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Abstract: Low amounts of physical activity (PA) and prolonged periods of sedentary activity are
common in hospitalized patients. Objective PA monitoring is needed to prevent the negative
effects of inactivity, but a suitable algorithm is lacking. The aim of this study is to optimize and
validate a classification algorithm that discriminates between sedentary, standing, and dynamic
activities, and records postural transitions in hospitalized patients under free-living conditions.
Optimization and validation in comparison to video analysis were performed in orthopedic and
acutely hospitalized elderly patients with an accelerometer worn on the upper leg. Data segmentation
window size (WS), amount of PA threshold (PA Th) and sensor orientation threshold (SO Th) were
optimized in 25 patients, validation was performed in another 25. Sensitivity, specificity, accuracy,
and (absolute) percentage error were used to assess the algorithm’s performance. Optimization
resulted in the best performance with parameter settings: WS 4 s, PA Th 4.3 counts per second, SO Th
0.8 g. Validation showed that all activities were classified within acceptable limits (>80% sensitivity,
specificity and accuracy, ±10% error), except for the classification of standing activity. As patients
need to increase their PA and interrupt sedentary behavior, the algorithm is suitable for classifying
PA in hospitalized patients.

Keywords: physical activity; accelerometers; algorithm; validation; hospitalized patients

1. Introduction

Low amounts of physical activity (PA) and prolonged periods of uninterrupted seden-
tary activity are common in hospitalized patients. Patients spend between 87% and 100%
of their day lying in bed or sitting in a chair [1–5]. Little time is spent being active, and
bouts of standing and walking are usually short [6,7]. This sedentary behavior is found
in all patient subpopulations. On average, surgical inpatients spend 10 to 71 min per day
standing and walking [1,8–10], compared to 66 to 117 min for geriatric inpatients [7,11–13],
1 to 184 min for medical inpatients [14–20], 10 to 86 min for post-stroke inpatients [21–26],
and 0 min for patients admitted to the intensive care unit [27,28].

Low amounts of PA and prolonged periods of uninterrupted sedentary activity during
hospitalization have been associated with functional decline [29,30], a decline in physical
performance [30], increased insulin resistance [30], increased length of stay [31], increased
risk of institutionalization [16], and mortality [29,32–34]. To reduce the risks of these
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negative effects, interventions aimed at increasing the amounts of PA and breaking up
prolonged periods of sedentary activity are essential [30,35–39]. In order to support (i.e.,
perform and/or evaluate) such interventions, it is necessary to measure patients’ PA
behavior in an objective and accurate way [2,40,41].

Monitoring patients’ PA behavior during hospitalization is commonly performed
using self-reported measures, behavior mapping, or wearable activity monitors [1,2,40,42].
Self-reported measures (e.g., surveys or diaries) are subjective and show low validity
and reliability [40,42,43]. Behavior mapping involves direct, structured observation and
classification of patients’ PA behavior by observers [44,45]. This is labor-intensive and may
intrude upon patients’ privacy [41,46]. Moreover, it may under- or overestimate amounts
of PA and periods of uninterrupted sedentary activity when observations are performed
during daytime hours only, or when sampled at brief intervals (e.g., one minute in every
ten minutes) [16,41,46–48]. As bouts of walking often last less than two minutes, they
might not be recorded, resulting in an underestimation of the amount of PA. Wearable
activity monitors, such as accelerometers, allow for objective, continuous quantification and
classification of patients’ PA behavior over longer time periods, with minimal effort and
invasiveness [1,2,6,41,49,50]. Despite all their advantages, accelerometers have not been
widely integrated in clinical practice, due to issues relating to feasibility, reliability, and
validity [2,41,50]. Accelerometers measure raw accelerations obtained from movements of
a body or a body segment. PA behavior is then estimated by applying an algorithm to the
raw data [51]. Most algorithms are built with the same conceptual building blocks, viz., (1)
a pre-processing phase to remove artifacts from the raw data, (2) data segmentation, (3)
extraction of data features, and (4) a classifier that translates the raw data into interpretable
outcome measures [52–57].

The performance metrics of an algorithm to measure patients’ PA behavior are influ-
enced by patient characteristics (e.g., age, walking speed, gait pattern, and the use of a
walking aid), sensor wear location, number of sensors used, and outcome parameters (e.g.,
classifying activities, step count, and intensity) [41,42]. Time spent in dynamic activities
(e.g., walking, stair climbing) and the classification of postural transitions from sedentary
to upright position are the most relevant outcome parameters for hospitalized patients, as
they need to increase their amount of PA and interrupt prolonged periods of sedentary
activity [1,35,45]. Most accelerometer algorithms are validated in healthy adults and lack
the sensitivity to classify slow or impaired gait [58,59]. They are not able to accurately dif-
ferentiate slow gait and shuffling from standing. However, slow and impaired gait, as well
as the frequent use of walking aids, are common in hospitalized patients. As a result, using
an algorithm that is validated in healthy adults in a population of hospitalized patients
would require optimization and validation of the algorithm’s performance [41]. Previous
studies have shown that the validity of existing algorithms to discriminate between seden-
tary, standing, and dynamic activities, and to classify postural transitions in hospitalized
patients, varies and is usually investigated in small study samples [12,35,45,46,48,55,60–62].
A suitable algorithm for hospitalized patients that is able to discriminate between standing
and dynamic activities, as well as to classify postural transitions, is currently lacking [63].

Recently, Hospital Fit (HFITAPP0, Maastricht Instruments B.V., Maastricht, The
Netherlands), a smartphone application connected to an accelerometer, was developed
to enable PA monitoring and to stimulate recovery in hospitalized patients [1]. The algo-
rithm embedded in this accelerometer is able to differentiate time spent being sedentary
(lying/sitting) from time spent being active (standing/dynamic) in hospitalized patients.
The current study is built upon Hospital Fit by aiming to discriminate between standing
and dynamic activities and by classifying postural transitions. Bijnens et al. have presented
an adjustable PA classification algorithm that is validated to discriminate between seden-
tary, standing, and dynamic activities in healthy elderly persons [49]. Its easily adjustable
parameters enable the performance of this algorithm to be optimized for different target
populations and sensor wear locations. The algorithm had not yet been optimized or
validated in hospitalized patients. Doing so and implementing the proposed algorithm
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in Hospital Fit would improve PA monitoring in hospitalized patients. The aim of this
study was therefore to optimize and validate a PA classification algorithm which is able to
discriminate between sedentary, standing, and dynamic activities, and to detect postural
transitions among hospitalized patients. We assessed the concurrent validity of the algo-
rithm to classify sedentary, standing, and dynamic activities and detect postural transitions
in hospitalized patients, by checking it against video analysis.

2. Materials and Methods
2.1. Study Design

This single-center, prospective validation study was conducted at Maastricht Univer-
sity Medical Center (MUMC+) in Maastricht, The Netherlands, between November 2019
and March 2020.

2.2. Study Population

Patients who received physical therapy and were (1) admitted for elective total knee
arthroplasty (TKA) or total hip arthroplasty (THA) at the Department of Orthopedic
Surgery and Traumatology, or (2) aged 70 years or older and acutely hospitalized at the
Department of Internal and Geriatric Medicine at the MUMC+ were invited to participate.
Patients were recruited during weekdays. Patients scheduled for elective TKA or THA
received verbal and written information about the study from their physical therapist four
to six weeks prior to surgery, during preoperative screening. A researcher contacted the
patients during their hospitalization, and written informed consent was obtained before
they entered the study. Acutely hospitalized elderly patients received verbal and written
information about the study from their physical therapist during their first physical therapy
session. Informing these patients prior to hospitalization was not possible because they
were admitted acutely. A researcher contacted the patients the next day. If patients were
interested in participating, an informed consent form was provided by the researcher and
written informed consent was obtained before they entered the study. Informed consent
was signed in the patient’s own room. Confidential processing of data and anonymity
were guaranteed.

Patients were eligible if they met the following inclusion criteria: receiving physical
therapy, aged 18 years or older and admitted for TKA or THA at the Department of Or-
thopedic Surgery and Traumatology, or aged 70 years or older and acutely admitted at
the Department of Internal and Geriatric Medicine, having been able to walk indepen-
dently two weeks prior to admission as scored on the Functional Ambulation Categories
(FAC > 3) [64], and having a sufficient understanding of the Dutch language. Exclusion
criteria were: the presence of contraindications to walking or wearing an accelerometer
on the upper leg, admission to the intensive care unit, impaired cognition (delirium /
dementia) or being incapacitated as reported by the attending doctor, a life expectancy of
less than three months, and previous participation in this study.

This study was performed in compliance with the Declaration of Helsinki and was
approved by the Medical Ethics Committee of the University Hospital Maastricht and
Maastricht University (METC azM/UM), registration number 2019-1265.

2.3. Data Collection

Fifty patients were enrolled after signing the informed consent. The sample size of
50 corresponds to that used in previous validation studies, which included 8 to 99 partici-
pants [35,42,46,62,65–70]. Optimization of the adjustable algorithm described by Bijnens
et al. was performed on data of 25 patients [49]. Validation of the optimized algorithm was
then performed on data of the remaining 25 patients. After inclusion, patients were ran-
domized 1:1 to the optimization or validation group, using a stratified block randomization.
To ensure an equal distribution of orthopedic and elderly patients within the optimization
and validation groups, patients were first stratified by department (“Orthopedic Surgery
and Traumatology’ or ‘Internal and Geriatric Medicine”) before they were randomized
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(Figure 1). The randomization and allocation of patients was carried out by an independent
researcher. The randomization schedule was created using a computer-based random
number generator. Medical and demographic data (age, sex, and use of a walking aid)
were extracted from the electronic patient records. Missing data were not substituted and
drop-outs were not replaced.
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Figure 1. After stratification according to department, 50 patients were randomly assigned to the
optimization or validation group.

All patients received a referral to usual care physical therapy from their physician. As
physical therapy sessions often comprise a significant part of the patients’ PA behavior
during their hospital stay, a randomly selected physical therapy session was used to collect
data under free-living conditions. This could range from the first to the last physical therapy
session, which enabled the performance of the algorithm to be investigated in a variety of
patients with different gait patterns. Physical therapy sessions were aimed at increasing
PA and stimulating functional recovery of activities of daily living which are essential in
order to function independently at home. Sedentary, standing, and dynamic activities (e.g.,
walking, stair climbing) as well as postural transitions from sedentary (sitting/lying) to
upright (standing/dynamic) positions were performed at least once during each physical
therapy session. The exact content of physical therapy sessions depended on the diagnosis
and needs of the individual patients. The order, pace, and duration of activities varied
between individuals. If necessary, patients used a walking aid. This study did not interfere
with the content of the physical therapy sessions.

2.3.1. Video Recordings

Patients were recorded from the waist down using a handheld camera (HDC-HS60,
Panasonic, Osaka, Japan). Recording the faces or other people within the hospital wards
was avoided. The video recordings served as a reference for the classification of sedentary,
standing, and dynamic activities, as well as for the detection of postural transitions. Video
recording was used as the gold standard in activity monitoring, as it allows the most
accurate activity classification, and offers the possibility to reanalyze data by single or
multiple observers [71–73]. After the physical therapy session, the video recordings were
uploaded to a computer.

2.3.2. Acceleration Data

Acceleration data were acquired with a MOX Activity Logger (MOX; Maastricht Instru-
ments, Maastricht, The Netherlands (Figure 2A)). The MOX contains a tri-axial accelerom-
eter sensor (ADXL362; Analog Devices, Norwood, MA, USA). The small, lightweight,
waterproof device (35 × 35 × 10 mm, 11 g) measures raw acceleration data (±8 g) for three
orthogonal sensor axes (X, Y, and Z) at a 25 HZ sampling rate, and stores the data directly in
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its internal memory. Each axis is factory-calibrated against gravity. The MOX is capable of
measuring and storing data continuously for up to seven days. Data analysis is performed
offline. After uploading the raw acceleration data provided by the MOX to a computer, an
algorithm can be applied to these raw data. The MOX has been successfully used as an ac-
tivity logger for PA monitoring in colorectal cancer survivors, chronic organ failure patients,
total knee and hip arthroplasty patients, and healthy elderly subjects [1,40,49,74,75].
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The MOX uses a custom-made, double-sided, waterproof, hypoallergenic patch for
body attachment. Prior to the physical therapy session, this patch was used to attach
the MOX to the upper leg (ten centimeters proximal of the patella, Figure 2B). The upper
leg location was chosen as it allows for classification of body postures and movements
(e.g., lying/sitting, standing, walking) [76–78]. For the orthopedic patients, the MOX was
attached to the non-operated leg. For the acutely hospitalized elderly patients, the MOX
was attached to the right leg. Both at the beginning and the end of the physical therapy
session, the researcher tapped the MOX twice for the purpose of post-hoc synchronization
between the video recording and the raw acceleration data. After the treatment session,
the MOX was removed and the raw acceleration data were uploaded to a computer via a
USB connection.

2.4. Data Analysis
2.4.1. Video Recordings

All video recordings were continuously classified as (1) sedentary, (2) standing,
or (3) dynamic activities using the Behavioral Observation Research Software (BORIS,
v7.9.19) [79]. Postural transitions were recorded when a sedentary activity was followed by
a standing or dynamic activity. Three trained observers (R.S., H.C.v.D.-H., J.M.N.E.) were
given clear definitions to classify each activity or transition (Table 1).

Table 1. Definitions for activity classification of the video recordings.

Activity Definition

Sedentary Patient is in a seated or lying position (angle between upper leg
and gravity vector < 60 degrees)

Standing
Patient is in an upright position (angle between upper leg and

gravity vector > 60 degrees) for more than 2 s without activity of
the lower extremities

Dynamic Patient performs physical activity with the lower extremities for
at least 2 s, such as walking, stair climbing, or cycling

Postural Transitions Transition from a sedentary activity to a
standing or dynamic activity

Each video recording was independently analyzed by two observers. In order to
minimize bias, different combinations of observers were used. Observers were blinded to
the classifications made by other observers and by the algorithm. Using video recordings
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as a gold standard requires high inter-observer reliability. This was assessed based on the
total time per activity per patient, using the intraclass correlation coefficient (ICC, two-way
random, absolute agreement). An ICC ≥ 0.9 was considered high [80].

2.4.2. Algorithm Optimization

The adjustable classification algorithm previously described by Bijnens et al. [49] was
used as the starting point for the optimization process. This algorithm contains three
parameters that can be easily adjusted for target population and sensor wear location:
(1) data segmentation window size (WS), (2) amount of physical activity threshold (PA
Th), and (3) sensor orientation threshold (SO Th). The algorithm was recently validated
to discriminate between sedentary, standing, and dynamic activities in healthy elderly
persons with an upper leg wear location. The parameter settings of this algorithm were
referred to as MOXAL (WS: 2 s, PA Th: 7 counts per second (cps), SO Th: 0.8 g) [49].

To determine the performance of MOXAL in hospitalized patients with an upper
leg wear location, we applied it to the raw acceleration data of our optimization group.
MATLAB (R2018b; The MathWorks Inc., Natick, MA, USA) was used to convert the raw
acceleration data into classifications of sedentary, standing, or dynamic activities for each
data segmentation window.

The classification accuracy of the algorithm was assessed by calculating sensitiv-
ity, specificity, and accuracy for each activity [81]. The acceleration data were manually
synchronized with the data of the video recordings. Data of the video recordings were
segmented into windows of similar length as the algorithm’s data segmentation window
size, in order for it to be used as a reference. The main activity within each window was
used as a comparator. For each individual, activity classifications derived from MOXAL
were compared with classifications derived from the video recordings in a confusion matrix.
Comparisons were made for each window within the entire measurement period. The
confusion matrix showed how often activity classifications were detected correctly by the
algorithm in comparison with the video classifications, and how often activities were clas-
sified differently. Confusion matrices were derived for sedentary, standing, and dynamic
activities as described by Ruuska et al. [81]. Figure 3 provides an example of a confusion
matrix for dynamic activity. To assess the performance accuracy for postural transitions, a
synchronized time array was created for the annotated video data and algorithm classifica-
tions, in order to create a confusion matrix. In this time array, a sedentary window followed
by a standing or dynamic window was given the value “one,” whereas adjacent windows
of the same activity were given the value “zero.” Sensitivity, specificity, and accuracy were
subsequently calculated per activity and for postural transitions (Equations (A1)–(A3)) in
Appendix A [81]. Additionally, the classification accuracy was calculated over all activities
(total), based on the sum of the confusion matrices of the separate activities.
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To assess the classification error of the algorithm, percentage error (PE) and absolute
percentage error (APE) were calculated per activity (Equations (A4) and (A5)) [49]. PE and
APE reflect the error between the video recordings and the algorithm, and were assessed
based on the total time per activity as classified by the video recordings. To assess the
error of postural transitions, the total numbers of postural transitions determined by the
video classifications and the algorithm were compared. A negative PE value reflects an
overestimation by the algorithm, while a positive PE value reflects an underestimation. APE
does not differentiate between over- or underestimation, and thus provides an indication of
the magnitude of the error. As PE and APE are relative measures, it is possible to compare
them across studies [51]. Additionally, the errors over all activities (total) were calculated
as the sum of the errors of the separate activities.

All performance metrics of the classification accuracy and error were determined for
each individual, and medians (Q1 to Q3) were calculated per group. The median and
interquartile ranges were used to present non-normally distributed data. Sensitivity, speci-
ficity, and accuracy values of 80% or higher were considered acceptable [71,82]. PE ± 10%
and APE lower than 10% were considered to be within acceptable limits [83,84].

During the optimization phase, the parameter settings of MOXAL (WS, PA Th, and
SO Th) were adjusted to reduce the total activity APE. Out of a set of 4025 combinations
(WS ranging from 0.4 s to 10 s in steps of 0.4 s, PA Th ranging from 2 cps to 6 cps in steps of
0.025 cps), the parameter settings resulting in the lowest total activity APE were referred
to as MOXALOpt (WS: 0.8 s, PA Th: 3.85 cps, SO Th: 0.8 g). The performance metrics
(sensitivity, specificity, accuracy, PE, and APE) of MOXALOpt were assessed in the same
way as for MOXAL. As the optimization did not sufficiently improve the performance of
the algorithm, additional modifications had to be introduced.

Since the amount of PA for dynamic activity was very low for the hospitalized patients,
there was a relatively small difference in the amount of PA between standing and dynamic
activities. This small difference made it challenging to find an appropriate PA Th. Therefore,
additional modifications were introduced regarding the decision tree and the calculation of
the amount of PA. The decision tree was modified to first discriminate between sedentary
and upright windows based on the SO Th. Next, the upright windows were further
classified as standing or dynamic activity based on the PA Th. Furthermore, in MOXAL
and MOXALOpt, the amount of PA was calculated by combining the raw acceleration data
of the three orthogonal sensor axes. In the modified algorithm, only the most sensitive axis
was used, to avoid masking effects of other axes and improve the calculation of the amount
of PA. Walking produces a distinct pattern in both anterior-posterior and vertical directions.
In patients who walk slowly, especially those using walking aids, the anterior-posterior
acceleration signal is more pronounced than the vertical acceleration signal [55]. Using the
anterior-posterior axis was therefore expected to improve the calculation of the amount of
PA in hospitalized patients and consequently improve the classification of standing and
dynamic activities.

After these modifications, the algorithm was optimized again by adjusting the param-
eter settings. Using the same 4025 combinations as before, the parameter settings resulting
in the lowest total APE were referred to as HFITAL (WS: 4 s, PA Th: 4.3 cps, SO Th: 0.8 g).
Next, the performance metrics of HFITAL were assessed in the same way as for MOXAL.
A schematic overview of the data processing of HFITAL is shown in Figure A1.

2.4.3. Algorithm Validation

After the algorithm had been optimized, it was validated by assessing the performance
of the optimized algorithm in a different group of patients within the same target popula-
tion. Data of the validation group were used to assess the performance metrics of HFITAL
as regards classifying sedentary, standing, and dynamic activities and detecting postural
transitions in hospitalized patients in comparison to the video analysis. The performance
metrics (sensitivity, specificity, and accuracy, PE, and APE) were calculated in the same way
as described above for the algorithm optimization. In addition, a subgroup analysis was
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performed in which the performance metrics were assessed for acutely hospitalized elderly
patients and orthopedic patients separately, providing more insight into the performance
of the algorithm in the two groups.

3. Results
3.1. Participant Characteristics

Of the 50 participating patients, four (8.0%) were excluded due to problems with
synchronization or technical complications. This resulted in 46 (92.0%) patients for analysis,
with 22 (47.8%) in the optimization group and 24 (52.2%) in the validation group. The
baseline characteristics of patients included in the optimization and validation groups are
reported in Table 2.

Table 2. Characteristics of study participants in the optimization and validation groups.

Optimization Group Validation Group

Characteristic All Patients
(n = 22)

Acutely
Hospitalized

Elderly Patients
(n = 11)

Orthopedic
Patients (n = 11)

All Patients
(n = 24)

Acutely
Hospitalized

Elderly Patients
(n = 12)

Orthopedic
Patients (n = 12)

Sex, female (n, %) 7 (31.8%) 2 (18.2%) 5 (45.5%) 14 (58.3%) 7 (58.3%) 7 (58.3%)
Age, years

(median, Q1 to Q3) 75.4 (72.6 to 82.0) 82.0 (75.4 to 87.7) 73.7 (66.4 to 76.0) 75.8 (70.3 to 85.5) 84.7 (77.0 to 88.3) 70.1 (61.2 to 75.5)

Walking Aid (n, %) 20 (90.9%) 11 (100.0%) 9 (81.8%) 21 (87.5%) 12 (100.0%) 9 (75.0%)

3.2. Inter-Observer Reliability

The inter-observer reliability of the classification of activities based on the video record-
ings was high. The ICC values for the optimization group were 1.000, 0.994, and 0.995 for
sedentary, standing, and dynamic activities, respectively. The ICC values for the validation
group were 1.000 for sedentary and dynamic activities, and 0.997 for standing activity.

3.3. Algorithm Optimization

The median (Q1 to Q3) duration of the measurement protocol for patients in the
optimization group was 12.3 (8.3 to 15.0) minutes per patient. The median (Q1 to Q3) times
spent performing sedentary and standing activities were 3.0 (0.7 to 7.4) and 2.1 (1.5 to 3.9)
minutes per patient, respectively. The majority of time was spent performing dynamic
activity, with a median (Q1 to Q3) time of 4.9 (3.9 to 6.5) minutes per patient.

Applying MOXAL to the acceleration data of the optimization group resulted in the
performance metrics shown in Table 3 and Figure 4. All performance metrics are expressed
as median percentages (Q1 to Q3). MOXAL resulted in a low sensitivity of 79.0% (40.1% to
92.9%) and a high APE of 18.2% (3.4% to 55.4%) for the classification of dynamic activity,
as well as a high PE of −33.1% (−114.8% to 1.1%) and an APE of 34.0% (6.1% to 114.8%)
for the classification of standing activity. Total APE was 18.9% (4.2% to 51.0%).

Applying MOXALOpt to the data of the optimization group resulted in a low sensitivity
of 74.5% (42.3% to 88.0%) for the classification of dynamic activity and high PE values
of 10.4% (6.1% to 17.4%), −42.9% (−106.8% to 1.4%), and −200.0% (−290% to −150%)
for the classification of sedentary activities, standing activities, and postural transitions,
respectively. None of the APE values fell within the acceptable limits. Total APE was 11.8%
(8.7% to 56.0%). Since the performance metrics of MOXALOpt did not improve compared to
MOXAL (in some cases they even deteriorated), additional modifications were introduced
to the algorithm, resulting in the optimized algorithm HFITAL.
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Table 3. Median values (Q1 to Q3) of the performance metrics (%, sensitivity, specificity, accuracy, PE, and APE) of the
classification of activities by MOXAL, MOXALOpt, and HFITAL within the optimization group (n = 22).

Activity Algorithm Sensitivity (%) Specificity (%) Accuracy (%) PE (%) APE (%)

Sedentary
MOXAL 95.6 (88.3 to 98.0) 99.1 (98.1 to 99.6) 98.5 (97.4 to 98.9) 2.6 (0.5 to 8.7) 3.2 (1.0 to 11.4)

MOXALOpt 88.0 (79.5 to 93.3) 99.0 (99.0 to 100.0) 96.0 (96.0 to 97.0) 10.4 (6.1 to 17.4) 10.4 (6.1 to 17.4)
HFITAL 97.7 (96.2 to 100.0) 97.1 (95.2 to 99.2) 97.5 (95.3 to 98.9) −2.1 (−4.4 to 3.6) 3.8 (2.3 to 7.2)

Standing
MOXAL 87.4 (79.9 to 93.1) 89.4 (64.4 to 97.3) 88.8 (71.6 to 94.4) −33.1(−114.8 to 1.1) 34.0 (6.1 to 114.8)

MOXALOpt 84.0 (76.3 to 88.8) 87.5 (59.0 to 93.0) 86.0 (66.3 to 90.3) −42.9 (−106.8 to 1.4) 42.9 (8.0 to 106.8)
HFITAL 67.3 (57.1 to 76.4) 96.8 (90.5 to 98.9) 90.3 (87.3 to 92.5) 20.2 (−10.1 to 30.5) 25.1 (11.8 to 35.5)

Dynamic
MOXAL 79.0 (40.1 to 92.9) 96.1 (90.2 to 97.5) 84.1 (72.3 to 94.6) 8.8 (−2.6 to 55.4) 18.2 (3.4 to 55.4)

MOXALOpt 74.5 (42.3 to 88.0) 89.5 (84.8 to 94.0) 84.5 (63.4 to 89.0) 8.7 (−9.0 to 50.7) 17.5 (8.7 to 56.0)
HFITAL 93.6 (85.9 to 96.2) 92.2 (84.4 to 94.9) 90.9 (86.5 to 94.2) −3.2 (−8.2 to 4.7) 6.9 (3.1 to 16.8)

Total
MOXAL 83.2 (71.0 to 93.8) 91.6 (85.5 to 96.9) 88.8 (80.7 to 95.8) 0.1 (−0.1 to 0.3) 18.9 (4.2 to 51.0)

MOXALOpt 82.9 (62.9 to 87.3) 91.4 (81.5 to 93.6) 88.6 (75.3 to 91.5) −0.1 (−0.1 to 0.1) 11.8 (8.7 to 56.0)
HFITAL 89.7 (86.1 to 91.5) 94.8 (93.1 to 95.7) 93.1 (90.7 to 94.3) 0.2 (−0.1 to 0.4) 7.6 (4.8 to 15.3)

Postural
Transitions

MOXAL 100.0 (100.0 to 100.0) 100.0 (100.0 to 100.0) 100.0 (100.0 to 100) 0.0 (0.0 to 0.0) 0.0 (0.0 to 19.0)
MOXALOpt 100.0 (100.0 to 100.0) 96.1 (93.6 to 98.1) 96.2 (93.8 to 98.1) −200.0 (−290.0

to −150.0) 200.0 (150.0 to 190.0)
HFITAL 100.0 (100.0 to 100.0) 100.0 (100.0 to 100.0) 100.0 (100.0 to 100.0) 0.0 (0.0 to 0.0) 0.0 (0.0 to 13.0)

PE = percentage error. APE = absolute percentage error. MOXAL = adjustable classification algorithm validated in community-dwelling
healthy elderly persons with an upper leg wear location, used as the starting point for the optimization process. MOXALOpt = classification
algorithm after optimization of three adjustable parameter settings of MOXAL to reduce absolute percentage error for total activity.
HFITAL = classification algorithm after additional modifications were introduced to MOXAL regarding the decision tree and the calculation
of the amount of physical activity.

Applying HFITAL to the acceleration data of the optimization group resulted in
acceptable performance metrics, for both the classification of sedentary, dynamic, and total
activities, and for the detection of postural transitions. Only the sensitivity of 67.3% (57.1%
to 76.4%), the PE of 20.2% (−10.1% to 30.5%), and the APE of 25.1% (11.8% to 35.5%) for
the classification of standing activity did not fall within the acceptable limits. Total APE
was 7.6% (4.8% to 15.3%).

A detailed overview of the parameter settings of the activity classification algorithms
evaluated during the optimization process, and a schematic overview of the data processing
of HFITAL, can be found in Table A1 and Figure A1. A graphical representation of the raw
acceleration data, the video annotations, and the classification by MOXAL, MOXALOpt,
HFITAL is given as an example in Figure A2. Detailed numeric results can be found in
supplementary material Spreadsheet S1: S1_OptimizationResults.xlsx.

3.4. Algorithm Validation

The median (Q1 to Q3) duration of the measurement protocol for patients included
in the validation group was 10.8 (7.4 to 18.4) minutes per patient. The median (Q1 to Q3)
times spent performing sedentary and standing activities were 3.7 (1.8 to 6.3) and 1.9 (0.4 to
4.6) minutes per patient, respectively. The majority of time was spent performing dynamic
activity, with a median (Q1 to Q3) time of 4.4 (3.8 to 7.5) minutes per patient.

Validation of the optimized algorithm was performed by applying HFITAL to the
acceleration data of the validation group. This resulted in the performance metrics shown in
Table 4 and Figure 5. The classification of activities and the detection of postural transitions
produced sensitivity, specificity, and accuracy values above 89.2%, while APE and PE
values were below 8.6%. Postural transitions were accurately detected by the algorithm,
showing an identical number of transitions for 76% of the patients. In one patient, HFITAL
overestimated the number of transitions by two. In four patients, HFITAL overestimated
the number of transitions by one. With a sensitivity of 65.0% (34.1% to 76.9%), a PE of
21.3% (−3.9% to 50.2%) and an APE of 29.2% (14.6% to 55.2%), the classification of standing
activity did not meet the acceptable limits.



Sensors 2021, 21, 1652 10 of 22Sensors 2021, 21, x FOR PEER REVIEW 10 of 22 
 

 

 

 
Figure 4. Performance metrics (%, Sensitivity (A), specificity (B), accuracy (C), percentage error 
(D), and absolute percentage error (E)) of the classification of activities by MOXAL, MOXALOpt, 
and HFITAL within the optimization group. All individual values are shown. Acceptable limits 
are represented by dashed lines. MOXAL is represented in black, MOXALOpt in brown, and 
HFITAL in blue. (MOXAL = adjustable classification algorithm validated in community-dwelling 
healthy elderly persons with an upper leg wear location, used as the starting point for the optimi-
zation process. MOXALOpt = classification algorithm after optimization of three adjustable parame-
ter settings of MOXAL to reduce the absolute percentage error for total activity. HFITAL = classifi-
cation algorithm after additional modifications were introduced to MOXAL regarding the decision 
tree and the calculation of the amount of physical activity). 

3.4. Algorithm Validation 
The median (Q1 to Q3) duration of the measurement protocol for patients included 

in the validation group was 10.8 (7.4 to 18.4) minutes per patient. The median (Q1 to Q3) 
times spent performing sedentary and standing activities were 3.7 (1.8 to 6.3) and 1.9 (0.4 

Figure 4. Performance metrics (%, Sensitivity (A), specificity (B), accuracy (C), percentage error (D),
and absolute percentage error (E)) of the classification of activities by MOXAL, MOXALOpt, and
HFITAL within the optimization group. All individual values are shown. Acceptable limits are
represented by dashed lines. MOXAL is represented in black, MOXALOpt in brown, and HFITAL
in blue. (MOXAL = adjustable classification algorithm validated in community-dwelling healthy
elderly persons with an upper leg wear location, used as the starting point for the optimization
process. MOXALOpt = classification algorithm after optimization of three adjustable parameter
settings of MOXAL to reduce the absolute percentage error for total activity. HFITAL = classification
algorithm after additional modifications were introduced to MOXAL regarding the decision tree and
the calculation of the amount of physical activity).
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Table 4. Median values (Q1 to Q3) of the performance metrics (%, sensitivity, specificity, accuracy, PE, and APE) of the
classification of activities by HFITAL within all patients of the validation group (n = 24) and the subgroups of acutely
hospitalized elderly patients (n = 12) and orthopedic patients (n = 12).

Activity Population Sensitivity (%) Specificity (%) Accuracy (%) PE (%) APE (%)

Sedentary

All Patients 98.7 (98.0 to 100.0) 98.2 (96.6 to 98.9) 98.5 (97.4 to 99.1) −1.9 (−4.9 to −0.7) 1.9 (0.7 to 4.8)
Acutely

Hospitalized
Elderly Patients

98.3 (96.5 to 99.9) 96.9 (93.4 to 98.2) 97.6 (95.6 to 98.1) −2.1 (−5.4 to −1.7) 2.1 (1.7 to 5.4)

Orthopedic Patients 99.3 (98.2 to 100.0) 98.9 (98.3 to 99.3) 98.9 (98.8 to 99.3) −0.8 (−3.6 to 0.2) 0.8 (0.5 to 3.6)

Standing

All Patients 65.0 (34.1 to 76.9) 96.9 (92.7 to 98.5) 89.8 (85.8 to 93.7) 21.3 (−3.9 to 50.2) 29.2 (14.6 to 55.2)
Acutely

Hospitalized
Elderly Patients

34.7 (20.3 to 55.3) 98.3 (96.9 to 99.7) 91.7 (86.4 to 95.4) 49.0 (13.6 to 58.6) 51.6 (29.2 to 61.2)

Orthopedic Patients 71.8 (65.7 to 81.8) 93.1 (91.4 to 96.9) 89.6 (81.5 to 91.6) 9.1 (−18.5 to 23.7) 18.2 (12.8 to 30.4)

Dynamic

All Patients 94.3 (87.5 to 96.5) 89.2 (82.6 to 91.9) 90.5 (85.9 to 93.8) −4.2 (−12.5 to 3.1) 8.6 (4.0 to 18.2)
Acutely

Hospitalized
Elderly Patients

95.6 (94.6 to 97.9) 88.6 (63.9 to 91.9) 92.2 (87.1 to 95.1) −5.1 (−11.6 to −1.6) 6.9 (2.2 to 15.4)

Orthopedic Patients 91.9 (75.0 to 93.7) 89.2 (86.8 to 94.1) 90.1 (82.3 to 92.3) −3.6 (−13.6 to 13.7) 12.9 (4.9 to 22.1)

Total

All Patients 89.2 (83.6 to 92.8) 94.6 (91.8 to 96.4) 92.8 (89.1 to 95.2) 0.2 (0.0 to 0.4) 8.6 (5.3 to 14.7)
Acutely

Hospitalized
Elderly Patients

91.8 (83.6 to 94.1) 95.9 (91.8 to 97.1) 94.5 (89.1 to 96.1) 0.2 (0.0 to 0.3) 8.2 (4.5 to 13.7)

Orthopedic Patients 88.9 (79.5 to 91.1) 94.5 (89.8 to 95.5) 92.6 (86.3 to 94.1) 0.3 (0.1 to 0.5) 8.6 (6.6 to 21.4)

Postural
Transitions

All Patients 100.0 (100.0 to 100.0) 100.0 (100.0 to 100.0) 100.0 (100.0 to 100.0) 0.0 (0.0 to 0.0) 0.0 (0.0 to 0.0)
Acutely

Hospitalized
Elderly Patients

100.0 (100.0 to 100.0) 100.0 (100.0 to 100.0) 100.0 (100.0 to 100.0) 0.0 (0.0 to 0.0) 0.0 (0.0 to 0.0)

Orthopedic Patients 100.0 (82.3 to 100.0) 100.0 (100.0 to 100.0) 100.0 (82.3 to 100.0) 0.0 (0.0 to 3.1) 0.0 (0.0 to 14.4)

PE = percentage error. APE = absolute percentage error. MOXAL = adjustable classification algorithm validated in community-dwelling
healthy elderly persons with an upper leg wear location, used as the starting point for the optimization process. MOXALOpt = classification
algorithm after optimization of three adjustable parameter settings of MOXAL to reduce the absolute percentage error for total activity.
HFITAL = classification algorithm after additional modifications were introduced to MOXAL regarding the decision tree and the calculation
of the amount of physical activity.

Subgroup analysis of the data of the acutely hospitalized elderly patients resulted in
sensitivity, specificity, and accuracy values above 88.6%, and APE and PE values below
8.2% for sedentary, dynamic, and total activities, as well as postural transitions. However,
with a sensitivity of 34.7% (20.3% to 55.3%), a PE of 49.0% (13.6% to 58.6%), and an APE
of 51.6% (29.2% to 61.2%), the classification of standing activity resulted in unacceptable
performance metrics.

Similarly, subgroup analysis of the data of orthopedic patients resulted in sensitivity,
specificity, and accuracy values above 88.69%, with APE and PE values below 9.1% for
the classification of sedentary, dynamic, and total activities, as well as postural transitions.
The classification of standing showed a sensitivity of 71.8% (65.7% to 81.8%) and a PE
of 9.1% (−18.5% to 23.7%). However, the APE values of the classification of standing
and dynamic activities were too high (18.2% [12.8% to 30.4%] and 12.9% [4.9% to 22.1%],
respectively) (Table 4, Figure 5). Detailed numeric results can be found in supplementary
material Spreadsheet S2: S2_ValidationResults.xlsx.
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Figure 5. Performance metrics (%, sensitivity (A), specificity (B), accuracy (C), percentage error (D), and absolute percentage
error (E)) of the classification of activities by HFITAL within the validation group. All individual values are shown.
Acceptable limits are represented by dashed lines. “All Patients” are represented in black, “Acutely Hospitalized Elderly
Patients” in brown, and “Orthopedic Patients” in blue. (MOXAL = adjustable classification algorithm validated in
community-dwelling healthy elderly persons with an upper leg wear location, used as the starting point for the optimization
process. MOXALOpt = classification algorithm after optimization of three adjustable parameter settings of MOXAL to
reduce the absolute percentage error for total activity. HFITAL = classification algorithm after additional modifications were
introduced to MOXAL regarding the decision tree and the calculation of the amount of physical activity).
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4. Discussion

The primary aim of this study was to present and validate an optimized PA classifica-
tion algorithm (HFITAL) which is able to discriminate between sedentary, standing, and
dynamic activities, and able to detect postural transitions among hospitalized patients in a
free-living setting. The results show that with an accelerometer worn on the upper leg, the
best classification performance for HFITAL was achieved with the following parameter
settings: a data segmentation window size (WS) of 4 s, an amount of physical activity
threshold (PA Th), of 4.3 cps, and a sensor orientation threshold (SO Th) of 0.8 g. Validation
of HFITAL showed that the classification of sedentary and dynamic activities, as well as
the detection of postural transitions, produced sensitivity, specificity, and accuracy values
above 89.0% and percentage error and absolute percentage error below 8.0%. Furthermore,
the performance metrics of the classification of sedentary and dynamic activities, as well
as the detection of postural transitions, fell within the acceptable limits for at least 75.0%
of the patients, indicating the robustness of HFITAL. With a sensitivity of 65.0%, a PE of
21.3%, and an APE of 29.2%, only the classification of standing activities did not fall within
acceptable limits.

The finding that it was difficult for HFITAL to correctly classify standing activity
in hospitalized patients may have resulted from patients’ slow or shuffling gait and the
frequent use of walking aids. Standing as well as slow or shuffling gait are all characterized
by small acceleration amplitudes. These comparable acceleration amplitudes lead to
minimal differences between the amount of PA calculated for standing and dynamic
activities, making it more difficult to select an appropriate PA Th to distinguish between
these activities. The algorithm could thus have mistakenly classified standing activity as
dynamic activity, resulting in a possible underestimation of the time classified as standing
activity and an overestimation of the time classified as dynamic activity. The relatively low
performance metrics for the classification of standing activity may also be explained by
the relatively small amount of time spent in standing activity during the measurements,
compared to the time spent in sedentary or dynamic activities. As sensitivity, specificity, and
accuracy are influenced by the total measurement time per activity, a few misclassifications
of standing activity could have resulted in a relatively larger effect on the performance
metrics of standing compared to dynamic activity. Lastly, in order to assess the true
performance of the algorithm, we refrained from excluding outliers from the analysis. All
these factors may have contributed to the low median sensitivity, PE, and APE as well as
the wide Q1 to Q3 for the classification of standing activity by HFITAL.

The subgroup analysis showed lower performance metrics for the classification of
standing activity by HFITAL in acutely hospitalized elderly patients compared to orthope-
dic patients. Slow gait and the use of walking aids are common in both populations [85–87],
which was confirmed by our video recordings. However, our recordings also showed a
higher prevalence of shuffling gait in the acutely hospitalized elderly patients, including
more time spent in double support, reduced step length, and reduced lifting of the feet dur-
ing the swing phase of walking. These characteristics may have resulted in lower accelera-
tion amplitudes for walking in this population, making it more difficult to correctly classify
standing activity. Investigating the degree to which shuffling or slow gait contributed to
the limited performance in the classification of standing activity requires further research,
using a standardized protocol and including walking speed as an outcome measure.

For the optimization of the classification algorithm, we chose total activity APE as
the performance metric used to select the best combination of adjustable parameters. This
metric was selected to ensure that all three activity types would be correctly classified. Se-
lecting a different performance metric could result in a different combination of parameter
settings. This may improve the performance of the classification of standing activity but
may possibly also negatively influence the performance of the classification of sedentary
and dynamic activities. To the best of our knowledge, there is no consensus on which
performance metrics should ideally be used. Further research is recommended to investi-



Sensors 2021, 21, 1652 14 of 22

gate which performance metrics are most suitable for the optimization of an adjustable PA
classification algorithm.

The classification of sedentary, standing, and dynamic activities and postural transi-
tions in hospitalized patients may be further improved by the use of a different type of
classifier. Such a different type of classifier may also enable the classification of a broader
range of activity types. Recently, pattern recognition and machine learning algorithms have
received a great deal of attention [88,89]. These types of classifiers could possibly overcome
some of the limitations of the current algorithm. However, they also involve a higher
computational load, making them less suitable for embedded software. Additionally,
their interpretation is less intuitive than the current adjustable algorithm. Future research
should explore the current state of algorithm development in order to achieve optimal
PA classification in hospitalized patients. Another possibility to improve the classification
of PA in hospitalized patients may be the use of multiple accelerometers. However, this
is not practical in a clinical setting, requires more resources, and may adversely affect
compliance [42,60,90].

As we included a range of different performance metrics, we have not only provided
a complete overview of the performance of the algorithm, but also enabled comparisons
with others studies. Nevertheless, comparing the results of the current study with those
of other validation studies is challenging, due to differences in the validation protocols,
patient populations, accelerometer types, wear locations, and performance metrics used.
Additionally, most studies have not transparently reported their classification algorithms,
as these are often proprietary and not disclosed [35,46,48]. Out of seven studies, only
Lipperts et al. and Pedersen et al. have transparently described their classification algo-
rithms [12,35,46,48,55,61,62].

Most previous studies investigating the validity of accelerometers in hospitalized patients
were able to correctly classify sedentary (lying and/or sitting) activities [12,46,48,55,61], and
all studies were able to correctly detect postural transitions [46,55,61]. However, they
all experienced difficulties in accurately classifying standing and/or walking activities,
independent of their wear locations or study protocols [12,35,46,48,55]. Brown et al. and
Pedersen et al. were both unable to differentiate standing from walking in their respective
samples of 39 and 6 acute medical patients aged 65 years or older. Brown et al. validated
their algorithm using a free-living protocol with an accelerometer worn at the ankle, while
Pedersen et al. used a standardized protocol with two accelerometers, one worn at the ankle
and one on the upper leg. Neither used post-hoc video analysis as a reference, nor did they
investigate the validity of the algorithm to detect postural transitions [12,48]. Valkenet et al.
investigated the validity of three accelerometers, each with a different algorithm and wear
location (i.e., hip, upper thigh, and lumbar waist). Although the classification of walking
showed good sensitivity values (90 to 95%) for all three wear locations, the classification of
standing, sitting and lying showed lower sensitivity values, ranging between 13 and 79%,
57 and 94%, and 0 and 79%, respectively. However, the validation was performed with only
two inpatients using a standardized protocol, and the validity of the algorithms to detect
postural transitions was not investigated [35]. Baldwin et al. investigated the validity of an
accelerometer worn at the thigh in eight patients recovering from a critical illness. Although
the validation was performed using a free-living protocol and the validity of the algorithm
to detect postural transitions was investigated, direct observation by only one observer
was used as a reference. The results showed an overestimation of the time spent standing
and an underestimation of the time spent walking. With median (interquartile range) APE
values of 21.9% (101.1%) for time spent standing and 18.7% (73.1%) for time spent walking,
both values exceeded our acceptable limit of 10% [46]. Although the median (Q1 to Q3)
APE of 29.2% (14.6% to 55.2%) for standing activity found for HFITAL also exceeds this
limit, walking was detected more accurately by HFITAL. Lastly, Lipperts et al. investigated
the validity of an accelerometer worn at the lateral side of the unaffected leg, using a
validation protocol approaching free-living conditions in 40 patients who underwent total
joint arthroplasty 3–14 days prior to participation. Their results showed accuracy values



Sensors 2021, 21, 1652 15 of 22

above 92% for the classification of sitting, standing, level walking, stair climbing, and
cycling activities and a mean error of duration of 2.9% for standing. As in our study, they
found an underestimation of average standing duration and an overestimation of average
walking and sitting duration [55]. However, as the patients included in our study had
undergone total joint arthroplasty 1–2 days prior to participation, they can be assumed
to have walked at a lower walking speed and with a more impaired gait pattern, which
made it more challenging for HFITAL to correctly classify standing and dynamic activities.
Taking into account that the current study was performed under free-living conditions in
a population in which impaired and slow gait were common, the performance metrics
of HFITAL are at least similar to, or possibly even better than, those reported by other
validation studies.

A strength of our study is that the optimization and validation of the algorithm were
performed in acutely hospitalized elderly patients and orthopedic patients following elec-
tive TKA or THA. These groups were deliberately chosen as they tend to walk very slowly,
often with an impaired gait or walking aid, and therefore make accurate classification of
standing and dynamic activities more challenging. The accelerometer is intended to be
used in a wider variety of hospitalized patients, and we expect the performance metrics to
be better when used in other patient populations. Second, our optimized algorithm and
validation methodology were transparently described, enabling researchers and clinicians
to compare the algorithm and results with other studies [49,51,91]. Third, video recordings
were used as a gold standard, with a good inter-observer reliability for the classification of
all activities (ICC ≥ 0.9). Fourth, the performance metrics of HFITAL were comparable for
the optimization and validation groups, indicating a consistent performance of HFITAL
when used to classify the PA behavior of patients outside the optimization group. Lastly,
the validation of the optimized algorithm was performed under free-living conditions,
providing a more accurate indication of the actual performance of the algorithm [55,61]. As
physical therapy sessions often comprise a significant part of patients’ PA behavior during
hospitalization, we chose to perform the validation during these sessions. This also ensured
that sufficient time was spent performing standing and dynamic activities without con-
suming too much of the patients’ time, thereby avoiding practical and ethical difficulties.

There are also some limitations to the current study that should be addressed. First,
the physical therapists may have given patients instructions regarding their gait pattern
or walking speed, thereby influencing natural conditions. Second, the duration of the
validation protocol was influenced by the duration of the physical therapy session, resulting
in shorter measurement periods than anticipated. However, a compromise had to be made
between capturing sufficient time spent performing standing and dynamic activities and
the duration of the free-living validation protocol. Third, walking speed was not assessed
because the validation was performed under free-living conditions. This could, however,
have enabled us to investigate a possible relationship between walking speed and the
ability of the algorithm to classify standing and dynamic activities within acceptable limits.

Our study has some important implications for clinical practice. As hospitalized
patients need to increase their amount of PA and break up prolonged periods of sedentary
activity, the classification of dynamic activity and the detection of postural transitions
are considered the most important outcome measures for PA monitoring [1,35,45]. The
results show that although HFITAL is not able to classify standing activity accurately, it
is able to validly classify sedentary and dynamic activities as well as postural transitions
in hospitalized patients under free-living conditions. With performance metrics that are
similar, or even better, than those of existing algorithms, HFITAL proves to be a good
alternative. Moreover, HFITAL can be embedded in eHealth applications, such as Hospital
Fit [1]. As the algorithm involves a relatively low computational load, it is suitable to be
embedded in an accelerometer without reducing its battery life. Embedding HFITAL in
Hospital Fit will improve continuous PA monitoring with real-time feedback as a part of
standard care. This will provide patients and healthcare professionals with more accurate
feedback, enabling optimal support for patients’ PA behavior and recovery.
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5. Conclusions

The optimized PA classification algorithm (HFITAL) is able to validly classify seden-
tary and dynamic activities as well as to detect postural transitions under free-living
conditions in hospitalized patients with an accelerometer worn on the upper leg. As hospi-
talized patients need to increase their amount of PA and interrupt prolonged periods of
sedentary activity, HFITAL is a suitable algorithm to classify PA in these patients. In order
to improve PA monitoring as a part of standard care and improve recovery in hospitalized
patients, we propose to embed HFITAL in eHealth applications, such as Hospital Fit.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-8
220/21/5/1652/s1. Spreadsheet S1: S1_OptimizationResults.xlsx, contains the annotations and
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PA Physical Activity
TKA Total Knee Arthroplasty
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TP True Positive
FN False Negative
FP False Positive
TN True Negative
PE Percentage Error
APE Absolute Percentage Error

Appendix A

Sensitivity =
TP

TP + FN
(A1)

Speci f icity =
TN

TN + FP
(A2)

Accuracy =
TP + TN

TP + TN + FP + FN
(A3)

PE =
Tot Time Activity ClassVideo − Tot Time Activity ClassMOX

Tot Time Activity ClassMOX
∗ 100 (A4)

APE =
|Tot Time Activity ClassVideo − Tot Time Activity ClassMOX |

Tot Time Activity ClassMOX
∗ 100 (A5)

Appendix B

Table A1. Overview of the parameter settings of the activity classification algorithms evaluated
during the optimization process.

MOXAL MOXALOpt HFITAL

Sample Frequency (Hz) 25 25 25
Moving Average Window Size (samples) 3 3 9

Data Segmentation Window Size (samples) 50 20 100
Amount of Physical Activity Cut-Off

Frequency (Hz) 1 0.15 0.15

Amount of Physical Activity Threshold 7 3.85 4.3 *
Sensor Orientation Low Pass

Cut-Off Frequency 1.25 0.15 0.15

Sensor Orientation Threshold (g) 0.8 0.8 0.8

* Only the anterior-posterior axis was used to calculate the amount of physical activity. MOXAL = adjustable
classification algorithm validated in community-dwelling healthy elderly persons with an upper leg wear location,
used as the starting point for the optimization process. MOXALOpt = classification algorithm after optimization of
three adjustable parameter settings of MOXAL to reduce the absolute percentage error for total activity. HFITAL
= classification algorithm after additional modifications introduced to MOXAL regarding the decision tree and
the calculation of the amount of physical activity.
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