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Abstract

Deep learning has emerged as a revolutionary technology for protein residue-residue

contact prediction since the 2012 CASP10 competition. Considerable advancements

in the predictive power of the deep learning-based contact predictions have been

achieved since then. However, little effort has been put into interpreting the black-

box deep learning methods. Algorithms that can interpret the relationship between

predicted contact maps and the internal mechanism of the deep learning architec-

tures are needed to explore the essential components of contact inference and

improve their explainability. In this study, we present an attention-based con-

volutional neural network for protein contact prediction, which consists of two atten-

tion mechanism-based modules: sequence attention and regional attention. Our

benchmark results on the CASP13 free-modeling targets demonstrate that the two

attention modules added on top of existing typical deep learning models exhibit a

complementary effect that contributes to prediction improvements. More impor-

tantly, the inclusion of the attention mechanism provides interpretable patterns that

contain useful insights into the key fold-determining residues in proteins. We expect

the attention-based model can provide a reliable and practically interpretable tech-

nique that helps break the current bottlenecks in explaining deep neural networks for

contact prediction. The source code of our method is available at https://github.

com/jianlin-cheng/InterpretContactMap.
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1 | INTRODUCTION

Prediction of residue-residue contacts in proteins plays a vital role in

the computational reconstruction of protein tertiary structure.

Recently, advancements in the mathematical and statistical techniques

for inter-residue coevolutionary analysis provide essential insights for

correlated mutation-based contact prediction, which is now becoming

a critical component to generate input features for machine learning

contact prediction algorithms. For instance, in the recent 13th

Community-Wide Experiment on the Critical Assessment of Tech-

niques for Protein Structure Prediction (CASP13) contact prediction

challenge, significant improvements have been achieved due to the

integration of both inter-residue coevolutionary analysis and novel

deep learning architectures.1-4
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A variety of deep learning-based models have been proposed to

improve the accuracy of protein contact prediction since deep learn-

ing was applied to the problem in 2012 CASP10 experiment.5 Many

of these methods leverage the contact signals derived from the direct

coupling analysis (DCA). Most DCA algorithms6-9 generate correlated

mutation information between residues from multiple sequence align-

ments (MSAs), which is utilized by the deep convolutional neural net-

works in the format of 2D input feature maps. For example, RaptorX-

Contact,10 DNCON2,11 and MetaPSICOV12 are a few early methods

that apply the deep neural network architectures with one or more

DCA approaches for contact prediction. The connection between the

two techniques underscores the importance of explaining the contri-

bution of patterns in coevolutionary-based features to the deep

learning-based predictors.

Despite the great success of deep learning-based models in a

variety of tasks, this approach is often treated as black-box function

approximators that generate classification results from input features.

Since the number of parameters in a network is somewhat propor-

tional to its depth, it is infeasible to extract human-understandable

justifications from the inner mechanisms of deep learning without

proper strategies. Saliency maps and feature importance scores are

widely used approaches for model interpretation in machine learning.

However, due to the unique characteristic of contact prediction, these

methods involve additional analysis procedures that require far more

computational resources than other typical applications. For example,

the saliency map for a protein with length L requires L × L times of

deconvolution operations in a trained convolutional neural network

since the output dimension of contact prediction is always the same

as its input. While this number can be reduced by choosing only posi-

tive labels for analysis, the whole saliency map is still much harder to

determine since the many DCA features fed to the network have

higher dimensions than the traditional image data. For example,

RaptorX-Contact,10 one of the state-of-the-art contact predictors,

takes 2D input with a size of L × L × 153. The recent contact/distance

predictor DeepDist13 takes input with size up to L × L × 484. The

very large input size for contact prediction makes it difficult to use

these model interpretation techniques.

Recently, the attention mechanism has been applied in natural

language processing (NLP),14,15 image recognition,16 and bioinformat-

ics.17,18 The attention mechanism assigns different importance scores

to individual positions in its input or intermediate layer so that the

model can focus on the most relevant information anywhere within

the input. In 2D image analysis, the attention weights for any individ-

ual positions on an image allow the visualization of critical regions that

contribute to the final predictions. In addition, these weights are gen-

erated during the inference step, without requiring additional compu-

tation procedures after the prediction of a contact map. Hence, the

attention mechanism is a suitable technique to facilitate the interpre-

tation of protein contact prediction models.

In this article, we propose an attention-equipped deep learning

method for protein contact prediction, which adopts two different

architectures of the attention targeted for interpreting 2D and 1D

input features, respectively. The regional attention utilizes the n × n

region around each position of its input 2D map while the sequence

attention utilizes the whole range of its 1D input. The regional atten-

tion module is implemented with a specially designed 3D con-

volutional layer so that training and prediction on large datasets can

be performed with high efficiency. The sequence attention is similar

to the multi-headed attention mechanism applied in the NLP tasks.

We show that by applying attention mechanisms on the general deep

learning predictors, we can acquire models that are able to explain

how position-wise information anywhere in input or hidden features

are transferred to later contact predictions, and this can be done with-

out significant extra computational cost and decrease of the predic-

tion accuracy.

2 | MATERIALS AND METHODS

2.1 | Overview

The overall workflow of this study is shown in Figure 1. We use the

combined predictions from two neural network modules of different

attention mechanisms (sequence attention and regional attention) to

predict the contact map for a protein target. Both modules take two

types of features as inputs: the pseudolikelihood maximization matrix

(PLM)8 generated from multiple sequence alignment as a coevolution-

based 2D feature and the position-specific scoring matrix (PSSM)

which provides the representation of the sequence profile for the

input protein sequence. The outputs of the two modules are both

L × L contact maps with scores ranging from 0 to 1, where L repre-

sents the length of the target protein. The final prediction is produced

by the ensemble of two attention modules. We implemented our

model with Keras (https://keras.io). For the evaluation of the

predicted contacted contact map, we primarily focus on long-range

contacts (sequence separation between two residues: n ≥ 24).

2.2 | Datasets

We select targets from the training protein list used in DMPfold19 and

extract their true structures from the Protein Data Bank (PDB) to create

a training dataset. After removing the redundant proteins that may have

>25% sequence identity with any protein in the validation dataset and

test dataset, 6463 targets are left in the training dataset. The validation

set contains 144 proteins used to validate DNCON2.11 The blind test

dataset is built from 31 CASP13 free modeling (FM) domains. The

CASP13 test dataset contains new proteins that have no sequence simi-

larity with both the training and test datasets at all.

2.3 | Input feature generation

For each protein sequence, we use two features as inputs for the

deep learning model: PLM and PSSM. The PLM is generated from

MSAs produced by DeepMSA [16]. The sequence databases used in
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the DeepMSA homologous sequences search include Uniclust30

(2017-10),20 Uniref90 (2018-04) and Metaclust50 (2018-01),21 our in-

house customized database which combines Uniref100 (2018-04) and

metagenomics sequence databases (2018-04), and NR90 database

(2016). All of the sequence databases used for feature generation were

constructed before the CASP13 experiment (eg, before the CASP13 test

dataset was created). DeepMSA combines iteratively homologous

sequence search of HHblits22 and Jackhmmer23 on the sequence data-

bases to compute MSAs for feature generation. It performs trimming on

the sequence hits from Jackhmmer with a sequence clustering strategy,

which reduces the search time of the HHblits database construction for

the next round of search. The final input of the model consists of two

major conponents: 1D features (PSSM) of dimension L × 20 and 2D fea-

tures (PLM) of dimension L × L × 441.

2.4 | Deep network architectures

Our model consists of two primary components, the regional atten-

tion module, and the sequence attention module (Figure 1). The two

modules include the attention layers, normalization layers, convolu-

tion layers and residual blocks. The outputs of these two modules

are combined to generate the final prediction. Below are the

detailed descriptions of each module with an emphasis on the atten-

tion layers.

2.4.1 | Sequence attention module

In the sequence attention module (Figure 1), the 1D PSSM feature

first goes through an instance normalization layer24 and a 1D convolu-

tion operation, which is followed by a Bi-Directional long- and short-

term memory network (LSTM) in which the LSTM operations are

applied on both forward and reverse directions of the inputs. The out-

put vectors on both directions are concatenated. The outputs are then

fed into a multi-headed scaled dot product attention layer (Figure 2A).

Three vectors required for the attention mechanism: Q(Query),

K(Key), and V(Value) are generated from different linear transforma-

tions of the input of the attention layer. The attention output Z is

computed as:

F IGURE 1 An overview of the proposed attention mechanism protein contact predictor framework. The architecture of the deep neural
network employed with two attention modules: In the sequence attention module, the 1D input (PSSM) first goes through the 1D convolution
network and bidirectional long- and short-term memory network (LSTM). Then the attention mechanism is applied to the LSTM output. The 2D
input (PLM) is first processed with the 2D convolutional neural network and the Maxout layer. The 1D input is then tiled to 2D format so that it
can be combined with the 2D input. The concatenated inputs then go through a residual network with four residual blocks consist of 3, 4, 6, 3
repetitions of 2D convolution layers, respectively. In regional attention networks, the 1D inputs are first tiled to 2D format and concatenated
with the 2D input. The combined inputs are then processed similarly with the sequence attention module, except for the additional 2D attention
layer before the last convolution layer. The average of the outputs from the two modules is used as the final predicted contact map
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Z =Softmax
Q×KTffiffiffiffiffiffiffi

datt
p

 !
×V

where datt represents the dimensions of Q, K and V. The attention 1D

operation assigns different weights to the transformed 1D feature so

that the critical input region for the successful prediction can be spot-

ted. The attention output Z is then tiled to 2D format by the repeti-

tion of columns and rows for each dimension.

The 2D feature PLM first goes into the instance normalization

and a ReLU activation.25 It is then processed by a convolutional layer

with 128 kernels of size 1 × 1 and a Maxout layer26 to reduce the

input dimension from 128 to 64. The 2D inputs are concatenated with

the tiled attention output and go into the residual network compo-

nent. The final output of the sequence attention module is generated

from a 2D convolution layer with a filter of size (1,1) and Sigmoid acti-

vation, resulting in output of size L × L.

2.4.2 | Regional attention module

The regional attention module (Figure 1) takes inputs from the PLM

matrix and the tiled 2D PSSM feature. The two features are concatenated

at the beginning of the module and are processed in the same way as the

2D PLM input of the sequence attention module. The residual network

component with the same configuration (described in section 2.4.3) as in

the sequence attention module is also applied. The last residual block is

followed by a convolutional layer with 32 filters, and the results are used

as the input of the attention 2D layer.

The input shape of the attention 2D layer (Figure 2B) is (L, L, 32). It

is converted by a 3D convolution layer (Region Stretching layer) with

specially designed filters so that the output has shape (L, L, 32, n2),

where n is the dimension of the attention region for each position in

the 2D input. The purpose of this layer is to make the last dimension of

its output represent the flattened n by n region around each element of

F IGURE 2 Schematic illustration of 1D and 2D attention mechanism. A, The scheme for 1D attention mechanism. The input is first
transformed into a vector of size (Nheads,L, datt) for the efficient multi-headed attention implementation. For each head, the vector of size (L, datt)
is multiplied to three different trainable matrices of size (datt, datt) to generate Query(Q), Key(K), and Value(V). Different heads have their own
transformation matrices for Q, K and V. Q and K first go through a batch dot product operation, resulting in a new vector QK with size (Nheads, L,
L). QK is then scaled and normalized with Softmax function on the last axis, which becomes the attention score Watt. The product of Watt × V for
each head becomes the 1D attention output. B, The scheme for 2D attention mechanism. The 2D input is first transformed with a 3D
convolution and becomes a stretched vector of size (L, L, 32, n2). It is then computed with the similar attention operation as the 1D attention
scheme on the last axis [Color figure can be viewed at wileyonlinelibrary.com]
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the original input (in our model n is set to 5). Thus, each position in the

L by L output are determined by the weighted sum of the n by n square

window around itself. The Region Stretching layer has n2 filters with

shape n×n. For the i-th filter of the layer, the weight of the i-th element

(flatten in row-major order) in the n×n area is always set to 1 with all

other positions set to 0. We repeat these filters 32 times so that the

stretching operation is applied to all dimensions of the input. The

weights of these filters will not be changed during training. This opera-

tion can leverage the highly optimized convolution implementation in

Keras (https://keras.io/api/layers/convolution_layers/convolution3d/)

and is much more efficient than the explicit implementation. The

corresponding Q, K, and V vectors for the attention mechanism are

computed from the transformed output of 3D convolution. The scaling

and Softmax normalization are applied to the last dimension for the

products of Q and K so that different attention weights can be assigned

to the n×n surrounding area for each position on the L × L map. As a

result, the output of each position on the feature map will be a

weighted sum of their surrounding regions. After the 2D attention layer,

the output of the regional attention module is generated from a 2D

convolutional layer with a filter of size (1,1) and the Sigmoid activation.

2.4.3 | Residual network architecture

Both attention modules have the same residual network component

consisting of four residual blocks differing in the number of internal

layers (Figure 1). Each residual block is composed of several consecu-

tive instance normalization layers and convolutional layers with

64 kernels of size 3 × 3. The number of layers showed in each block

represents the number of 2D convolution layers in the corresponding

component. The final values of the last convolutional layer are added

to the output of a shortcut block, which is a convolutional layer with

64 kernels of size 1 × 1. A squeeze-and-excitation (SE) block27 is

added at the end of each residual block. The SE operation weights

each of its channels differently by a trainable 2-layer dense network

when creating the output feature maps, so that channel-wise feature

responses can be adaptively recalibrated.

2.5 | Training

The training of the deep network is performed with the customized

Keras data generators to reduce the memory requirement. The batch

size is set to 1 due to the large size of feature data produced from

long protein sequences. A normal initializer28 is used to initialize the

weights of the layers in the network. Adam optimizer29 is used for

training, with the initial learning rate set to 0.001. For epochs (com-

plete passes through the entire training data) ≥ 30, the optimizer is

switched to stochastic gradient descent, with learning rate and

momentum set to 0.01 and 0.9, respectivly. The learning rate deter-

mines the scale for model paratemeters update at each iteration and

the momentum30 is used to compute the next update of the weights

as a linear combination of the current gradient and the update of

corresponding weights in the previous iteration. At the end of each

epoch, the current weights are saved, and the precision of top L/2

long-range contact predictions (eg, predicted contacts with sequence

separation > = 24) on the validation dataset is evaluated. The training

process is terminated at epoch 60, and the epoch with the best per-

formance on the validation dataset is chosen for the final blind test.

3 | RESULTS

3.1 | The contact prediction accuracy on the
CASP13 dataset

We evaluate our models on 31 CASP13 FM targets based on the

average of the per-target performance on them. According to the def-

inition from CASP13, a pair of residues are considered to be in contact

TABLE 1 Precision (%) of the top L/5, L/2 and L predicted long-range contacts on the CASP13 dataset

Model

Short-range Medium-range Long-range

Top-L/5 Top-L/2 Top-L Top-L/5 Top-L/2 Top-L Top-L/5 Top-L/2 Top-L

Sequence attention 58.26 41.51 27.95 63.10 45.87 32.51 64.46 52.13 39.82

Regional attention 61.08 41.95 28.38 65.46 48.00 33.65 67.32 54.15 40.96

Combined model 60.94 42.69 28.83 66.45 48.45 34.19 70.73 55.88 42.64

Baseline model 59.00 42.73 28.17 64.29 48.01 33.05 66.31 49.42 36.40

TABLE 2 Comparison of the performance of the combined
attention model with top 10 CASP13 methods

Long-range Top-L/5 Top-L/2 Top-L

RaptorX-Contact 71.70 59.02 45.58

Combined attention 70.73 55.88 42.64

TripletRes 65.97 55.34 42.65

ResTriplet 65.36 54.81 41.84

DMP 62.76 48.90 37.69

TripletRes_AT 60.77 52.02 40.13

RRMD 60.29 49.60 38.50

ZHOU-Contact 59.66 49.42 38.16

RRMD-plus 58.63 47.86 36.98

ResTriplet_AT 58.22 49.18 38.48

Zhang_Contact 58.07 49.58 39.21
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if the distance between their Cβ atoms in the native structure is less

than 8.0 Å. By convention, long-range contacts are defined as contact

pairs in which the sequence separations between the two residues of

the contacts are larger than or equal to 24 residues. The sequence

separation for medium-range is between 12 and 23 and short-range

between 6 and 11 residues. Following a common standard in the

field,1 we evaluate the precision of top L/n (n = 1, 2, 5) predicted

long-range contacts. In addition to evaluating the overall performance

of the combined model, we benchmarked the predictions from the

two independent attention modules. The evaluation results are shown

in Table 1.

The combined model outperforms each individual attention

model and model without attention mechanism for top L/5, top L/2,

and top L predicted contacts in medium and long-range. For instance,

the top L/5 long-range precision of the combined model is 70.73%,

higher than both the sequence attention module (64.46%) and the

regional attention module (67.32%) as well as the baseline model that

without either of the attention mechanisms. According to the pair

t test, the combined model performance is significantly better than

the sequence model in all ranges (P < .05), while no significant differ-

ence is observed when compared with the baseline or regional

attention model. We also compare the performance of our method

with the top 10 methods in CASP13 on the FM targets (Table 2) and

show that it achieves the overall performance comparable to the top-

ranked CASP13 methods. Specifically, the accuracy of top L/5 or top

L/2 predictions of our method (“Combined Attention”) is ranked sec-

ond out of the 11 methods.

We also find that the predictive improvements in combining the

two attention modules are from the predictions with high confi-

dence scores. Figure 3A,B illustrates the receiver operating curve

(ROC) and Precision-Recall curves (PR curve) of the three models on

targets for evaluation. The area under the curve (AUC) for ROC

curve and PR curve of all three models has similar trends. Figure 3C,

D shows the ROC and PR curves of the union of residue pairs from

top-L/5 scores in any of the three models. For AUC of both curves,

the combined results have a higher score (0.7888 for ROC curve and

0.8031 for PR curve) than the sequence attention model (0.7614 for

ROC curve and 0.7935 for PR curve) and the regional attention

model (0.7769 for ROC curve and 0.7907 for PR curve). The

improved performance of combining the two attention models indi-

cates that the ensemble of two different attention architectures

enhances the final prediction.

F IGURE 3 Prediction performance curves of the sequence attention model, regional attention model, and combined model. A, Receiver
operating curve (ROC) curve for all long-range contact predictions. B, Precision-Recall curve for all long-range contact predictions. C, ROC curve
for all residue pairs that appear in the union of residue pairs from top-L/5 scores in any of the three models. D, Precision-Recall curve for all
residue pairs that appear in the top-L/5 scores in any of the three models [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Comparison of the
performance of different attention
configurations

ID Model_type Number_heads Region Top-L/5 Top-L/2 Top/L

1 Sequence 1 — 0.619499 0.460423 0.345457

2 Sequence 2 — 0.596136 0.453989 0.344475

3 Sequence 4 — 0.6356 0.474 0.3556

4 Regional 1 5 0.658928 0.479804 0.352311

5 Regional 2 5 0.664635 0.478009 0.354849

6 Regional 4 5 0.6708 0.4925 0.3675

7 Regional 4 3 0.660694 0.482968 0.35811

Note: Bold numbers denotes the highest score achieved in each attention category.
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For both models, we have also benchmarked the impact of differ-

ent combinations of attention configuration (number of attention

heads and size of attention regions) with the maximum scale of the

architectures allowed by our GPU memory capacity (Nvidia GeForce

1080Ti 11G). The results are showed in Table 3.

3.2 | Comparison of the predictive performance of
two attention modules

We compare the performance of the two attention modules for each

target in Figure 4. The results show that the precision scores of the

two attention modules have a strong correlation (Pearson Correla-

tion Coefficient = 0.78) among all targets. As expected, most of the

targets with high prediction precision in the combined model are

those with high precision scores in both attention modules. Interest-

ingly, there are cases in which the combined predictions acquire an

improved performance when the two attention modules perform

very differently. For example, the top-L/5 precision score of

T1008_D1 reaches 93.33% in the combined model, higher than the

sequence module (46.67%) and the regional module (80.00%). Simi-

larly, the top-L/5 precision score of T0957s2 reaches 64.52% in the

combined model, which is equal to the sequence module and higher

the regional module (45.16%). These results further confirm that the

difference in the architecture of two attention mechanisms provides

a complementary effect that can contribute to performance

improvement.

F IGURE 4 Comparison of the top-L/5 precision between sequence and regional attention module. The targets are arranged in the
descending order of the top-L/5 precision in the combined model. A, Precision scores from the sequence attention module. B, Precision scores
from the regional attention module. T1008 and T970 are two examples in which the two modules perform very differently [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 5 Comparison of attention scores from regions of the
highest Φ-value peak and scores from the rest regions. The attention
scores are averaged across all four heads [Color figure can be viewed
at wileyonlinelibrary.com]

CHEN ET AL. 703

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


3.3 | Visualization of attention scores from the
sequence model

Our sequence attention model is similar to the neural translation model

proposed in Google Transformer,14 in which the attention weights are

visualized through case studies of the importance of each word in the

source language for a sentence to each word in the target language.

While it may be infeasible to directly understand the importance of

each residue in a protein in the folding process through human observa-

tions, we included several proteins (2PTL,1IDY and 1SHG)31-34 that

have been studied through experimentaly determined Φ-values. The

Φ-values are the ratio of the change in stability of the transition-state

ensemble (TSE) to that of the native state during folding due to the

mutation of each residue, and represent important information about

residue interactions present within the TSE.35

Next, we demonstrate how position-wise information in

sequence attention model is transferred to later-stage contact predic-

tions in our attention mechanisms for 1D features. Since the sequence

attention score is a L by L matrix, in which element (i,j) represents the

importance of the j-th residue to the i-th residue, and the sum of each

row is normalized to 1. Thus, the column sum of the attention weights

can represent the overall importance of each residue according to the

1D input. We first checked the column sums of attention scores of

these three proteins and compared the density of scores from regions

of the highest Φ-value peak and scores from the rest regions. The

results are shown in Figure 5. We show that the scores of Φ-value

peak are significantly higher than other regions (P-value <.01,

Wilcoxon test).

We further show the case studies of the patterns of attention

scores for each protein (Figure 6). For each of the protein, we

F IGURE 6 The visualization of Φ-values, sequence attention score and 1D input feature (PSSM) for three proteins 2PTL, A; 1IDY, B; and
1SHG, C [Color figure can be viewed at wileyonlinelibrary.com]
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could identify at least one attention head (out of 4) that have

a clear pattern of the Φ-value peak residue from the

experiment. In addition, this pattern is generated from the 1D fea-

ture of PSSM only, while in PSSM such a pattern is not observed

at all.

3.4 | Regional attention scores and key residue
pairs in successful prediction

We first consider the importance of the area with the high attention

scores in contact prediction. To demonstrate this, we permute the

F IGURE 7 Performance after permutation of different locations of the input. The Y-axis indicates the increase or decrease of top-L/5
precision scores after permutation. Here we choose locations that have the highest and lowest k attention scores as centers for permutated
regions, where k is the number of true positives of each target. A, Impact of permutated regions with size (1,1). B, Impact of permutated regions
with size (3,3). C, Impact of permutated regions with size (5,5). TP_High, true positive predictions with high scores; TP_Low, true positive
predictions with low scores; TN_High, true negative predictions with high scores; TP_Low, true negative predictions with low scores [Color figure
can be viewed at wileyonlinelibrary.com]

F IGURE 8 Visualization and interpretation contact predictions of Human common-type acylphosphatase from the regional attention
module. A, The 3D model of acylphosphatase (AcP) with the three highlighted critical residues in protein folding. The transparent spheres around

the residues indicate their corresponding scopes in the contact networks. B, The heatmap of regional attention scores shown on the 3D structure
of AcP. C, The heatmap of Φ-values shown on the 3D structure of AcP. D-F, The Φ-values, attention scores and the count of true contacts for
each reside plotted along the protein sequence. ρ: Pearson Correlation Coefficient [Color figure can be viewed at wileyonlinelibrary.com]
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input features around the positions that have high or low attention

scores and use this permuted feature for prediction. Our results show

that the number of true positive predictions will decrease most drasti-

cally (Figure 7), indicating that they contain important information

related to protein fold. Also, the level of decrease remains similar

when the region of permutated data grows from 1 × 1 to 5 × 5 in

areas with high attention scores. In contrast, the level of decrease in

areas with low attention score is much smaller and increases with the

expansion of the permuted area. These results indicate the existence

of potential protein folding-related key information in small areas with

high attention scores.

To further explore the interpretability of our method, we analyze

the model on a protein whose folding mechanism has been well stud-

ied: Human common-type acylphosphatase (AcP). The structure and

sequence information of AcP is obtained from PDB (https://www.

rcsb.org/structure/2W4C). Vendruscolo et al.36 identified three key

residues in AcP (Y11, P54, and F94) that can form a critical contact

network and result in the folding of a polypeptide chain to its unique

native-state structure. The 3D structure model and three key residues

are shown in Figure 8A.

We use the regional attention module to predict the contact map

of the protein. The precisions of the top-L/5, L/2, and L prediction are

100%, 95.74%, and 75.79%, respectively. We then extract the 2D

attention score matrix from the model and combine the normalized row

sums and column sums to reformat its dimension to L × 1. The atten-

tion score mapped to the protein 3D structure spot two key residues:

Y11 and F94, where large regions of high attention weights are located

(Figure 8B). Furthermore, we apply the same strategy with the experi-

mentally determined Φ-values on the 3D structure of AcP (Figure 8C).

The comparison (Figure 8D,E) shows that the Φ-values and normalized

attention scores have similar trends along the peptide sequence

(Pearson correlation coefficient = 0.4) with three peaks for Y11, P54,

and F94 appeared in neighboring regions of the curves determined by

both the experimental method and the attention method. Also, we find

that the true contract map does not provide the same level of informa-

tion about the three key residues (Figure 8F). These results indicate that

the attention scores can be applied to identify the critical components

of the input feature. However, we also find that the co-evolutionary

input scores calculated by PSICOV can also be used to identify some

Φ-value peaks of AcP. Therefore, the 2D regional attention weights can

be either a new way to identify folding-related new residues or summa-

rization of the input. This situation is different from the 1D sequence

attention, where the 1D attention weights can definitely identify

Φ-value peaks (folding-related residues) that cannot be recognized from

1D inputs at all. Therefore, attention mechanisms can improve the

explainability of contact prediction models, but the effects are not

guaranteed and may depend on their architecture and inputs.

4 | DISCUSSION

Attention mechanisms have two valuable properties that are useful for

protein structure prediction. First, attention mechanisms can identify

important input or hidden features that are important for structure pre-

diction, and therefore they have the potentials to explain how predic-

tions are made and even increase our understanding of how proteins

may be folded. However, the knowledge gained from the attention

mechanisms depends on how they are designed and the input informa-

tion used with them. Second, attention mechanisms can pick up useful

signals relevant to protein structure (eg, contact) prediction anywhere in

the input, which is much more flexible than other deep neural network

architectures such as sequential information propagation in recurrent

neural networks and spatial information propagation in convolutional

neural networks. As protein folding depends on residue-residue interac-

tions that may occur anywhere in a protein, the attention mechanisms

can be a natural tool to recognize the interaction patterns relevant to

protein structure prediction or folding more effectively.

5 | CONCLUSION

Interrogating the input-output relationships for complex deep neural

networks is an important task in machine learning. It is usually infeasi-

ble to interpret the weights of a deep neural network directly due to

their redundancy and complex nonlinear relationships encoded in the

intermediate layers. In this study, we show how to use attention

mechanisms to improve the interpretability of deep learning contact

prediction models without compromising prediction accuracy. More

interestingly, patterns relevant to key fold-determining residues can

be extracted with the attention scores. These results suggest that the

integration of attention mechanisms with existing deep learning con-

tact predictors can provide a reliable and interpretable tool that can

potentially bring more insights into the understanding of contact pre-

diction and protein folding.
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