, ARID1A and EIF1AX mutations were common in low-grade
NET whereas, alterations in TP53, RB1 and genes belonging to the PI3K/AKT/mTOR pathway were
associated with high-grade NET [52,53].

5. Other Histological Subtypes

5.1. Adenosquamous Carcinoma

Adenosquamous carcinoma (ADSQ) histologically consists of an ADC and a squamous cell
carcinoma component. A study using microdissection showed that most genetic mutations were
common in both the components, whereas some mutations, including KRAS, HER2 and EGFR, were
unique in the ADC component [54]. EGFR mutation is less common in ADSQ with a solid ADC
component when compared to those with well-differentiated ADC components; ALK or RET fusion is
more frequent in the former type of ADSQ [54].

5.2. Sarcomatoid Carcinoma

Sarcomatoid carcinoma includes pleomorphic carcinoma (which consists of an epithelial and
a sarcomatoid component), spindle cell carcinoma and giant cell carcinoma. Fallet et al. showed
KRAS (27.2%), EGFR (22.2%), TP53 (22.2%), STK11 (7.4%), NOTCH1 (4.9%), NRAS (4.9%) and PI3KCA
(4.9%) mutations in 81 patients with sarcomatoid carcinoma [55] Terra et al. also identified AKT1,
JAK3 and BRAF mutations in this morphological subtype [56]. In addition, ALK rearrangement has
been identified in one case [56]. Notably, EGFR mutations in this carcinoma were almost always “rare
mutations” (such as exon 2, 18 or 20) [55,56]. The origin of the cell types in sarcomatoid carcinoma is
suggested to be the same because the same mutations were shared in common between the epithelial
and sarcomatoid components [55,57].
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5.3. Salivary Gland-Type Tumor

The salivary gland-type tumor comprises mucoepidermoid and adenoid cystic carcinomas with
morphological features similar to those of salivary gland tumors. Approximately 50% to 100%
of pulmonary mucoepidermoid carcinomas harbor MAML2 translocations, like the salivary gland
tumors [58–61]. Genetic alterations in HER2, EGFR and KRAS have also been reported in pulmonary
mucoepidermoid carcinoma [62–66]. However, EGFR, KIT, KRAS, BRAF, ALK, PIC3CA, PDGFRA and
DDR2 mutations were not detected in small-scale studies targeting adenoid cystic carcinoma [67–69].

5.4. Lymphoepithelioma-Like Carcinoma

Lymphoepithelioma-like carcinoma (LELC) is an undifferentiated tumor characterized by the
presence of large cells with indistinct cell borders and prominent infiltrating lymphocytes. Ebstein-Barr
Virus infection is associated with LELC, and EGFR mutations have been reported in eight (18%) out
of 46 cases [70]; on the other hand, no EML4-ALK translocation or KRAS mutations were reported in
these tumors [71].

5.5. NUT Carcinoma

NUT carcinoma (NC) is defined as a carcinoma with NUT gene rearrangement. The most common
pattern of fusion is observed between NUT and BRD4, followed by that between NUT and BRD3 [72].
Although the morphological features of NC are not included in the definition, it is characterized by
nests of monomorphic, small- to intermediate-sized undifferentiated tumor cells [73]. In some instances,
the diagnosis of NC is confirmed using NGS platforms indicating its potential for the confirmation of
rare tumors in clinical practice [74,75].

6. Targeted Treatment

Recently, molecular subtyping of lung cancer has led to the approval and use of molecular targeted
therapies. The targeted therapies are listed in Table 1.

Table 1. Targeted therapies.

Histology Targeted Molecule Reagents FDA-Approved
(April 2019) Note

NSCLC

EGFR
(ADC 14%,
SQC 9%)

Gefitinib
(First-generation) Yes Selective and reversible TKI.

Erlotinib
(First-generation) Yes Selective and reversible TKI.

Afatinib
(Second-generation) Yes Irreversible ErbB family blocker.

Dacomitinib
(Second-generation) Yes Irreversible TKI.

Osimertinib
(Third-generation) Yes Irreversible and also active against the resistance

mutation (T790M).

Poziotinib No Irreversible and active against exon20 mutation
and HER2 mutation.

TAK-788 No Active against exon20 mutation and
HER2 mutation.

TAS6417 No Selective against exon 20 insertion mutation.

ALK
(ADC 5%)

Crizotinib(First-generation) Yes Multi-targeted TKI.

Alectinib
(Second-generation) Yes Highly selective inhibitor for ALK.

Ceritinib
(Second-generation) Yes Highly selective inhibitor for ALK.

Brigatinib
(Second-generation) Yes ALK/ROS1 inhibitor.

Lorlatinib
(Third-generation) Yes ALK/ROS1 inhibitor.



Cancers 2019, 11, 599 8 of 19

Table 1. Cont.

Histology Targeted Molecule Reagents FDA-Approved
(April 2019) Note

ROS1
(ADC 1%)

Crizotinib Yes

Lorlatinib No

Entrectinib No Inhibits ROS1, TRK and ALK.

BRAF
(ADC 7%, SQC 4%) Dabrafenib/trametinib Yes Reversible ATP-competitive kinase inhibitor.

RET
(ADC 1%)

Cabozantinib No Multi-targeted TKI.

Lenvatinib No Multi-targeted TKI.

Vandetanib Yes Multi-targeted TKI.

LOXO-292 No Selective RET inhibitor

MET
(ADC 2–4%)

Crizotinib No

Capmatinib No Reversible MET inhibitor.

Tepotinib No Reversible MET inhibitor.

NTRK
(<1%)

Entrectinib No

Larotrectinib Yes TRK inhibitor.

PD-1
Nivolumab Yes IHC: 28-8

Pembrolizumab Yes IHC: 22C3

PD-L1
Atezolizumab Yes IHC: SP142

Duvalumab Yes IHC: SP263

SCC DLL3
(80%)

Rovalpituzumab
tesirine No Antibody against DLL3 conjugated with

cytotoxic reagent.

NSCLC, non-small cell lung cancer; SQC, Squamous cell carcinoma; EGFR, epidermal growth factor receptor; ADC,
adenocarcinoma; TKI, tyrosine kinase inhibitor.

6.1. Targets and Therapies for Non-Small Cell Lung Cancer

6.1.1. EGFR Mutations

Somatic mutations in EGFR are the most common types of mutations seen in patients with NSCLC,
and the discovery of EGFR-TKIs has become a pioneer in the era of targeted therapy. Approximately
30% of all advanced NSCLC cases have been reported in Asians and 20% in Caucasians [76]. Gefitinib,
a first-generation EGFR-TKI, has shown superior progression free survival (PFS) in patients harboring
EGFR mutations when compared to standard chemotherapy in EGFR-mutated advanced NSCLC
patients [77,78]. Erlotinib, another first-generation EGFR-TKI, also showed longer PFS than standard
chemotherapy against major EGFR mutations (L858R, del19), and has been widely used as a first-line
treatment [79,80]. In 2013, afatinib, a second-generation EGFR-TKI, which acts as an inhibitor of all
four members of the ERBB family, was approved for treating advanced NSCLC harboring EGFR
mutations. A significant improvement in PFS and overall survival was noted with afatinib when
compared to platinum doublets chemotherapy for EGFR mutation-positive NSCLC patients [81–83].
Furthermore, afatinib and gefitinib were compared in a phase II study wherein, median PFS was
found to be significantly longer in Asian patients treated with afatinib [84]. Another second-generation
EGFR-TKI, dacomitinib, demonstrated longer PFS when compared to gefitinib during the late phase in
the EGFR-mutated population, except in patients with brain metastasis [85].

Patients with EGFR mutation can develop resistance to first and second-generation EGFR-TKI,
which is often mediated by the T790M resistance mutation. T790M is an acquired resistance mechanism
found in over half of the patients. Osimertinib, a third-generation irreversible EGFR-TKI, is selective
for EGFR-TKI sensitizing and T790M resistance mutations. In a phase II trial comparing osimertinib to
platinum doublet therapy among patients with T790M mutation undergoing first-line TKI therapy, the
median PFS was significantly longer in those receiving osimertinib [86]. Recently, another phase III trial,
which compared osimertinib with standard EGFR-TKIs in patients with previously untreated advanced
NSCLC and EGFR mutations revealed significantly longer median PFS in patients receiving osimertinib
when compared to those undergoing standard EGFR-TKIs therapy (18.9 months vs. 10.2 months) [87].
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Before receiving approval for the use of osimertinib as a first-line treatment, a rebiopsy of the tissue
was required. Liquid biopsy was often performed in cases where rebiopsy could not be performed;
however, the efficacy of osimertinib in patients with T790M mutations detected by liquid biopsy
is unclear and needs to be evaluated in future. Moreover, the efficacy and selection of EGFR-TKI
after developing resistance against osimertinib has not been reported so far. EGFR C797S mutations
accounts for 7% [88] of the acquired resistance, and treating with a combination of first-generation
EGFR-TKIs and osimertinib showed efficacy [89]. Other acquired resistance after using osimertinib
consists of uncommon EGFR mutations, HER amplification (2%), HER2 mutation (1%), SPTBN1-ALK
(1%), MET amplification (15%), BRAF mutation V600E (3%), KRAS mutations (G12D/C, A146T, 3%)
and PI3KCA mutations (7%) [88]. This means cases with acquired resistance to osimertinib would not
be sensitive for EGFR-TKI re-challenge.

Combination therapy with chemotherapy or anti-VEGF agents has emerged as a promising
strategy. NEJ009, the first phase III study, showed a significantly prolonged PFS (20.9 months) in
patients receiving a combination of EGFR-TKI and platinum doublet chemotherapy when compared to
those treated with gefitinib alone [90].

The most common EGFR mutations, exon 21 L851R and exon 19 deletions, respond to first,
second, and third-generation EGFR-TKI. However, there is limited data concerning uncommon EGFR
mutations, such as exon 20 insertions, exon 18 point mutations, and complex mutations, which account
for 10% of all EGFR mutations and are associated with poor prognosis and survival. Afatinib has
proven effective in patients harboring certain types of uncommon EGFR mutations, especially G719X,
L861Q and S768I, but is less active in other mutations types [91]. Potizotinib, TAK-788 and TAS6417
are known to have clinical activity for exon 20 insertions [92]; however, they have not been approved
by the FDA so far. Structural alternation induced by Exon 20 insertions of EGFR makes it difficult to
combine with conventional EGFR kinase inhibitor, so the other drug improvement is under way.

6.1.2. ALK Rearrangements

ALK rearrangements were initially discovered in 2007 by Soda and colleagues as the driver
oncogene in solid tumors [93]. An early phase clinical trial demonstrated the clinical efficacy of
crizotinib (PF-02341066), which was initially developed as a MET inhibitor [94]. Crizotinib was
approved as the first-in-class ALK inhibitor for ALK-rearrangement-positive NSCLCs (comprising
~5% of the ADCs). In the PROFILE trial series, crizotinib demonstrated superiority over platinum
doublets chemotherapy on PFS in patients with previously untreated and treated advanced NSCLC
harboring ALK translocation [95,96]. One of the limitations of these studies is that, crizotinib is not an
ALK-specific inhibitor. Among the second-generation ALK inhibitors, alectinib has high selectivity
for ALK rearrangement and can overcome L1196M or C1156Y, the major secondary mutations that
lead to resistance to crizotinib. Phase III trials such as ALEX [97], J-ALEX [98] and ALESIA [99], have
demonstrated the superiority of alectinib over crizotinib in terms of PFS and safety in the first-line
setting. Thus, alectinib has become the concrete standard of treatment for previously untreated
advanced NSCLC patients with ALK rearrangements. Brigatinib, ceritinib and loratinib also have high
selectivity for ALK inhibition, and have the potential to overcome resistance via secondary mutations
in ALK. However, in terms of the toxicity profile, alectinib continues to be the standard treatment
for now.

With the emergence of various ALK inhibitors, sequential use of ALK inhibitors to overcome
acquired resistance has become a treatment choice, and the selection of ALK inhibitor has become
more important than ever. Rebiopsy is necessary for choosing consequent agents after the failure of
the preceding agent. On the other hand, liquid biopsy with NGS may prevail over tissue-based gene
analysis. A study, which compared tissue with sequenced cell-free DNA from plasma, reported that
ALK rearrangements detected in tissues were also detected in plasma in 79% of the cases [100]. Thus,
less-invasive sampling techniques such as liquid biopsy could broaden the spectrum of patients who
can receive benefits from sequential treatment with ALK inhibitors.
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The acquired resistant mechanism in ALK fusions for ALK inhibitor is different from that in
EGFR-TKI with sensitivity for tyrosine kinase inhibitors; hence, a repeatable oral kinase inhibitor
strategy can be assumed. However, there is no evidence of treatment choice after developing resistance
against second-generation ALK inhibitor, and further validation is needed in the clinical trial.

6.1.3. ROS1 Rearrangements

ROS1 rearrangements are less common than ALK, and account for 1% of the NSCLCs. ROS1
has high homology with ALK comprising 70% of the amino acids. Therefore, the key drugs for
treatment are also similar to the ALK inhibitors. Crizotinib has shown high response rates against ROS1
rearrangement NSCLC [101,102], and is the first choice for treatment. In addition, the effects of other
ALK and ROS/TRK inhibitors such as Lorlatinib [103] and Entrectinib [104] are under investigation.
ROS1 mutation, EGFR activation and epithelial-to-mesenchymal transitions are implied in drug
resistance [105]. Cabozantinib is suggested to have the potential to overcome acquired resistance after
crizotinib treatment [106].

6.1.4. BRAF Mutations

BRAFV600E mutation is observed in 1–2% of advanced NSCLCs [107] and 85% of them are ADC.
Associations between BRAF mutation and gender, smoking, histology and stage of cancer are poorly
understood, indicating that patients with BRAF mutations in NSCLC have heterogeneous clinical
backgrounds. Dabrafenib, a tyrosine kinase inhibitor that targets BRAF mutations, has shown 30%
clinical activity in patients with NSCLC [108]. The combination of BRAF and MEK inhibitors has
shown an even higher response; combined treatment with Dabrafenib (BRAF inhibitor) and Trametinib
(MEK inhibitor) demonstrated clinical effectiveness against previously untreated and treated NSCLC.
In previously untreated patients with BRAFV600E mutation, the response rate was 64% (95% CI, 46–79%)
and PFS was 10.9 months (95% CI, 7.0–16.6 months) [109] whereas, in previously treated NSCLC with
BRAFV600E mutations, the response rate was 63.2% (95% CI, 49.3–75.6%) and PFS was 9.7 months (95%
CI, 5.7–13.6 months) [110].

6.1.5. Other Genetic Targets and Reagents for NSCLC

Other target driver oncogenes, besides EGFR, ALK, ROS1 and BRAF, have also been characterized
in NSCLC.

RET rearrangements are found in 1–2% of NSCLCs [110]. They are commonly found in
younger patients below the age of 60, non-smokers or former light smokers, and patients with
poorly-differentiated ADC [17]. Multi-kinase inhibitors such as Cabozantinib and Lenvatinib have
shown 28% [110] and 16% [111] overall response rates, respectively. Vandetanib, a multiple kinase
inhibitor, has shown an overall response of 53% with 4.7 months of PFS in the LURET study [112].
Recently, LOXO-292, a potent and highly selective RET inhibitor based on the kinome model,
demonstrated an impressive overall response rate of 65% in RET fusion-positive NSCLC patients in a
phase I study [113].

MET exon14 skipping mutation (MET∆ex14) occurs in 2–4% of ADCs and is rather frequently
found in elderly patients when compared to those with NSCLC harboring EGFR or KRAS mutations
and non-smokers [114]. MET amplifications also occur in 3–5% of EGFR-wild type ADCs [115].
The effectiveness of Crizotinib has been clinically shown in patients with MET amplification or MET
∆ex14 [114,116–118]. Capmatinib, a new agent that targets MET, demonstrated clinical benefits with
overall response rates of 39.1% and 79.0% in previously treated and untreated MET ∆ex14 NSCLC
patients, respectively [115].

NTRK fusion-positive NSCLC is estimated to account for less than 1% of the NSCLC patients [119].
Several studies have demonstrated that TRK fusion proteins promote oncogenesis by mediating
constitutive cell proliferation and survival, and larotrectinib and entrectinib have emerged as effective
TKI inhibitors [120].
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6.2. Biomarkers of Immunotherapy for NSCLC without Targetable Gene Alterations

Immune checkpoint blockade (ICB) consolidated its major role in the treatment of NSCLC patients
without targetable genetic alterations and extended its use by showing impressive data on ICB
combination therapies (e.g. combined with chemotherapy). The use of predictive biomarkers for
ICB therapy, such as programmed death-ligand 1 (PD-L1) expression and TMB testing, has gained
popularity. In addition, blood-based tests including soluble PD-L1 have been proposed to have the
potential for treatment, monitoring and prognosis prediction [121]. Multimodal approaches such as
combining biomarkers analysis from non-solid biological tissue may become effective.

No major studies concerning new genetic alterations or innovative targets have been conducted so
far. Therefore, combination therapy, such as ICB plus chemotherapy, is another approach to increase the
efficacy besides finding predictive biomarkers. There are benefits using the combinational approach;
however, further validation including toxicity is needed.

6.3. Targets and Therapies for NET

Delta-like protein (DLL3), a non-activating ligand of Notch, is known to be expressed in 80% of
SCC [122]. DLL3 is a promising target because its expression is generally restricted, except for the brain
tissue in the physiological state. Rovalpituzumab tesirine, a humanized monoclonal antibody against
DLL3 (rovalpituzumab) conjugated with a pyrrolobenzodiazepine-type cytotoxic reagent, showed a
response rate of 38% in patients with >50% DLL3 expression [122].

7. Future Perspectives

Results of large-scale comprehensive molecular analyses including the TCGA project have
demonstrated the recent developments in new targeted therapies. Gene sequences are becoming a
crucial part of clinical practice along with NGS platforms, which are widely available. The detection
of a driver mutation in a patient does not suggest that he/she can receive precision medicine owing
to factors such as the lack of therapy or rapid progression of the disease. Less than 30% of lung
cancer patients detected with gene alterations in ROS1 and RET are reported to be able to receive
targeted therapies [123]. Prompt treatment after diagnosis along with reduction in turn-around time
and invention of new drugs are strongly warranted.

There is a huge amount of data available currently due to the possibility of collecting information
by NGS. According to a research by the National Institutes of Health (NIH), 76% of the oncologists in
the USA use NGS, and 52.4% have reported that they have altered their management therapies based
on the results obtained from the NGS. However, there is no prospective trial data demonstrating the
clinical benefits of broad NGS testing compared with limited molecular testing only for approved
therapies. In order to organize large datasets and utilize them for clinical use, it is necessary to combine
them with real world data and build an IT platform.

Recent innovations in imaging analysis and artificial intelligence (AI) are leading the classical
classifications based on histology onto the next stage. Genetic alterations and prognosis are predicted
by histological images using the deep-learning method in lung cancer [124,125]. Data analysis,
including those from the TCGA project, have partially made it possible to reproduce morphological
classifications and propose brand-new classifications based on molecular profiles [36]. Moreover,
enormous data obtained from broad sequencing in daily practice would be a treasure-trove for new
drug development and investigation. The costs of these molecular analyses are relatively high when
compared to conventional histological analysis using hematoxylin-eosin staining of formalin-fixed,
paraffin-embedded tissues; however, combinations with other perspectives from AI and molecular
profiles may prove beneficial in lung cancer.
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8. Conclusions

Next-generation sequencing has opened the door of totally novel clinical practice and investigation
for lung cancer. As more targeted therapy becomes available, broad genetic analysis would be a part
of daily pathological diagnosis in the future. The knowledge obtained from previous studies should
be understood as a foundation for not only researchers of pathophysiology and therapy, but also for
pathologists and oncologists who participate in next-generation clinical practice.
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