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Purpose: Lung adenocarcinoma is one of the most commonmalignancies. Though some
historic breakthroughs have been made in lung adenocarcinoma, its molecular
mechanisms of development remain elusive. The aim of this study was to identify the
potential genes associated with the lung adenocarcinoma progression and to provide new
ideas for the prognosis evaluation of lung adenocarcinoma.

Methods: The transcriptional profiles of ten pairs of snap-frozen tumor and adjacent
normal lung tissues were obtained by performing RNA-seq. Weighted gene co-expression
network analysis (WGCNA) was used to construct free-scale gene co-expression
networks in order to explore the associations of gene sets with the clinical features
and to investigate the functional enrichment analysis of co-expression genes. Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and
Gene Set Enrichment Analysis (GSEA) analyses were performed using clusterProfiler.
The protein-protein network (PPI) was established using the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) and hub genes were identified using Cytohubba in
Cytoscape. Transcription factor enrichment analysis was performed by the RcisTarget
program in R language.

Results: Based on RNA-seq data, 1,545 differentially expressed genes (DEGs) were
found. Eight co-expression modules were identified among these DEGs. The blue module
exhibited a strong correlation with LUAD, in which ADCY4, RXFP1, AVPR2, CALCRL,
ADRB1, RAMP3, RAMP2 and VIPR1 were hub genes. A low expression level of RXFP1,
AVPR2, ADRB1 and VIPR1 was detrimental to the survival of LUAD patients. Genes in the
blue module enriched in 86 Gene Ontology terms and five KEGG pathways. We also found
that transcription factors EGR3 and EXOSC3 were related to the biological function of the
blue module. Overall, this study brings a new perspective to the understanding of LUAD
and provides possible molecular biomarkers for prognosis evaluation of LUAD.
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INTRODUCTION

Worldwide, lung cancer remains the major public health
problem, which is the second most common cancer and the
first cause of cancer-related death [1]. Non-small cell lung cancer
(NSCLC) is the major type of lung cancer, which accounts for
around 85% of all lung cancer cases. Tobacco smoking, diet and
alcohol, ionizing radiation are all risk factors of NSCLC. Genetic
factors, such as genetic polymorphisms and high-penetrance
genes, also have great effect on the occurrence, development,
and prognosis of NSCLC [2].

NSCLC is a multi-factorial disease. There is no clear
conclusion regarding its etiology in the medical field. The
main subtypes of NSCLC are squamous cell carcinoma
(SCC), adenocarcinoma (ADC), and large-cell carcinoma
(LCC) [3, 4]. Nowadays, the therapeutic choice of NSCLC
largely based on the histopathological features, but the
survival rates of NSCLC patients remain unsatisfactory.
Studies showed that therapeutic progress for NSCLC was also
attributed to specific genomic aberrations, which might serve as
the molecular target. It is important to identify cancer subtypes
based on common molecular features, which may benefit for
patients with NSCLC.

With the advanced progress of high-throughput
sequencing techniques, there is vast amount of data
produced, which brings a big challenge for researchers to
discover the pathways and key genes related to certain
diseases. For RNA-seq data, researchers usually used
conducted functional annotation, including GO, KEGG
enrichment and Gene Set Enrichment analysis (GSEA)
analyses [5]. This will lead to a profound understanding of
the pathways by which cancer commonly evolves. However,
there is still one major drawback due to the lack of interaction
analysis between genes. Most studies used differential
expression patterns as a screening standard. The inherent
characteristics of expression profile data implies the genes
with the greatest changes in expression levels are not
necessarily the genes that responsible for tumor
progression. The complex hierarchical relationships within
the biological regulatory network remain to be fully explored.

Recently, the newly effective algorithms have been developed
to better interpret big data from RNA sequencing. Weighted
gene co-expression network analysis (WGCNA) is a systems
biology method for describing the correlation patterns among
genes based on the similarities of gene expression profiles [6].
Using expression data from cancer and adjacent normal tissue,
WGCNA has been widely applied in detecting stage-specific
gene co-expression modules and the hub genes within each
module, which has the potential of pointing towards
biologically and clinically relevant disease mechanisms [7,
8]. Constructure of protein-protein interaction (PPI)
network is essential to understand the physiology of cells in
normal and disease status within different modules. WGCNA
analyses integrated with PPI network analysis will better
identify and retrieve the signatures of hub genes. In
addition, WGCNA has been successfully utilized to
investigate the relationship between gene sets and clinical

traits for identification of candidate cancer biomarkers for
various cancers, including breast cancer [9-11], colon
adenocarcinoma [12, 13], esophageal carcinoma [14, 15] and
stomach adenocarcinoma [16-17].

In this study, gene expressionmatrix was constructed based on
high-throughput RNA sequencing and differentially expressed
genes (DEGs) were analyzed. The DEGs identified were subjected
to GO and KEGG enrichment analysis for each group, which
were further validated using GSEA analysis. WGCNA was
constructed to identify the key modules in lung
adenocarcinoma. To further reveal the role of genes in the key
module and identify hub genes, KEGG pathways, GO
enrichment, PPI network and transcription factor enrichment
were conducted. The key genes in key module might serve as
potential biomarkers for predicting the progression and the
prognosis of lung adenocarcinoma.

MATERIALS AND METHODS

Clinical Specimens
Ten pairs of snap-frozen lung cancer tissues and adjacent
normal tissues were collected in Affiliated Tangshan Gongren
Hospital of North China University of Science and Technology
(Tangshan, China). All specimens were obtained at the time of
surgery and confirmed by pathological examination. All patients
were genetically unrelated Han Chinese, none of which had
received preoperative chemotherapy, radiotherapy, or targeted
therapy when recruited. This study is approved by the
institutional review board from the Human Ethics Review
Committee of North China University of Science and
Technology (2022027) and Technology and informed consent
was obtained from each patient.

RNA-Sequencing and Data Pre-Processing
Total RNAs were extracted with Trizol reagent (Invitrogen,
United States) following by the manufacturer’s protocol. RNA
quality and integrity were analyzed using NanoPhotometer
spectrophotometer (IMPLEN, Germany) and Agilent
2100 Bioanalyzer (Agilent Technologies, United States). To
build RNA-seq libraries, ribosomal RNA (rRNA) was removed
from total RNA to obtain all mRNA and lncRNA which were
then randomly interrupted. The RNA-seq libraries were
constructed using Illumina Truseq™ RNA sample prep Kit
and were sequenced on the NovaSeq 6000 system. Before
bioinformatics analysis, FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) was used to assess the quality
of raw data and pre-process the raw data to obtain high quality
clean reads data. Cleaned reads were then mapped to the human
reference genome GRCh38/hg38 using spliced-reads aligner
HISAT2 [18] and StringTie [19] to obtain raw read counts
and transcripts per million (TPM).

Gene Expression Analyses
Raw read counts data were used for gene expression analyses.
Genes with low counts might represent a bias of sequencing and
contribute less to further analysis, so we excluded genes with zero
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expression values. After data filtering, a total of 20,431 genes
remained. DESeq2 normalized fold-change was used to analyze
the differential gene between lung cancer tissues and adjacent
normal tissues using the Bioconductor package DESeq2 [20].
Differentially expressed genes were defined as p-value < 0.05 and
absolute log2 (fold change) (|log2FC|) ≥ 1. The results were
represented by a volcano map and heatmap. The raw sequence
data reported in this paper have been deposited in the Genome
Sequence Archive in National Genomics Data Center (GSA-
Human: HRA002426) that are publicly accessible at https://
ngdc.cncb.ac.cn/gsa-human, while raw counts were provided
in Supplementary Table S18.

Pathway and Function Enrichment Analyses
To identify the biological function of differentially expressed
genes (DEGs) in the development of lung cancer, functional
enrichment Gene Ontology (GO, http://geneontology.org/)
and Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.kegg.jp/) pathway analyses were performed
using the Bioconductor package clusterProfiler [21]. Gene
Ontology terms were divided into three separate subgroups:
molecular functions (MFs), cellular components (CCs) and
biological processes (BPs). Enriched GO terms and KEGG
pathways were identified according to the cut-off criterion of
p-values < 0.05. In addition, Gene Set Enrichment Analysis
(GSEA) was performed for the complete expression profile
using clusterProfiler. The GSEA results could be used as
further validation of GO and KEGG enrichment results
based on DEGs. To elucidate the biological processes of
proteins in key module and their role in signaling
transduction, ClueGO plugin of Cytoscape was used to
perform KEGG pathway analysis and GO functional
annotation [22]. P-value < 0.05 corrected by Bonferroni
method were considered as significance.

Weighted Gene Co-Expression Network
and Their Key Modules
Weight gene co-expression network analysis (WGCNA)
could construct a scale-free network based on gene
expression profiles. In this study, weighted gene co-
expression network was constructed using the
Bioconductor package WGCNA [6]. Firstly, transcript per
million (TPM) value expression matrix of EDGs was loaded
into R. Based on TPM value, a hierarchical clustering analysis
was performed. Secondly, the optimal soft threshold β was
screened based on Pearson’s correlation coefficient and to
enhance strong connections and disregard weak correlations
between genes in the adjacency matrix. Then, the adjacency
matrix was converted into a TOM to describe the association
strength between the genes, and DynamicTreeCut algorithm
was determined to construct a scale-free network. TPM
expression matrix was loaded into the WGCNA package to
get key modules and corresponding Eigengenes (MEs), which
representing the overall level of gene expression in individual
modules. After calculating the dissimilarity of the module
eigengenes and hierarchically clustered the modules, we

merged correlated modules (r ≥ 0.75) as similar modules.
By setting the minimum number of genes to 50, dissimilarity
of the module eigengenes (MEs) was identified by
moduleEigengenes function of WGCNA to assess the effect
of these modules on clinical characteristics. The analysis code
is accessible from GitHub code repository: https://github.
com/xyn1115/code_for_WGCNA.

Protein-Protein Interaction Network and the
Identification of Hub Genes
Genes within the same module might play similar roles and
have high connectivity. The protein-protein network (PPI)
of genes the key module was established using the Search
Tool for the Retrieval of Interacting Genes/Proteins
(STRING, https://string-db.org/) [23]. In order to identify
hub genes in the PPI, algorithm Maximal Clique Centrality
(MCC) was used by the Cytohubba [24] plugin based on
Cytoscape.

Transcription Factor Binding Motifs
Enrichment Analysis
Transcription factor binding motifs (TFBMs) enrichment
analysis was performed using the Bioconductor package
RcisTarget [25]. Firstly, annotation to motifs of transcription
factors (TFs) in Homo sapiens were downloaded (https://
resources.aertslab.org/). Secondly, RcisTarget selected DNA
motifs which were significantly over-represented in the
surroundings of the transcription start site (TSS) of the
candidate genes. Thirdly, the motifs which were annotated to
TFs and had high normalized enrichment score (NES) were
retained. Finally, for each motif and gene-set, genes which
were ranked above the leading edge were predicted as the
candidate target genes.

Survival Analysis
To see whether these hub genes and transcription factors (TFs)
were related to prognostic significance, survival analysis was
performed using TCGAbiolinks in R [26]. Gene expression
data and related clinical information of LUAD patients were
obtained from the TCGA repository (https://cancergenome.nih.
gov/). P value less than 0.05 was considered statistically
significant. Survival curves were estimated with the Kaplan-
Meier method and log-rank test. KMplot (http://kmplot.com/
analysis), a web-based survival analysis tool which data was
derived from Gene Expression Omnibus (GEO) dataset, was
utilized as an independent validation dataset for prognosis
analysis.

RESULTS

Expression Profiles in Lung
Adenocarcinoma
After analyzing the differential expression of genes between
lung adenocarcinoma tissues and adjacent normal tissues,

Pathology & Oncology Research August 2022 | Volume 28 | Article 16104553

Xie et al. Hub Genes of Lung Adenocarcinoma

https://ngdc.cncb.ac.cn/gsa-human
https://ngdc.cncb.ac.cn/gsa-human
http://geneontology.org/
http://www.kegg.jp/
https://github.com/xyn1115/code_for_WGCNA
https://github.com/xyn1115/code_for_WGCNA
https://string-db.org/
https://resources.aertslab.org/
https://resources.aertslab.org/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://kmplot.com/analysis
http://kmplot.com/analysis


946 up-regulated and 599 down-regulated genes were
identified in lung cancer tissues. The volcano plot
presented DEGs between lung adenocarcinoma tissues and

adjacent normal tissues (Figure 1A). The distribution of
DEGs on human chromosomes was depicted in
(Figure 1B). The hierarchical clustering results suggested

FIGURE 1 | Differences in gene expression profile between lung adenocarcinoma and adjacent normal tissues. (A) Volcano plots showing differential expression of
genes between the two groups. The red and blue points represent the differentially expressed genes; (B) The distribution of differentially expressed genes in human
chromosomes. Dots indicate location of genes in blue module; (C) Hierarchical clustering analysis of all the genes.

FIGURE 2 | Enrichment analysis of differentially expressed genes (DEGs) and gene set enrichment analysis (GSEA) analysis of the complete expression profile. (A)
KEGG pathways analysis for upregulated genes; GO analyses for upregulated genes including (B) biological process (BP), (C) cellular component (CC) and (D)molecular
function (MF); (E) KEGG pathways are for downregulated genes; GO analyses for downregulated genes including (F) BP terms, (G) CC terms and (H)MF terms. (I) The
enriched KEGG pathways byGSEA analysis, (J)BP terms (K)CC terms and (L)MF terms by GSEA analyses. Red dots indicate smaller p.adjust than blue dots. The
size of the dots indicates the number of genes enriched in each analysis.
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that gene expression patterns were distinguishable between
lung adenocarcinoma and control groups (Figure 1C).

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Enrichment
Analyses
GO terms enrichment and KEGG pathway analyses of the
DEGs were carried out to predict potential function of these
DEGs in lung adenocarcinoma. For up-regulated genes, cell
cycle, protein digestion and absorption, p53 signaling
pathway and alanine, aspartate and glutamate metabolism
pathway were enriched by KEGG analysis (Figure 2A,
Supplementary Table S1). GO analysis revealed that up-

regulated genes involved in the process of nuclear division,
organelle fission and mitotic nuclear division in the biological
process (BP) category; extracellular matrix, chromosomal
region and collagen-containing extracellular matrix in
cellular component (CC) category; extracellular matrix
structural constituent and extracellular matrix structural
constituent conferring tensile strength in molecular
function (MF) (Figures 2B–D, Supplementary Tables
S2–S4). For down-regulated genes, neuroactive ligand-
receptor interaction, Malaria, cytokine-cytokine receptor
interaction, calcium signaling pathway and fluid shear
stress and atherosclerosis pathways were enriched KEGG
analyses (Figure 2E, Supplementary Table S5). For down-
regulated genes, the top enriched were associated with

FIGURE 3 | Identification of modules associated with the clinical status of lung adenocarcinoma in theWGCNA. (A) Analysis of the scale-free fit index and themean
connectivity for various soft-thresholding powers; (B) Hierarchical clustering dendrograms of identified co-expressed genes in modules in lung adenocarcinoma; (C)
Heatmap plot of the adjacencies of modules, red represents high adjacency and blue represents low adjacency; (D) PPI analysis and identification of hub genes involved
in the co-expression blue module using STRING database and cytoHubba plug-in in Cytoscape.
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epithelial cell proliferation, tissue migration and regulation of
epithelial cell proliferation in BP process; extracellular matrix,
membrane microdomain and membrane region in CC
process; carbohydrate binding, amide binding and peptide
binding in MF process (Figures 2F–H, Supplementary
Tables S6–S8).

GSEA analysis revealed significant activation or
suppression of tumorigenesis-related genes. The most
significantly activated pathways identified in this analysis
include biosynthesis of amino acids, fanconi anemia
pathway and DNA replication, while osteoclast
differentiation, cGMP−PKG signaling pathway and
chemokine signaling pathway were suppressed (Figure 2I).
GSEA identified additional activated GO terms such as
nucleosome organization (BP), DNA replication
preinitiation complex (CC) and bitter taste receptor activity
(MF). In contrast, suppressed GO terms include cell migration
involved in sprouting angiogenesis (BP), external side of
plasma membrane (CC) and low-density lipoprotein particle

binding (MF) (Figures 2J–L). Complete GSEA results were
provided in Supplementary Tables S9–S13.

WeightedCo-ExpressionNetwork and Their
Key Modules
To further explore the co-expression patterns of the differential
expression genes in lung adenocarcinoma, weighted co-
expression network analysis (WGCNA) was performed. To
ensure a scale-free network, we selected β value of 9 as the
soft-thresholding power (Figure 3A). Eight co-expression
modules were finally identified by the cluster dendrogram
(Figure 3B). Different modules were represented by red, blue,
green, turquoise, yellow, black, brown and grey and the number
of genes in each module were 96, 366, 130, 418, 138, 55, 297 and
40, respectively. To evaluate the relationship between gene
modules and lung adenocarcinoma, module eigengenes (MEs)
which represented the gene expression profile of module, the
correlation between module eigengenes (MEs) and lung

FIGURE 4 | Function analysis for the blue module using ClueGO. (A) KEGG pathway analysis; (B) GO biological process (BP) analysis; (C) GO cellular component
(CC) analysis and (D) GO molecular function (MF) analysis.
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adenocarcinoma were calculated to generate the eigengene
adjacency heatmap (Figure 3C). Our result revealed that the
blue module exhibited a strong correlation with lung cancer,
indicating that blue module was the key module.

Protein-Protein Interaction Network and
Enrichment Analysis of the Differentially
Expressed Genes in the Blue Module
To reveal the function of the co-expressed genes in the blue
module at the protein level, a protein-protein interactions
network (PPI network) was constructed based on the STRING
database (STRING, https://string-db.org/). The PPI network
consisted of 74 nodes and 134 edges. Algorithm Maximal
Clique Centrality (MCC) was performed to screen hub genes
by cytoHubba plugin.We found that the top hub genes in the blue
module included ADCY4, RXFP1, AVPR2, CALCRL, ADRB1,
RAMP3, RAMP2 and VIPR1 (Figure 3D). To further clarify the
biological functions of DEGs in the blue module, the co-expressed
genes were annotated with KEGG pathway and GO terms using
ClueGO plugin. Five KEGG pathways and GO terms for

40 biological processes, 16 cell components, and 30 molecular
functions were identified (Figures 4A–D, Supplementary Tables
S13–S16). Particularly, choline related function was significantly
enriched in both KEGG and GO terms and C-C chemokine
receptor activity also enriched in biological processes and
molecular functions. These results implied that several of these
terms in the blue module might work together to form a
functional pathway contributing to lung adenocarcinoma.

Survival Analysis of Hub Genes
To determine the potential value of hub genes in predicting the
overall survival of LUAD patients, we analyzed the survival curves
of patients based on TCGA data. Among the 8 hub genes in blue
module, 4 genes were found to be statistically related to the overall
survival rate (p < 0.05). LUAD patients with high expression of
RXFP1, AVPR2, ADRB1 or VIPR1 had long overall survival rate.
Kaplan-Meier survival analysis showed that the high expression
of RXFP1, AVPR2, ADRB1 and VIPR1 were contributed to long
overall survival time of LUAD patients with HR (95%CI) of 0.70
(0.52–0.93), 0.71 (0.53–0.94), 0.71 (0.54–0.95) and 0.69
(0.51–0.92), respectively (Figures 5A–D). In order to verify

FIGURE 5 | Kaplan-Meier Survival curves of hub genes and TFBMs analysis in blue module. K-M curves based on TCGA data. (A) RXFP1; (B) AVPR2; (C) ADRB1;
(D) VIPR1. K-M curves based on KM plot database. (E) RXFP1; (F) AVPR2; (G) ADRB1; (H) VIPR1. Red curve represents patients with high expression of hub genes; (I)
Transcription factor binding motifs (TFBMs) enrichment analysis.
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the reality of this finding, we performed survival analysis using
validation dataset. KMplot database generated Kaplan–Meier
curves based on public microarray datasets of lung cancer
(GSE19188, GSE3141, GSE29013, GSE37745, GSE30219,
GSE50081, GSE14814, GSE31908 and GSE4573). We
demonstrated that the high expression of RXFP1 (HR = 0.65,
95%CI = 0.55–0.77), ADRB1 (HR = 0.68, 95%CI = 0.58–0.81) and
VIPR1 (HR = 0.81, 95%CI = 0.71–0.92) were significantly
improved the overall survival rate. We didn’t find that AVPR2
affect the prognosis of LUAD patients in validation dataset (p >
0.05) (Figures 5E–H).

Transcription Factor Enrichment in the Blue
Module
In order to reveal the influence of transcription factors on
genes in blue module, transcription factor binding motifs
(TFBMs) enrichment analysis was performed. As results,
27 TFBMs were enriched (Supplementary Table S17). The
top 3 TF motifs were cisbp_M6200, hdpi_EXOSC3 and
neph_UW.Motif.0550 (Figure 5I), which indicated that
transcription factors EGR3 and EXOSC3
(neph_UW.Motif.0550 had no direct annotation of TF)
played a key role in the blue module. Interestingly, NHS,
SEMA6A, TBX3, FLI1, BDNF, NTNG1, TIMP3, STARD8,
TAL1 and CD36 were simultaneously regulated by three
transcription factor binding motifs (TFBMs).

DISCUSSION

In this study, we identified 946 upregulated and
599 downregulated genes in lung adenocarcinoma. Calcium
signaling pathway was enriched by KEGG analysis.
Intracellular calcium (Ca2+), as an important second
messengers, plays a variety of roles in basic cell physiology,
including gene expression, cell cycle control, cell movement,
autophagy and apoptosis [27]. The specific calcium signaling
pathways have also been identified to be involved in the
multidrug resistance [28].

GSEA analysis further revealed significant enrichment of
cGMP−PKG signaling pathway. Piazza et al. revealed cGMP/
PKG signaling activation could block cancer cell growth,Wnt/β-
catenin transcription and tumor immunity [29]. Kong et al.
found lncRNA DARS-AS1 might activate cGMP-PKG pathway
to accelerate tumor malignancy in cervical cancer [30]. Our
GSEA analysis also indicated chemokine signaling pathway
were suppressed. The chemokine CXCL12-CXCR4/CXCR7
axis as a mechanism of tumor microenvironment and
immune resistance in glioblastoma [31], bladder cancer [32],
colorectal cancer [33] and gastrointestinal malignancies [34].
CXCL13/CXCR5 signaling axis modulated cancer cell ability to
grow, proliferate, invade, and metastasize [35]. Several studies
showed the CCL20-CCR6 axis was associated with several
cancers, including hepatocellular carcinoma [36, 37],
colorectal cancer [38, 39], breast cancer [40,41], and kidney
cancer [42].

The main objective for this study was to utilize a global
approach to construct a gene co-expression network and to
predict clusters of candidate genes involved in the pathogenesis
of lung adenocarcinoma. We hypothesized that tightly co-
expressed gene modules, enriched in shared functional
annotation, would provide the most effective predictions of
candidate gene sets that might conduct basic biological
functions. Modules changed significantly between lung
adenocarcinoma tissues and normal tissues, but the blue
module was the most significant. In geneset of blue module, we
found that regulation of endothelial cell migration, membrane
functions andG protein-coupled peptide receptor activity had been
changed significantly. It was well known that migration and
invasion were important features of tumors and always led to
poor prognosis. The blue module might lie at the heart of lung
adenocarcinoma. According to the PPI network analysis from the
bluemodule, 8 high-degree hub genes were identified, whichmight
play a critical role in the network. It was worth noting that the
expression of RXFP1, AVPR2, ADRB1 and VIPR1 had significantly
effect on the survival of patients with lung adenocarcinoma.

The Relaxin/relaxin family peptide receptor 1 (RXFP1) axis is
an “old” pathway. Studies showed that RXFP1was associated with
fibrotic diseases, such as lung fibrosis [43], kidney fibrosis [44]
and cardiac fibrosis [45]. More recent studies suggested that
Relaxin/RXFP1-mediated cancer growth and invasion in
breast, thyroid and prostate cancers [46-51]. RXFP1 also was
involved in anti-apoptotic functions, angiogenesis and
chemoresistance in cancer cells [52-56]. The arginine
vasopressin type 2 receptor (AVPR2) agonist was able to
impair tumor aggressiveness and distant spread in colorectal
cancer [57]. ADRB1 mutation was associated with lower
tumor mutational burden and might serve as a potential
clinical prognosis biomarker of breast cancer [58]. The
vasoactive intestinal peptide receptor-1 (VIPR1) has prominent
growth effects on a number of common neoplasms. The
researchers found that the overexpression of VIPR1
significantly inhibited the growth, migration, and invasion of
in lung adenocarcinoma cells [59]. These studies implied that
RXFP1, AVPR2, ADRB1 and VIPR1 might be involved in the
development of cancer.

Transcription factors are involved in the development and
prognosis of various cancers. EGR3 loss was associated with
prostate cancer progression and poor prognosis. In prostate
cancer cells, EGR3 blocked the EMT process and suppressed
cell migration and invasion [60]. Li et al. found that Silencing of
miRNA-210 inhibited the progression of liver cancer via
upregulating EGR3 [61]. Chien et al. implied that miR-23a
could directly bind to the 3’UTR of EGR3 to inhibit NSCLC
cell mobility [62]. Ansari and his colleagues revealed that
EXOSC3 was significantly upregulated in pancreatic cancer
tissue using protein deep sequencing [63].

Despite traditional DEGs analysis has provided enormously
relevant information; however, only WGCNA allowed for
identifying correlation pattern among genes. In our study, we
found strong correlation between the blue module and lung
adenocarcinoma. In the blue module, ADCY4, RXFP1, AVPR2,
CALCRL, ADRB1, RAMP3, RAMP2 and VIPR1 were identified as
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hub genes. Transcription factors EGR3 and EXOSC3might play a
regulatory role in gene expression in the blue module.

Taken together, after analyzing the expression data of LUAD,
we identified 4 hub genes (RXFP1, AVPR2, ADRB1, and VIPR1)
which might affect the prognosis of LUAD patients. However,
further experiments are still needed to verify these hub genes and
pathways.
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