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ABSTRACT
Background: Thalassaemia is one of the most common inherited monogenic diseases world-
wide with a heavy global health burden. Considering its high prevalence in low and middle-
income countries, a cheap, accurate and high-throughput screening test of thalassaemia prior to
a more expensive confirmatory diagnostic test is urgently needed.
Methods: In this study, we constructed a machine learning model based on MALDI-TOF mass
spectrometry quantification of haemoglobin chains in blood, and for the first time, evaluated its
diagnostic efficacy in 674 thalassaemia (including both asymptomatic carriers and symptomatic
patients) and control samples collected in three hospitals. Parameters related to haemoglobin
imbalance (a-globin, b-globin, c-globin, a/b and a-b) were used for feature selection before clas-
sification model construction with 8 machine learning methods in cohort 1 and further model
efficiency validation in cohort 2.
Results: The logistic regression model with 5 haemoglobin peak features achieved good classifi-
cation performance in validation cohort 2 (AUC 0.99, 95% CI 0.98–1, sensitivity 98.7%, specificity
95.5%). Furthermore, the logistic regression model with 6 haemoglobin peak features was also
constructed to specifically identify b-thalassaemia (AUC 0.94, 95% CI 0.91–0.97, sensitivity 96.5%,
specificity 87.8% in validation cohort 2).
Conclusions: For the first time, we constructed an inexpensive, accurate and high-throughput
classification model based on MALDI-TOF mass spectrometry quantification of haemoglobin chains
and demonstrated its great potential in rapid screening of thalassaemia in large populations.

KEY MESSAGES

� Thalassaemia is one of the most common inherited monogenic diseases worldwide with a
heavy global health burden.

� We constructed a machine learning model based on MALDI-TOF mass spectrometry quantifi-
cation of haemoglobin chains to screen for thalassaemia.

Abbreviations: HPLC: high-performance liquid chromatography; Hb A2: haemoglobin A2; Hb F:
foetal haemoglobin; MALDI-TOF MS: matrix assisted laser desorption ionization-time of flight
mass spectrometry; SCD: sickle cell disease; AUC: area under the curve; ROC: receiver operating
characteristic; RF: random forest; LR: logistic regression; SVM: support vector machine; KNN: K-
nearest neighbour; DT: decision tree; NB: naive Bayes; Adaboost: adaptive boosting; ANN: artifi-
cial Neural Network.
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Introduction

Thalassaemia is among the most common inherited
monogenic diseases worldwide, which is highly

prevalent in sub-Saharan African, Mediterranean region,
Middle Eastern, Indian subcontinent and Southeast Asian
descent [1,2]. About 1–5% of the global population are
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carriers of genetic thalassaemia mutations [1] and at
least 60 000 severely affected individuals were born
each year [3]. Thalassaemia causes anaemia, ineffective
erythropoiesis, iron overload and other clinical manifesta-
tions, which are accompanied by developmental delays
and other multiple-organ damages [1,4]. Most patients
with severe thalassaemia may die in utero or during
early childhood without treatment.

In healthy individuals, haemoglobin contains two a
subunits and two b subunits (a2b2) to work coopera-
tively to transport oxygen [5]. When a or b subunit
encoding gene (HBA1/HBA2 or HBB) has defected,
abnormal form or inadequate amount of a or b sub-
unit will cause a- or b-thalassaemia [6–8]. Without
intervention, any form of thalassaemia will progress
and has increased morbidity with age [9].
Furthermore, the deletion or mutation in HBA1/HBA2
or HBB gene can be inherited by the next generation.
So early detection is very important for not only treat-
ment but also the prevention of thalassaemia.

Thalassaemia diagnosis in clinical practice

In clinical practice, examination of red cell indices and
measurement of haemoglobin concentration is used to
screen suspected cases of thalassaemia. However, due to
the insufficient sensitivity and specificity of these meth-
ods, further examinations are still needed. Haemoglobin
electrophoresis or high-performance liquid chromatog-
raphy (HPLC) has been used for the quantification of
haemoglobin A2 (Hb A2, or a2d2) and foetal haemoglo-
bin (Hb F, or a2c2). However, the throughput of electro-
phoresis is limited and HPLC quantification of Hb A2
could be interfered with by the existence of Hb Lepore
or Hb E variant due to their co-elution with Hb A2,
which may result in a false increase of Hb A2 level [10].
The specificity and sensitivity of these methods for the
diagnosis of thalassaemia are not satisfactory. For
example, Noppacharn et al. [11] reported that HPLC
yielded 76.4% sensitivity and 89.5% specificity for identi-
fication a-thalassaemia syndrome in the newborns of
Thailand. Genetic analysis (e.g. gap-PCR, DNA sequenc-
ing) and family studies are necessary for the final con-
firmation of thalassaemia [12]. Although next-generation
sequencing is more precise than traditional genotyping
methods [13], its application is limited by the high cost
and additional requirements for bioinformatics analysis.

Mass spectrometry in thalassaemia

As a kind of high-throughput detection instrument,
MALDI-TOF MS (matrix-assisted laser desorption

ionization-time of flight mass spectrometry) is playing
an increasingly important role in clinical chemistry
[14]. Though it has been used for the detection of
mutations in thalassaemia patients [15–17], sample
pre-treatment (DNA extraction and PCR) is still time-
consuming. Direct detection of the intact haemoglobin
chains in untreated blood samples is an efficient way
to increase the throughput of MALDI-TOF MS.
However, there were very few related studies, which
only focus on identifying the different peaks of the
haemoglobin chain rather than diagnosis. Kleinert
and co-workers detected the peaks of wild-type a-
and b-globin and the variant b-globin [18]. Iles and
Mahmoud revealed the characteristic spectra of thalas-
saemia [19], then software was developed and the
ratio between b-globin and a-globin was used for
identification of thalassaemia [20]. However, the diag-
nostic efficacy of this method was not evaluated.
MALDI-TOF MS was only evaluated for newborn sickle
cell disease (SCD) screening [21]. Compared with SCD,
which is a monogenic disease with a specific haemo-
globin variant, thalassaemia is more difficult to be diag-
nosed due to much more complicated genotypes and
phenotypes. Till now, systematic research on the appli-
cation of MALDI-TOF MS in the diagnosis of thalassae-
mia in a large population is still lacking. In this study,
we constructed a MALDI-TOF MS-based haemoglobin
chain quantification method for a rapid screen of thal-
assaemia, and for the first time, proved the high diag-
nostic performance of this method in 674 thalassaemia
and control samples collected in three hospitals.

Materials and methods

Blood sample collection

We recruited 436 individuals who were diagnosed
with thalassaemia and 13 non-thalassaemia immediate
family members at the First Affiliated Hospital of
Guangxi Medical University (Nanning, Guangxi Zhuang
Autonomous Region, China) from 2017/05/12 to 2018/
1/31. Fasting peripheral blood samples were collected.
For those thalassaemia patients who were accepting
blood transfusion therapy, samples were collected two
weeks after receiving their last blood transfusion.
Peripheral blood DNA was extracted for thalassaemia
genotyping, which was performed at BGI Clinical
Laboratories (Shenzhen, China) using Gap-PCR and
SNP detection. Adult haemoglobin 2 (Hb A2, or a2d2)
and foetal haemoglobin (Hb F, or a2c2) were meas-
ured by Bio-Rad Variant II ion-exchange HPLC plat-
forms. Peripheral blood samples from Longgang
District People’s Hospital of Shenzhen (N¼ 96) and
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Beijing Bo’ai Hospital (N¼ 129) were collected as con-
trol. All the blood samples were collected by EDTA
Vacutainer tubes and stored at �80 �C. All individuals
provided informed consent and this study was
approved by the Ethical Review Boards from the three
hospitals above.

Sample preparation

For each sample, 5 lL of blood was added into 1mL
of dilution buffer (blood peptide mass fingerprinting
detection kit 1010306, Bioyong Technologies Inc.,
Beijing, China) and mixed for 30 s. Then 5 lL of diluted
blood solution was added into 5 lL of internal stand-
ard protein (myoglobin, 16,952Da) solution. After add-
ing 10 lL of a sinapinic acid matrix, the solution was
mixed and 1 lL of matrix sample mixture was added
onto a stainless-steel target plate (S-384-D, Bioyong
Technologies Inc., Beijing, China) for mass spectrom-
etry analysis.

Mass spectrometry analysis and data processing

The mass spectrometric analysis of the samples was
carried out after mass calibration on a MALDI-TOF
mass spectrometer (Clin-TOF-II; Bioyong Technologies
Inc., Beijing, China) in a positive linear mode with an
m/z range between 2,000 and 20,000. Each spectrum
was accumulated with 500 laser shots (50 positions
per sample spot and 10 laser shots per position). The
MALDI-TOF raw data were processed with MALDI-MS
software (V2.9.3). The m/z and peak intensity values of
all peaks were extracted as ASCII text files after
smooth and baseline removal. Then the files were
imported into a self-compiler program BE-D. After m/z
was calibrate with the internal standard, the peaks
corresponding to alpha, beta and gamma haemoglo-
bin were selected with internal standard (m/z toler-
ance error was 3000 ppm) and the relative intensities
of these peaks were extracted in batches. The inten-
sities of alpha, beta and gamma haemoglobin peaks
in each spectrum were divided by the intensity of the
internal standard peak as normalisation.

Data analysis

Correlation analysis was performed with Spearman
rank correlation using R 3.5.3. PCA analysis was per-
formed with factoextra package in R 3.5.3. AUC value
was calculated in R 3.5.3 with the pROC package [22].
The classification model of random forest (RF), logistic
regression (LR), support vector machine (SVM),

K-nearest neighbour (KNN), decision tree (DT), naive
Bayes (NB), adaptive boosting (Adaboost) and artificial
Neural Network (ANN) were performed using R 3.5.3
with randomForest [23], glmnet [24], e1071 [25], kknn
[26], rpart, e1071, adabag [27] and nnet [28] package,
respectively.

Results

MALDI-TOF detection of blood samples

Peripheral venous blood samples from 436 diagnosed
thalassaemia patients with genotyping results and 238
control individuals were enrolled in this study. The
clinical information of these participants was shown in
Table S1. The samples were analysed by MALDI-TOF
MS in two batches. Samples analysed in the first batch
were assigned to cohort 1, including 203 thalassaemia
samples and 10 control samples from First Affiliated
Hospital of Guangxi Medical University (Hospital A)
and 96 control samples from Longgang District
People’s Hospital of Shenzhen (Hospital B), while sam-
ples analysed in the second batch were assigned to
cohort 2, including 233 thalassaemia samples and 3
control samples from Hospital A and 129 control sam-
ples from Beijing Bo’ai Hospital (Hospital C). After peak
extraction and alignment, the relative intensities of
haemoglobin related feature peaks in cohort 1 were
used for diagnostic model construction, while those in
cohort 2 were used for diagnostic model validation
(shown in Figure 1).

The peak intensities of a-globin, b-globin, c-globin
and internal standard were obtained with both 1þ
and 2þ charged ions. The representative mass spectra
of haemoglobin and internal standard peaks in sam-
ples from different groups were shown in Figure S1. In
order to improve quantitative accuracy, the intensities
of these haemoglobin peaks were normalised by the
internal standard peak. The ratio between a-globin
and b-globin (a/b) was calculated as a feature to
detect thalassaemia according to the research by Iles
and Mahmoud [19]. In addition, a-globin subtracting
b-globin (a-b), which showed a significant difference
between the thalassaemia group and the control
group (Figure S2), was also used as a feature. In total,
10 features were used in this study for further feature
selection and classification model construction.

Characteristics of haemoglobin related
feature peaks

The relationship between 10 features from MALDI-TOF
and clinical characteristics of thalassaemia patients
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was also analysed. We found that the level of a-globin
or b-globin (both 1þ and 2þ charged) was positively
correlated with the blood concentration of haemoglo-
bin (Figure 2A). While the level of b-globin (both 1þ
and 2þ charged) was negatively correlated with Hb F,
and the ratio between a-globin and b-globin (a/b,
both 1þ and 2þ charged) was positively correlated
with Hb F. These results indicate that the features
based on MALDI-TOF can effectively reflect the
haemoglobin-related changes in thalassaemia patients.
In addition, we found that the correlation between
a-globin and b-globin levels in the control group is
higher than that in the thalassaemia group for both
charged ions (Figure 2B and Figure 2C), indicating the
imbalanced level of a-globin and/or b-globin in thalas-
saemia patients, which will be the underlying mechan-
ism basis for diagnostic model construction.

Diagnostic model construction in cohort 1

The PCA analysis based on these 10 features demon-
strated that the thalassaemia patients could be clearly
separated from control individuals (Figure S3). To fur-
ther select features which could be used in the diag-
nostic models, the area under the curve (AUC) of the

receiver operating characteristic (ROC) curves for each
feature in cohort 1 was calculated to evaluate their
performance for diagnosis of thalassaemia (Figure 3A).
Five features got AUC above 0.95, including 1þ
charged b-globin, 2þ charged b-globin, 2þ charged
a/b, 2þ charged a-b, and 1þ charged a/b. Among
them, the AUC of 1þ charged b-globin reached 0.97
(95% confidence interval [CI] 0.96–0.99). In order to
get desirable distinguishing efficiency, these top 5 fea-
tures were further used for classification model con-
struction by machine learning methods. First, the
samples in cohort 1 were randomly split into training
and test datasets with an allocation of 2:1, correspond-
ing to 206 (135 patients and 71 controls) and 103 (68
patients and 35 controls) samples, respectively. Totally,
eight machine learning methods including random
forest (RF), logistic regression (LR), support vector
machine (SVM), K-nearest neighbour (KNN), decision
tree (DT), naive Bayes (NB), adaptive boosting
(Adaboost) and artificial Neural Network (ANN) were
used to construct classification models in the training
dataset. As shown in Figure 3B, all models except NB
got AUC values greater than 0.90. The AUC values of
RF, LR and Adaboost were above 0.97. Then the classi-
fication efficiency of these models was validated in

Figure 1. Scheme of establishing a diagnostic model for rapid screening of thalassaemia patients. The serum samples collected
from thalassaemia patients and control participants were analysed with MALDI-TOF after simple pre-treatment. The a-globin,
b-globin, c-globin and internal standard (IS) peaks were selected, and corresponding features were used to establish the diagnos-
tic models with different machine learning methods in cohort 1. Then the diagnostic models were verified in cohort 2.
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the test dataset. All of the eight models obtained in
the training dataset successfully distinguished thalas-
saemia patients from controls in the test dataset with
AUC above 0.9 (Figure 3C). And LR model got the best
classification performance with an AUC of 0.97 (95%
CI 0.94–1) in the test dataset.

Validation of diagnostic model efficiency in
cohort 2

Finally, we tested the classification efficiency of these
8 models in an independent validation cohort 2, which
consists of 233 thalassaemia patients and 132 controls.
All the eight models could distinguish thalassaemia
patients from controls with AUC greater than 0.94
(Figure 4A), among them LR model got the best AUC
of 0.99 (95% CI 0.98–1). The sensitivity, specificity,
accuracy and precision of the eight models were
shown in Figure 4B. The sensitivity of our method is
significantly higher than that of HPLC in samples

detected in this study (47.4%, based on HbA2 with a
3.5% cutoff). Interestingly, the sensitivity obtained by
all models except NB is higher than the specificity,
indicating that the classification models based on
MALDI-TOF MS are more suitable for screening thalas-
saemia patients in the population. The classification
accuracy of most models exceeded 0.96, while the
classification precision of most models reached 0.97.
Since the LR model achieved good classification per-
formance in the training and test datasets in cohort 1,
and independent validation cohort 2, it is recom-
mended for future applications in the screening of
thalassaemia. The confusion matrix of the LR model in
the independent validation cohort 2 is shown in
Figure 4C. Among 233 thalassaemia patients and 132
control cases in validation cohort 2, only 3 thalassae-
mia patients and 7 control individuals were misclassi-
fied (all of the misclassified samples by LR model in
two cohorts were shown in Table S2). This result in
the independent validation cohort demonstrated that

Figure 2. Correlation analysis of haemoglobin related features in thalassaemia patients. (A) The spearman correlation analysis
between haemoglobin related features and clinical characteristics in thalassaemia patients. (B) The scatter plot showed that the
correlation between a-globin and b-globin (both 1þ charged) is different between thalassaemia group and the control group. (C)
The scatter plot showed that the correlation between a-globin and b-globin (both 2þ charged) is different between thalassaemia
group and the control group. Outliers in the scatter plot are not shown for clarity.
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the MALDI-TOF-based classification model can effect-
ively distinguish thalassaemia patients from control
cases and has a great potential for thalassaemia
screening in the population.

Identification of a- and b-thalassaemia

In addition, we found that the classification model
based on MALDI-TOF can also be used to identify b
thalassaemia. Based on the thalassaemia genotyping
results in Hospital A (Table S1), we divided the sam-
ples into b-thalassaemia group (including b-thalassae-
mia and ab compound thalassaemia samples) and
non-b-thalassaemia group (including a-thalassaemia
samples and healthy controls). This resulted in 151

b-thalassaemia samples and 157 non-b-thalassaemia
samples in cohort 1, and 201 b-thalassaemia samples
and 164 non-b-thalassaemia samples in cohort 2. Six
features with AUC > 0.85 in cohort 1 were selected to
construct the classification model (Figure S4), includ-
ing 1þ charged b-globin, 2þ charged b-globin, 1þ
charged a/b, 2þ charged a/b, 1þ charged a-b, and
2þ charged a-b. Then the samples in cohort 1 were
randomly split into training and test datasets with an
allocation of 2:1. The classification efficiency of eight
machine learning models was calculated in the train-
ing and test datasets in cohort 1 and the validation
cohort 2, sequentially. With the best and most stable
classification performance (Table S3), the LR model is
recommended for the identification of b-thalassaemia

Figure 3. Diagnostic model construction in cohort 1. (A) The AUC value of each feature for distinguishing the thalassaemia
patients from controls in cohort 1. (B) ROC curves of eight different machine learning models in the training dataset. (C) ROC
curves of eight different machine learning models in the test dataset.
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(AUC ¼ 0.94, 95%CI 0.91–0.97, sensitivity ¼ 96.5%,
specificity ¼ 87.8% in the validation cohort). However,
MALDI-TOF based classification model cannot effect-
ively identify a-thalassaemia with AUC � 0.72 in the
validation cohort.

Discussion

Considering its high prevalence in low and middle-
income countries, an inexpensive, accurate and high-
throughput screening test of thalassaemia prior to a
more expensive confirmatory diagnostic test is
urgently needed. In this study, we constructed a
MALDI-TOF MS-based haemoglobin chain quantifica-
tion method and a corresponding MS data algorithm
model for rapid screening of thalassaemia. The LR
model with 5 haemoglobin peak features achieved
good classification performance both in cohort 1 and
independent validation cohort 2 (AUC 0.99, sensitivity

98.7%, specificity 95.5%). Based on the analysis of 674
thalassaemia and control samples collected in three
hospitals, this study became the first application of
MALDI-TOF MS in the diagnosis of thalassaemia in a
large population.

Despite of the high performance of this screening
method, there were still 3 thalassaemia patients and 6
control individuals misclassified in cohort 2. The mis-
classification of control individuals might be partly
due to the limitation of genotyping, by which the rare
thalassaemia mutations could not be detected by trad-
itional methods [13,29]. For example, when we review
the medical history retrospectively, we found that case
A0028, which was assigned to the control group
based on genotyping results, has a history of thalas-
saemia therapy. That means this case may be a thalas-
saemia patient with a rare mutation not included by
genotyping assays. Considering this advantage over
traditional genotyping, the actual specificity of our

Figure 4. Thalassaemia diagnostic model validation in cohort 2. (A) ROC curves for eight ML algorithms. (B) Summary of the sen-
sitivities, specificities, accuracies and precisions obtained for each ML algorithm model. (C) The confusion matrix of the classifica-
tion results by the LR model.
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method may be higher. On the other hand, the miss-
diagnosed thalassaemia patients by MALDI-TOF MS
were all a-thalassaemia cases, meaning that b-thalas-
saemia patients were all successfully detected. This
result suggested that our MALDI-TOF MS method is
more sensitive for the detection of b-thalassaemia,
which is usually more serious than a-thalassaemia,
considering mutations in more (at least three) copies
of HBA are required in symptomatic a-thalassaemia
patients [30].

What’s more, our study showed that MALDI-TOF MS
can also be used to specifically identify b-thalassaemia.
LR classification model with 6 haemoglobin peak fea-
tures demonstrated an AUC of 0.94, the sensitivity of
96.5% and specificity of 87.8% for identification of
b-thalassaemia in the validation cohort 2. However,
MALDI-TOF MS-based classification model cannot
effectively identify a-thalassaemia. The relatively poor
performance of the two models for a-thalassaemia
detection might be related to the relatively low distin-
guishing ability of a-globin, which was not in the
selected top 5 or 6 features included in the thalassae-
mia or b-thalassaemia models.

It is worth notice that near 46% (200/436) of thalas-
saemia patients are accepting blood transfusion ther-
apy. The excellent performance of the model
represented the robustness and the anti-interference
ability of the MALDI-TOF MS platform. In addition,
both asymptomatic carriers and symptomatic patients
of thalassaemia can be detected through this method,
which will be helpful for not only treatment but also
prevention of thalassaemia.

Compared with common MALDI-TOF MS-based
methods for disease diagnosis, our thalassaemia
screening method has several unique characteristics,
which may contribute to its outstanding performance:
(1) Theoretically, the application of MALDI-TOF MS in
thalassaemia screening is based on the quantification
of globin subunits (e.g. a and b), which are the
molecular pathogenic basis for thalassaemia. The fea-
tures we selected for model construction, including
a-globin, b-globin, and a/b were correlated with
haemoglobin indices (Figure 2A) and reflected the
imbalanced level of a-globin and/or b-globin in thalas-
saemia (Figure S2, Figure 2B and Figure 2C). (2)
Technically, an internal standard was used in mass
spectrometry for normalisation to improve the quanti-
tative reproducibility and accuracy [31]. In this study,
myoglobin, whose molecular weight is close to those
of haemoglobin chains was used as an internal stand-
ard, so that all the feature peaks can be clearly distin-
guished by MALDI-TOF MS. 3) Thirdly, comprehensive

evaluation of both 1þ and 2þ charged peak inten-
sities with 8 machine learning methods was performed
for optimisation of the effect of the model.

Compared with genotyping or HPLC, the much less
time and cost used by MALDI-TOF MS make it more
suitable for rapid screening of thalassaemia in high-
risk populations. Without any sample pre-treatment
process or expensive consumables, it takes only about
1min and less than 1US dollar to analyse one sample.
Only 5 lL of untreated blood is needed for each per-
son, which makes it feasible for analysis of heel blood
in newborns or fingerstick blood in adults. However,
MALDI-TOF MS-based thalassaemia screening cannot
predict the exact thalassaemia genotype according to
globin peaks. Thus, a further genetic test is still
needed to guide clinical treatment. Another shortcom-
ing in this study is that individuals younger than
3 years were not included. Considering that the levels
of haemoglobin subunits are different in newborns,
infants and adults, a subsequent study on thalassae-
mia screening in newborns and infants is needed in
the future.

In conclusion, we performed the first MALDI-TOF
MS-based thalassaemia screening study with more
than 600 cases from the multi-center population,
which demonstrated that the MALDI-TOF MS-based
classification model can effectively, rapidly, and
cheaply detect thalassaemia patients and has a great
potential for thalassaemia screening in large
populations.
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