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Abstract: In recent years, international environmental and public health research has become a hot
topic, and battery recycling, which is often mentioned separately from waste disposal, has likewise
become an academic topic. Battery recycling research is beneficial not only for controlling toxic and
harmful substances, but also for public health. In addition, battery recycling brings value-added
benefits to company management. As the most important link in the battery supply chain, the driving
mechanism of battery recycling in the new electric vehicle industry will become particularly important.
The subject of battery recycling is diverse, and the relationships among influencing factors are
complex, thereby presenting a fluctuating state. Against this background, this study constructs a
system dynamics model from the perspective of a main sorting and recycling system, a technological
innovation subsystem and a replacement subsystem. Moreover, this study examines the driving
mechanism of the power battery recycling system of a microlevel company. Focusing on the systematic
impact of technological innovation capability and substitution, we find that the technological
innovation drive of companies increases the total effect of required costs and product demands. It is
embodied in two aspects, that is, the increase in the recovery rate leads to an increase in demand,
whereas the increase in actual expenditures is less than the increase in technology-driven benefits.
After technological innovation capability is improved, the effect of the technological innovation
multiplier on the driving mechanism of companies is shown as rapid response time changes. In the
substitution component of a company recycling system, we find that the maximum substitution
rate limiting expectations has no significant impact on product differentiation. The leading effect of
technological innovation capability is more obvious than that of substitution activity. Based on these
findings, several suggestions for company operation and environmental governance are presented.

Keywords: battery recycling; technological innovation; alternatives; system dynamics

1. Introduction

China has paid increasing attention to ecological and environmental protection and public health.
Currently, guided by the conviction that lucid waters and lush mountains are invaluable assets, China is
advocating the harmonious coexistence of people and nature and maintaining its path towards green
and sustainable development. The problem of waste classification is becoming increasingly prevalent
not only in China, but also across the world. The problem of environmental pollution and nonrenewable
energy depletion has likewise become serious. As toxic and harmful waste, batteries should be given
considerable attention. Driven by power batteries, electric vehicles can reduce carbon emissions from
the transportation industry and people’s dependence on oil, as well as promote the development of
the automobile industry chain. Therefore, vigorously developing new-energy vehicles is an important
measure for developing a low-carbon economy [1]. Battery power system technology, as a key factor
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restricting electric vehicles [2], is constantly improving under the influence of the economy and
environment in the direction of small volumes, long life cycles and high safety performance. In China,
according to the specified warranty period of power batteries of eight years or 120,000 km, the first batch
of power batteries was eliminated on a large scale based on the 2012 energy saving and new-energy
vehicle demonstration and promotion plan. The average annual growth rate of new vehicle sales in the
past 10 years had exceeded 24% [3]. Such development and promotion has caused more and more
pressure on battery recycling of new energy vehicles. Waste power batteries contain strong corrosive,
poisonous and harmful substances, and heavy metals. Power batteries contain heavy metals, such as
Nickel and carbon monoxide, as well as electrolytes, which are harmful to the environment. If not
handled properly, waste batteries can pollute the atmosphere, soil, and water. Hence, the recycling of
waste batteries is of considerable importance to the ecological environment and public health. In the
centralised recovery of batteries, treatment will improve not only effectiveness but also the enthusiasm
of people to recycle used batteries [4].

In this study, we establish a system dynamics model by investigating and analysing the
recovery system. The establishment of the model is based on the optimisation and driving
mechanism of the recycling and reprocessing process of waste power batteries. We use life cycle
assessment (LCA) in the modelling process, which is a type of systematic tool for assessing
environmental impacts associated with products or service systems, considering upstream and
downstream activities. Moreover, LCA is often used in design engineering and manufacturing [5],
environmental assessments [6], and other aspects.

This study also integrates demand differentiation, demand elasticity and other factors into the
model. At the same time, the economic performance and environmental performance of companies are
affected by active environmental behaviour and innovative technology. Based on this idea, a dynamic
model for the power battery recovery system of a corresponding company is established and analysed.
In addition, the boundary of the system, namely, the research object, and its scope represent the increase
and decrease of the amount of battery recycling outside a company, the change range of substitutes
and changes in the driving factors of a company, such as technological innovation, demand change,
the sorting multiplier, and so on.

Research on the driving problem of power battery recovery in companies can solve the specific
change trend of individual influencing factors under the multiple influences of product recovery rate,
product demand, actual cost, product differentiation, product substitutes and other factors under the
capability of technological innovation. What is the specific driving role of technological innovation?
In the recycling system, is technology or alternative intervention dominant? What types of measures
will exert a substantial effect on a company? Through simulation and deduction, the model can help
the essence of the internal drive and improve company efficiency. At the same time, the model can
improve companies’ sense of social responsibility and increase their responsibility for the environment
and social public health.

2. Literature Review

2.1. Recovery Mode

In the existing literature, most studies on the recycling of waste power batteries of new-energy
vehicles focus on the issue of the recycling mode. Firstly, on the establishment of the recycling
network mechanism, the scholar Schultmann established a recycling system for the waste battery
hybrid closed-loop supply chain, which combines the optimisation model of reverse recycling network
planning with the process simulation model of customised selection for the potential recycling of waste
batteries. The results showed that waste batteries can be recycled by optimising the existing recycling
structure [7]. Ene proposed a mixed integer linear programming model to study the multicycle,
multilevel, and capacity-constrained network design of the reverse logistics of end-of-life vehicles [8].
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In terms of recycling mode selection, Savaskan et al. examined manufacturers’ reverse recycling
channel selection and proposed three options for selecting the appropriate reverse channel structure
for recycling waste products from consumers, that is, recycle waste products directly from consumers,
provide appropriate incentive mechanisms to induce retailers to recycle waste products and outsource
waste products to a third party collection and recycling company [9]. Scholars likewise focused
on the selection of product recycling mode channels. Sodhi and Reimer used bulk recycling,
disassembly recycling and smelter recycling. Based on this recycling model, specific mathematical
functions were developed to explain the battery recycling problem [10]. Through a game model,
Xiong and Liang considered consumers’ environmental awareness factors and established a recycling
decision model for manufacturer recycling, manufacturer-commissioned retailer recycling and
manufacturer third-party recyclers recycling [11]. For an automobile group, Zhu and Chen established
an evaluation index system to investigate the waste power batteries produced by electric vehicles and
used the fuzzy comprehensive evaluation method to examine the reverse logistics mode selection of
waste power batteries [12].

However, limitations exist in the optimisation of the recovery mode, and continuously improving
the battery recovery system is impossible.

2.2. Recycle Body and Incentives

The article about the main subject of waste power battery recycling clearly defines the important
role of each responsible subject in the recycling mechanism.

The recycling model involves the creation of responsibility for a recycling subject.
Numerous scholars conducted quantitative analyses on regulations on producer responsibility
systems for recycling subjects. Shi divided responsibility sharing into three reverse channels,
that is, retailer recycling, manufacturer recycling and third-party recycling, then compared the
three models with a situation not considering responsibility sharing and analysed and quantified
responsibility sharing as enjoyment validity [13]. Subramanian examined the effect of extended producer
responsibility system parameters on durable product designs and the supply chain coordination
incentive mechanism [14]. Toktay designed a cost allocation mechanism that allocates part of the
production cost to a remanufacturing department [15]. Atasu and Subramanian compared the impact
of collective producer responsibility and single producer responsibility on the design and return of
manufacturers’ reusable products and consumer surplus. The authors believed that the single mode
generates more incentives than the collective mode in promoting manufacturers’ design of reusable
products and that collective producer responsibility could produce high consumer surplus [16]. In China,
according to national regulations, new-energy vehicle companies are the main body responsible for
the recovery of waste power batteries. In addition, manufacturers establish battery recovery outlets
according to such standards. After waste power battery recovery, recycling outlets return the batteries
to the companies. Once preliminary identification is complete, the companies will transfer the batteries
to either locally designated echelon utilisation companies or recycling companies depending on the
waste and old batteries’ degree of decay and loss. The used battery recycling supply and important
role of new-energy vehicle companies in the production and recovery of used batteries have increased.
Furthermore, the significant role of research on companies’ recovery drive for power batteries has
likewise increased.

Incentive measures for the mechanism of the recovery system are the key factors driving the
improved operation of the recovery mechanism. Related articles also combined recycling modes and
policy effects with recycling pricing to determine recycling incentives.

Using a cooperative game model, Vimal Kumar Gupta et al. reviewed and critically analysed the
applicability of a stakeholder policy in an alliance framework. The results showed that manufacturers
play a leading role in recycling and that waste management is considerably influenced by producer
responsibility. Therefore, in recycling, we deal mainly with manufacturers [17]. Thus, the problem of
new-energy vehicle recycling should be resolved from the battery design source and manufacturing.
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In terms of the effect of policy subsidies, Mitra and Webster assessed the impact of different recycling
legislations on the interests of members of the competitive environment of new and remanufactured
products and found that the effect of a sharing subsidy policy is superior [18]. Govindan analysed the
coordination mode of a two-level closed-loop supply chain in the recycling mode, showed that using
contracts to coordinate a closed-loop supply chain policy is effective and classified and compared the
advantages and disadvantages of various ways [19]. Based on this conclusion and the life characteristics
of power batteries, Xie analysed a waste power battery business model and found that according to an
evaluation of a future policy development trend, power batteries will be bound to electric vehicles
through coding, and consumers will take the initiative to deliver waste power batteries to power
battery treatment units. This process will realise the effective recovery of power batteries in the entire
life cycle of electric vehicles. This conclusion can provide a satisfactory theoretical basis for battery
recovery drive in the entire life cycle [20].

2.3. Driving Factors and Business Operations

The influencing factors of waste power battery recycling are key to the development of a company.
Scholars used different methods to analyse the impact of various product factors on companies and
the environment. Through electric vehicle battery recovery mathematical modelling and simulation,
Liu and Gong analysed factors affecting battery recovery and the degree of influence of the factors.
The authors believed that impact on recycling depends largely on the relative life [21]. Wen et al.
also found that recovery plays a crucial role in the recovery of electronic products [22]. To optimise
the total profit of the entire supply chain in different battery life cycles, Gu and Petros presented an
optimal pricing strategy between manufacturers and remanufacturers and discussed the relationship
between recovery rate, sorting rate and recovery rate. The results showed that the recovery and reuse
of batteries can help reduce raw material consumption and impact on the environment [23]. Schaik and
Reuter examined the impact of battery recycling on the environment based on product design and
recycling technology using the principle of system dynamics. Based on recovery rate and battery life,
the improvement of production technology capacity plays a decisive role in the development of a
company [24]. Su Jing found that technology orientation has a significant impact on the performance
of startups in his study on technology orientation, and the substitution capability of substitutes can
regulate the relationship between them [25]. Waste power batteries are affected by various factors and
are key to the internal recovery of companies.

Technological innovation is indispensable in the development of companies. In the study of Sarah
King and Naomi, Australia promoted technology development and innovation to support emerging
industry. The authors considered the expected growth in consumption and demand for portable
equipment and electronic vehicles, the potential economic benefits of lithium-ion battery materials,
the lack of infrastructure and capacity to deal with wastes, and the development of policies and
regulations for their management [26]. This situation is used worldwide. Innovation, as an inexhaustible
source of company development, is the main wing of company recovery systems. However, in the
combination of technological innovation and recycling influencing factors, such as innovation and
alternative research, how to adjust recycling and reprocessing companies’ driving force is an interesting
topic under the overall recycling system.

However, most studies on the input supply chain structure are static analyses and do not
reflect the passive battery consumption situation. Conducting research on a recycling subject and
the incentives of an enterprise strategy is difficult. As a dynamic company behaviour with multiple
subjects, diverse influencing factors and complex relationships, battery recycling must adopt the system
dynamics method to accurately reflect the specific battery recycling process. System dynamics is often
used in business decision making, waste management, industrial engineering management and other
fields. It can effectively address the effect of policy implementation and the nonlinear structure of
realistic assumptions. Moreover, system dynamics can understand the complex relationships among
different elements from a holistic perspective, predict dynamic feedback from historical dimensions
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and make predictions using model boundary, structure, and parameter adjustments to optimise a
model. From the overall perspective of a company, the system dynamics research method is an
effective way to resolve the system driving problem as a whole. Previously, scholars used system
dynamics to study the recycling of waste power batteries. Hou constructed a system dynamics model
for added electric vehicle amounts based on an analysis on the relationship between power batteries
and electric vehicles. The author predicted the addition of electric vehicles in the future and calculated
the new power battery increment [27]. Wang Lili analysed the internal recycling and remanufacturing
behaviours of companies in the used battery reverse supply chain system and employed system
dynamics and cognitive behaviour theory based on planning behaviour theory to examine the impact
of relevant social factors on consumers’ acceptance of remanufactured batteries. In addition, the author
analyzes it from the perspective of consumer behaviour and drew on the strategies of companies’
recycling and remanufacturing capacity in different situations. Meanwhile, the government and
battery companies should encourage and guide consumers to use remanufactured batteries in the
early stage [28]. However, the present study focuses on choices from the consumer side and does
not comprehensively examine the overall perspective of a company. With technological innovation
creating recycling innovation and product replacements, the power battery processing and reuse
process has improved. Companies’ recycling and reprocessing of waste power batteries involve a
complex, dynamic, and nonlinear process. Moreover, revealing the internal laws and influences of
factor changes on the overall model using a conventional analysis method is difficult. Based on this
assessment, this study uses the system dynamics method to analyse these complex processes and their
impact and department system internal factor mechanism operations.

3. Model Building

From the perspective of companies, we use the system dynamics research method with the
software of Vensim PLE (Ventana Systems Inc., Harvard, MA, USA) through a comprehensive analysis
of the literature and theory of planned behaviour in marketing to discuss the dimensions of the
recycling end of waste batteries.

We begin with an analysis of industry development reports and the annual reports of some major
companies. Then we conducted three specific field investigations on new energy vehicle companies.
Finally, we select a typical company that can reflect the industry standard level for detailed data
analysis and assignment for model analysis.

In addition, we analyse control changes in companies at each end of the battery recycling subject.
Theory of planned behaviour and the general decision-making process of individuals or companies are
assessed from the perspective of information processing. Making decisions based on the competition
of substitutes of external environment factors to conduct information processing, production and
marketing is a process of continuous improvement. Based on a follow-up investigation of the waste
power battery recovery system of a new-energy vehicle company, we construct a system causality
diagram and employ the relationship among system dynamics factors to construct an equation.
We complete the dynamic causality characterisation in the flow diagram, then analyse the dynamic
simulation by testing the key factors.

The model construction steps are described below:
Causality diagram: According to operations, companies determine the characteristics of each link

through a company recycling improvement process follow-up inspection. In this study, a causality
diagram is drawn based on an analysis and research of the variables needed in the specific research.
Based on previous research experience and the specific situation of the driving mechanism of enterprise
power battery recovery, the relationship between the main factors and variables and the promotion
and inhibition effects between the variables are determined, and the corresponding causality diagram
is drawn.

System flow diagram: Based on causality, the relationship between the variables is treated
nonlinearly, and an equation for each variable is determined to construct the system model. The initial
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data used in the system flowchart in this study are based on the investigation of three companies and
the in-depth data investigation of one company reflecting the average level of the industry. In the data
investigation, secondary data, such as industry development reports, are employed. The establishment
of the equation in the system flowchart is also based on previous experience and the specific situation
of the industry.

Model testing and tuning: Consistency between the model and reality is verified. The test function
is likewise verified, and the overall model structure is adjusted by testing the changing objective law
and trend of the output. The model test and adjustment involve checking the validity and reliability of
the model, which can ensure the simulation degree and consistency between the simulation results and
reality. Specifically, there are ‘system boundary rationality test’, ‘unit consistency test’, ‘extreme test’,
and ‘abnormal behaviour test’ to verify whether the results are consistent with the actual situation.

Model simulation: The PLE software Vensim is used to adjust the variables and observe the trend
of the target variables. In the model simulation, the parameters and initial variables are adjusted
accordingly based on the simulation result analysis, and changes in the target variables are observed
by increasing or decreasing the variables to directly or indirectly observe the driving mechanism of
company battery recovery.

Suggestions: Based on the results of the simulation analysis, corresponding policy
recommendations are presented. Through research on the driving mechanism, this study provides
suggestions on the operation driving relevant companies. Meanwhile, owing to the particularity of the
research object, this study can provide effective suggestions for battery recycling and utilisation.

Specifically, this study constructs the supply flow of a company’s internal battery recycling system,
which is presented in Figure 1.
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Figure 1. Flow of battery recovery system.

A company recovery system is a complex and continuous abstract model. In the establishment of
a system dynamics model, making assumptions and providing explanations about the relationship
between the variables in the system model are necessary. In this study, the following assumptions are
made for the problems that must be addressed in establishing the system model:

Scenario 1: Only one reuse behaviour exists, namely, remanufacturing. Remanufacturing means
to decompose, repair and replace returned products to enhance their quality to reach or exceed that
of new products. After a remanufactured battery is complete, it is transferred to an inventory centre
and sold once again to meet demands. That some batteries cannot be recycled and must be disposed
of directly is not considered, as the direct disposal of waste batteries causes serious environmental
pollution. According to the technical policy for the prevention and control of waste battery pollution
issued in China in 2003, battery manufacturers must take responsibility for recycling waste power
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batteries. Therefore, all waste batteries are assumed to be recyclable. However, in the process of
recycling, some materials do not meet remanufacturing standards; thus, in this aspect, this study adopts
direct disposal. Therefore, the following scenario is made that under the investment of technological
innovation, the product performance is bound to improve and be accepted by consumers.

Scenario 2: The recycling of used batteries is a continuous dynamic process and a long-term
behaviour. Technological innovation investment acts on the entire recovery system and refers to
not only the production links of products but also product disassembly, sorting and other processes.
Investment in technological innovation is not a direct one-off investment but a continuous investment
process within a certain time range. In the process of system dynamic driving, moderate changes in
various stocks and variables need time lags to produce expected effects, which are reflected in the
long-term process. As a result, it also conforms to system dynamics characteristics for examining
long-term and complex network relations. Therefore, scenario 2 was established based on showing the
finiteness of conditional input.

Scenario 3: After waste battery reprocessing and reuse, product performance is improved,
which affects consumer behaviour. Waste battery processing and reuse are conducted in companies.
The different waste battery postprocessing techniques can nearly meet the requirements of
original batteries or demonstrate improved battery performance owing to technological progress.
Planning behaviour theory proposed by Ajzen explains individuals’ general decision-making
process from the perspective of information processing, which mainly includes five levels, namely,
attitude (which directly determines consumer behaviour) [29], subjective norms, perceptual behaviour
control, professional knowledge and convenience. In the long-term process, owing to product
performance improvement, providing consumers with adequate stimulation and satisfactory
experiences at the cognitive level can affect their attitude, thereby influencing their behaviour [30].
Therefore, based on practical considerations, we made scenario 3: battery recycling of new energy
vehicles is a long-term dynamic process.

Scenario 4: Investments in human, financial and material resources are limited. Neubauer and
Pesaran concluded that a portion of the cost of electric vehicles could be offset by reusing used power
batteries [31]. The essence of a company is to generate profits. The recycling of used batteries can not
only save resources and protect the environment but also save money. However, a company must
generate profits. Thus, investment amounts are limited. Therefore, boundary values exist in the system
for investment in technological innovation and the amount of capital investment. Specific boundary
values are estimated according to actual situations.

Scenario 5: Each behaviour of a company is considered as an overall behaviour, and the outsourcing
behaviour in each process is considered as the internal behaviour of the company. The research in this
paper is the driving mechanism of waste battery recycling in companies. The system we established is
an integral system within the company, so based on this reason, we set up scenario 5.

In reality, companies’ battery manufacturing may be outsourced but can be regarded as an internal
behaviour. The ultimate benefit is the recycling of used batteries and the use effect of batteries as a
service, which do not influence the driving effect of various factors in the recycling system on the
overall operation of a company.

3.1. Causality Analysis of Power Batteries in Companies

Based on the previous model assumptions for specific situations, we analyse the causal relationship
in the recovery of power batteries of companies. The subject of this study is the optimisation and
driving mechanism in the process of the recycling, processing, and reprocessing of waste power
batteries in a company and the development of a company operation system. The boundary of the
study involves relevant entities and important variables in the business process. By investigating
and analysing the recycling system, specifically, in company recycling departments, sorting and
processing departments, manufacturing and production departments and marketing departments and
customers under this closed-loop system, firstly, we determine the influence of battery substitutes on
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the system. Customers’ diverse demands and substitutes’ attractiveness are factors that companies
cannot control directly, whereas controllable factors include customer satisfaction, customer brand
preference and customers’ perceived barriers to change [32]. At the same time, the economics of
company and environmental performance is influenced by active environmental behaviours and
innovative technology. To optimise companies’ economic and environmental benefits, firstly, we must
ensure that companies engage in scientific, rational, and active positive environmental behaviours and
have a wide range of technological innovation. The embodiment of companies’ benefits experiences
cycle delays and the scale economy; thus, the corresponding active environmental behaviours and
technological innovation also possess such properties. Therefore, technological innovation research
support from different sectors can effectively improve companies’ economic and environmental
performance. Fund support can also directly improve the efficiency and economic benefits of the
system. Thus, through the adoption of the company power battery recycling system to identify
indicators among the various factors as well as causal relationships, a causal graph is drawn as follows
in Figure 2.
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Figure 2. Cause and effect diagram.

The causal loop of the sorting recovery system is as follows:
Customer usage rate→ battery quantity→ batteries remaining→ recycling battery sort allocation

multiplier→ actual cost→ demand customer usage rate.
The technological innovation input subsystem loop is as follows:
Technology change rate → technology → technology cost multiplier → actual cost →

sales revenue → R&D investment → R&D investment delayed → technology change indicated
→ technology change rate.

The stock flow diagram is determined based on the cause and effect diagram of the waste battery
recycling operation system of a company. Figure 3 is presented based on the company operating
system cycle structure process.
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3.2. Establishment of Important Equations and Interpretation of Variables

In system dynamics, the linear and nonlinear relationships among variables and the interpretation
of individual variables are important for building the system dynamics model. In this study,
the establishment of important equations and interpretation of the variables are shown in Table 1.

Table 1. Equations and interpretation of variables.

Equations Interpretation

Battery quantities = (−customer usage rate) + demand ×
product rate

Number of batteries is based on the initial value of the
consumption rate and reproduction of the combined effect

Actual cost = actual cost table × (usage rate average/usage
rate normal) × recycling batteries sort allocation multiplier ×
technology cost multiplier

Actual cost table is a lookup function, where the
combination of the sorting multiplier and technology cost
multiplier affects actual cost

Technology change indicated = technology change indicated
normal ×(1/cost of technology advance) × R&D investment
delayed × technology initial

Technology change indicated is an important auxiliary
variable in technological innovation change, which is
influenced by the initial R&D investment amount, the
potential variable and the cost of technology

Substitution fraction change rate = (potential substitution
fraction − substitution fraction)/technology adjustment time

Partial change rate of a substitute product is an auxiliary
variable of the substitute product system, which is the
result of the potential replacement, the replaced part and
the technological adjustment time

Usage rate normal = usage rate initial × EXP (growth
constant × [Time − 0])

Usage rate involves an exponential increase in the initial
rate of usage depending on the length of time

R&D investment delayed = DELAY3(R&D investment, 3) A certain time LAG EFFECT in R&D investment exists,
which is assumed to be three units
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4. Model Simulation and Analysis

4.1. Vensim Model Test and Verification

The purpose of model testing is to test the simulation effect of the model on the real world.
By setting a specific variable as a test function, we can judge the actual analysis and prediction ability
of the model. The simulation time unit of this model is set to month, the testing time is 60 months and
the testing step is one month. The relatively important initial values in the setup model are shown in
Table 2.

Table 2. Initial variables.

Variable Name Initial Value Unit

Product rate 1.4 Product
Growth constant 0.03 Product/month

Technology initial 1 Technology
Initial processing rate 0.8 Product/month

Technology change indicated normal 0.1 Technology/month
Maximum substitution fraction 0.6 Fraction

Owing to the particularity of the research object, the actual data used in this study set the initial
value to be as close as possible to reality.

After the model design and equation establishment, the validity and reliability of the model are
verified to ensure the model simulation and simulation results. Through a ‘system boundary rationality
test’, ‘unit conformance test’, ‘extreme case test’ and ‘behaviour abnormality test’, we determine that
the results are consistent with the actual situation, and the simulation results and corresponding
discussions and explanations are within reasonable limits; thus, the model meets the requirements of
reliability and validity. The test results of the model are collated, as shown in Table 3.

Table 3. Model test results.

Test Methods Test Items Assumed Parameters and
Specifications Test Results

System boundary
rationality test

Tests whether the key variables
and important concepts in the
system are endogenous variables;
tests the sensitivity of the system
to changes in the system boundary

Observes whether the system can form
a complete loop by adding and
subtracting variables

System can form a complete
loop by adding and
subtracting variables

Unit consistency test

Checks the consistency of all
variable units in the model

Check model in Vensim is used to verify
whether the model is running smoothly
with consistency

Through model verification, all
the variable units in the model
are consistent, and the model
can run smoothly

Output values of the variables are
all between assumptions

In the establishment of the equation, the
variables are considered, and all
variables regarding the ratio are
between 0 and 1

Unit-wide consistency
is reasonable

Extreme test
Steady state test Adjusts some of the variables to zero Test results agree with the

general behaviour of the system

Performance scenario analysis;
effect of time prolongation Extends the testing time of the model Test results agree with the

general behaviour of the system

Abnormal behaviour test Increases the initial investment
ratio

Changes the assumptions of the model
to determine any abnormal behaviour

Test results agree with the
general behaviour of the system

After the model test and inspection, changes in the main variables of the model operation are
observed, as shown in Figures 4–6.
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Figures 4–6 are the intuitive responses to the basic variables and the variables we mainly observe,
that is, the intuitive result presentation of the simulation results. Technology change indicated normal
is 0.1, and the maximum substitution fraction is 0.6 under the condition of initial value technological
innovation investment and alternative parameter control, considering that in 60 simulation cycles,
the number and recovery rate of spent power batteries are significantly increased by the company
recovery system from the initial 3000 units to over 3060 units. This result is in line with the improvement
of technological innovation in the development of companies, which inevitably anticipates the increase
in the number of batteries. At the same time, the consumer consumption rate for power battery
products also increases significantly, and a certain degree of fluctuation in the set cycle is observed,
which is in line with the expectation of innovation technology investment for the promotion of a
company. This is a good driving force for new energy battery recycling enterprises in the current
big environment, such as the substantial reduction in profits, lack of core technology, excess capacity,
and recycling difficulties [33].

The sorting multiplier refers to the ratio of the impact multiplier to cost after used battery recycling.
The technology cost multiplier is the ratio of the impact index to cost after technological innovation

investment. In this study, owing to the small increase and actual effect of the lookup function,
we determine that the proportion of the effect of the sorting coefficient on actual cost tends to be
stable. The technology innovation cost multiplier must carry on the investment to become large in
the early stage of initial investment. The influence multiplier reduces the proportion to become small,
along with the testing period number increase, in the medium-term stage of technological investment,
which tends to stabilise the proportion of the impact of the increased decline trend. The influence of
multiplier ratio is the quantified embodiment of the driving relationship, which has a direct effect.

4.2. Analysis of Simulation Results

4.2.1. Analysis of Product Technological Innovation Capability Change

In the case of technological innovation, changes in the technological innovation input increment
in the technology stock and in the technological innovation rate are obvious, as shown in Figures 7
and 8. At the starting value, the current technology change indicated normal is 0.1, the total trend of
the increase in the technology stock is five months and the period of the increase is nearly one year.
Moreover, the increase tends to be smooth, the trend of the technology change rate confirms the change
in the technology stock and the peak period of the change rate is half a year after the technology change.

The Figure 7 represent current(tec1), tec2, tec3, and tec4 corresponding to 0.1, 0.4, 0.7,
and 1 technology change indicated normal, respectively. Changes in technology change indicated
normal mainly generate the peak value of the technology change rate, and the higher the peak value,
the higher the change rate. In Figure 8, the change in the technology impact multiplier is a high
technology change indicated normal, and the effect on the technology multiplier is rapid and obvious.
However, a low technology change indicated normal is a slow process and takes a long time to
accumulate the effect of technological input on the final cost.
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4.2.2. Impact of Alternatives on the Corporate Recycling System

To examine competition, we include the alternatives in the model against the background of
technological innovation, considering the relationship between the growth and decline of the proportion
of the alternatives and companies’ power battery recycling system. We also analyse the internal
mechanism. Alternatives are a threat to business but may also present opportunities. If a company
has a strong innovation capacity, then it will take the lead in introducing new cost-effective products
and stay ahead of the competition. At the same time, consumers’ requirements for products continue
to increase. For waste power battery manufacturers, the different qualities, prices, performances,
and environmental protection of every type of battery will generate different feelings among consumers
and psychological satisfaction to varying degrees. Therefore, companies manufacturing goods that
can be substituted for one another must ensure their quality and accurately examine the quality and
prices of similar goods in the market to guarantee that their products and prices can attract consumers
and generate profits. In the study of commodities, if every company in the same industry adopts
the same pricing method and the proportion is close, then prices will likewise be close. Although a
company can reduce or avoid price competition, it can also ignore product demand elasticity changes;
thus, its pricing foundation will lack flexibility, and the company can easily make the wrong decisions.
Moreover, reducing the product cost is disadvantageous. Thus, this study includes differentiation,
demand elasticity and other factors in the model.
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In the alternative partial Vensim model, the variable constant is the maximum substitution fraction.
It is driven by the effect of the maximum alternative restriction on the potential alternatives and thus
on the change rate of the effect and partial stock of the alternatives and hence the main model in the
differentiation of the commodity demand and the actual demand for the role.

In the Figure 9, max2, max4, and max6 show the partial effect on the alternatives when the
maximum substitution fraction is equal to 0.2, 0.4, and 0.6, respectively. In this study, the waste power
recovery system of a company examines current power battery replacement products. The system
simulation determines that the proportion of the replacement is only 0.1 or less, which is in line with
power batteries as a source of new energy in the current automotive industry development trend.
In addition, with technological innovation investment factors, the substitution trend decreases and
stabilises. With the limitation in the maximum substitution fraction, the change rate of the substitution
fraction does not increase much and returns to the original level in 30-unit cycles. Thus, the maximum
value of the maximum substitution fraction is limited by external means, such as technological
innovation. Figure 10 shows the improvement in the maximum substitution fraction has little effect on
the differentiation of the requirements.

Under the initial condition, the investment technology stock gradually increases, and the used
battery quantity, demand, and utilisation rate develop to the benefit of the company.
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Figure 9. Substitution fraction and change rate. (max2, max4, max6 represent the maximum substitution
fraction of the variable is equal to 0.2, 0.4, and 0.6).
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4.2.3. Impact of the Significant Change in Usage Rate

The initial usage rate is set to 0.8 in the initial setting, and the real rate value is changed when the
value of the initial usage rate is changed. Given that the usage rate changes according to the value of
the other variables and company benefits, we can analyse the influence of the actual usage rate variable
on the other factors.

The initial usage rate is set to 0.8, 0.5, and 0.3 in this study. As the initial usage rate increases from
0.3 to 0.8, as shown in the Figure 11, in the requirement variable graphs, the increase in the usage rate
leads to a significant increase in demand.As shown in Figure 12, where the increase in the number of
batteries is effective, the recycling and reuse rates of waste batteries are improved and demand and
company benefits are increased.
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Figure 12. Battery quantity.

Figures 13 and 14 show changes in the technology stock and alternatives stock as a result of the
initial change in the usage rate. Owing to the complexity and linkage of system dynamics, changes in
the usage rate must be driven by technological innovation to increase demand. Under the condition
of a high technology stock, the corresponding factors are a high recycling rate and a low product
substitution rate. Figure 15 shows actual cost. In the battery recovery cost, the commonly believed
cost includes initial investment costs, operation and maintenance costs and batteries replacement
costs [34]. The factors in the system complement one another owing to technological innovation.
The change in technological innovation capability has little effect on the change in actual expenditure.
Moreover, the process of improving the reuse rate by improving the innovation capability of a company
promotes the technological innovation, product recycling and manufacturing departments among
the other systems, thereby enabling the company to experience increased product demand and gain
substantial benefits.
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In the case of the initial usage rate, the change in the rate of investment in technological innovation
over the dynamic process is shown in Figure 16. As the rate changes from 0.8 to 0.5 to 0.3, the curve of
percent invested in R&D moves to the right. That is, the technological innovation investment time is
more delayed than expected, and this time delay indicates that a company’s response to technological
innovation investment is also slow under the condition of a low recycling rate. For large usage rate
images, the image duration is less than the smaller usage rate image fluctuation range. This change
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indicates that technological innovation investment requires less time under a high recycling utilisation
rate, and a stable high rate requires a high technological innovation input rate.
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4.3. Discussion on Model Simulation

The waste power battery recovery system of a company is a closed-loop supply chain.
Battery production reaches consumers through distribution. At the end of its service life cycle,
a battery returns to the company through recovery by a company recovery department or a third party.
After the inspection and decomposition process of a sorting department, coupled with the drive of
technological innovation, the battery is handed over to a production and remanufacturing department.
Batteries that are slightly better than or similar to original batteries are sold after packaging. This model
can be divided into three subsystems, that is, the sorting and recycling system, the technological
innovation system, and the alternative product research system. The sorting subsystem is the most
important component of a company battery recovery system, which involves a sorting multiplier
for organically combining the number of batteries recovered by a company with the cost. Through a
simulation, we determine that with the improvement of the recovery rate and sorting cost multiplier,
the total effect of the actual cost and a company’s sales revenue recovery will move towards a direction
that is beneficial to the development of the company. Specifically, the change in the growth constant
will cause a change in the result variable.

In research on several substitute subsystems, they are found to be nested and related to demand
elasticity and demand difference. The proportion of innovation R&D investment is determined by
demand elasticity and affects the technological investment subsystem. In the substitute subsystem,
the technology adjustment time, proportion of potential substitutes and proportion of maximum
substitutes are introduced. In addition to performance, the cost substitute portion of a product exerts
an impact on the actual product; thus, the actual cost has an important role in the potential substitute
portion of the product. In the research process, we find that with the passage of time and investment in
technological innovation, the potential substitutes will stabilise, thereby indicating that technological
innovation investment can improve current power battery consumers.

In addition, we determine the factors affecting substitutes and that companies in different
industries compete with one another owing to the similar functions of their manufactured products.
This type of competition from substitutes can change the competitive strategy of existing companies to
a certain extent. In an industry with a high threat of substitutes, the prices and profitability of existing
products will be limited owing to the existence of substitutes that can be easily obtained by target
customers. In this case, companies are inclined to reduce the cost of products to attract consumers and
maintain an advantage in the competition.

In the current situation, there is a technological externality in the new energy automobile industry.
It can be understood as the external diffusion of knowledge and technology, which is a positive externality.
It refers to the economic behavior caused by technology imitation and sharing among competitors
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in the same industry. Technology externality will lead to the reluctance of manufacturers to invest
in technology [35]. This is contrary to the fact that we increase technology investment in the current
research to promote consumer acceptance behavior from the outside. Therefore, for current companies,
the external diffusion of knowledge and technology should be strictly prevented in the process of
technological innovation, so as to produce positive effect of technological innovation investment.

In our study, we find that the improvement of the technological innovation rate in the complex
system dynamics model naturally reduces the technological substitution rate, changes several
parameters of the substitutes, and alters the parameters of products’ technological innovation capability.
In this research, we determine that changes in technology leading to company development are greater
than the changes in the substitutes. The improvement of the maximum substitution fraction in the
third part has little impact on demand differentiation and the other important variables of company.
Changes in the fraction are caused by the prediction of the highest substitutes and that of competitors
in the future.

At present, for the new energy vehicle industry that we studied, in China, the substitutes for
domestic power battery products mainly include fuel engine in traditional fuel vehicles and power
battery products outside China. As the component with the highest cost proportion in new energy
vehicles, the power battery system directly determines the market pricing of the whole vehicle.
Only when the cost of the power battery system falls to the level comparable to the engine cost
of traditional fuel vehicles can pure electric vehicles have real market competitiveness in terminal
price after the withdrawal of financial subsidies. At present, the cost of the power battery system of
new-energy vehicles is decreasing year by year. However, it will take many years for electric vehicles
to form equal competition with traditional fuel vehicles in the post-subsidy era [36]. And the cost of
power battery systems abroad is also falling fast, and the threat of replacement cannot be ignored.

Therefore, when analysing the impact of substitutes, companies should focus on improving their
technological innovation capability. Only by giving full play to its advantages of strong innovation
and flexibility to market changes, mastering emerging technologies and leading consumer demand can
it occupy a place in the competition. When the proportion of substitutes is high, uncertainty increases;
thus, the environment that companies encounter becomes uncertain, and enhancing technological
innovation capability is difficult regardless of whether competitors and potential substitution threats
are observed.

In the research of the closed-loop technological innovation subsystem, technology change rate→
technology innovation stock → technology cost maturity → actual expenditure → sales revenue
→ technology R&D investment → technology R&D delay → technology potential change →
technology change rate. In the system dynamics model, the initial technology investment improves
the technological innovation change rate; thus, technology stock investment increases significantly.
In addition, owing to technological improvement, the technology cost multiplier correspondingly
reduces the actual expenditure of a company and promotes its development towards an improved
direction. Therefore, technological innovation capability, as the key factor driving companies’
development, must pay attention to the initial technology stock in the operation of a company
and alter the change rate of technological innovation simultaneously and make timely changes
according to the current technological environment to improve drive.

5. Conclusions

The importance attached to the recycling of waste power batteries is also attached to the current
ecological environment. At present, the power batteries of new-energy electric vehicles are widely
used. Companies actively promote recycling and are an important part of the normalisation of the
overall recycling channel.

In this study, we establish a model based on a company closed-loop recycling system. We examine
the internal driving mechanism of a company using a system dynamics model with the economic
goal to reduce cost and increase income and the recovery rate. The subject of this study is a company



Int. J. Environ. Res. Public Health 2020, 17, 8204 19 of 21

recycling system. Through an impact analysis of technological innovation capability and the partial
subsystem variables of substitutes, we explore the internal optimisation of a company recycling system
and other issues. We provide the following conclusions:

(1) In a power battery recycling system of a company, the sorting subsystem is the main system,
and the technological innovation and substitute components are subsystems. Through the
technological innovation investment of the technological innovation system and gradual decrease
of the substitute component, a company develops towards the improved direction of the total
effect of cost and income.

(2) After the increase in technological innovation investment, companies’ sorting multiplier and
technological innovation multiplier will tend to gradually stabilise. The effect of a high-tech
innovation change rate is obvious, and the effect of a low-tech innovation change rate is slow but
can achieve the expected effect.

(3) Limiting the maximum value of the maximum substitution component with external means to
possess technological innovation cannot effectively change the effect of the substitution component
on the model. Moreover, improvement of the prediction analysis of the replacement component
of the maximum expectation has little effect on the demand differentiation.

(4) Improvement of the reuse rate under the traction of technological innovation capability has
obvious effects on companies. Specifically, companies experience increased demands, but changes
in actual expenditure are not obvious.

(5) In the company operation process driven by the system, the change dominated by technological
innovation capability should change more than that dominated by substitutes. Only by giving full
play to its advantages of strong innovation and flexibility to market changes, mastering emerging
technology and leading consumer demand can it occupy a place in the competition.

In summary, in the process of company innovation, we need not worry about the cost growth
of the recovery system generated by technological innovation, because the total effect is consistently
increasing. When technological innovation is driven, the size of the drive is reflected in the response of
the effect. In the interaction between substitutes and technological innovation, we should pay attention
to technology-oriented company drive but not focus exceedingly on the intervention of substitutes.
Therefore, based on the above conclusions, this study can help improve the operation of company
battery systems and provide the following suggestions and insights to relevant industries. In the
recycling and remanufacturing process, improved battery substitutes will gradually appear over time,
which is the trend of technological development. For the main subject of companies, production should
be conducted reasonably according to a demand plan to improve the total effect of cost and income.
Furthermore, investment in innovative technologies should be increased. In the process of recovery,
sorting, remanufacturing, production, and sales, we should pay attention to companies driven by
technology. The expectation and intervention of substitute products cannot effectively affect product
demands. In the final analysis, companies should save material costs, strengthen battery quality
and maximise battery recycling. At the same time, we should attach considerable importance to
environmental protection and make substantial contributions to the green cycle.

Automobile companies’ active promotion of recycling is an important part of the normalisation
of the overall recycling channel, and their role in waste battery recycling is obvious. This study’s
conclusions can provide a new index for the influencing factors of the driving mechanism of an
enterprise recycling system under the enterprise environment and a reference for the impact of the
combination of the effect of substitutes and technological innovation improvement on an enterprise
system. Finally, the conclusions can also serve as a reference for future system optimisation and decision
support and encourage enterprises to make substantial contributions to the world environment and
public health.

This paper studies the driving mechanism of company waste battery recycling, and solves the
problem of sustainable development of waste battery recycling from the perspective of technological



Int. J. Environ. Res. Public Health 2020, 17, 8204 20 of 21

innovation. However, with the consumption of electric vehicles becoming mainstream, waste battery
recycling needs to be analyzed in a more long-term way from the perspective of industry. With the
development of the Internet of Things and the penetration and integration of the manufacturing
industry, the recycling of waste batteries combined with the research of the Internet of technology will
be our future research fields.
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