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Abstract: Photodetectors are widely applied in modern industrial fields because they convert light
energy into electrical signals. We propose a printable silver (Ag) paste electrode for a highly flexible
metal–semiconductor–metal (MSM) broadband visible light photodetector as a wearable and portable
device. Single-crystal and surface-textured silicon substrates with thicknesses of 37.21 µm were
fabricated using a wet etching process. Surface texturization on flexible Si substrates enhances the
light-trapping effect and minimizes reflectance from the incident light, and the average reflectance is
reduced by 16.3% with pyramid-like structures. In this study, semitransparent, conductive Ag paste
electrodes were manufactured using a screen-printing with liquid-phase process to form a flexible
MSM broadband visible light photodetector. The transmittance of the homemade Ag paste solution
fell between 34.83% and 36.98% in the wavelength range of visible light, from 400 nm to 800 nm.
The highest visible light photosensitivity was 1.75 × 104 at 19.5 W/m2. The photocurrents of the
flexible MSM broadband visible light photodetector were slightly changed under concave and convex
conditions, displaying stable and durable bending properties.

Keywords: metal–semiconductor–metal; visible light photodetector; flexible; semitransparent silver
paste electrodes; screen printing

1. Introduction

Currently, detectors are indispensable in modern life. The principle of detectors is
to convert specific energies into other types of signals that can be read by an observer.
An interesting category of detectors is photodetectors, which convert light energy into
electrical signals [1–8]. According to the wavelength of the detection range, photodetectors
are applied to detect ultraviolet (UV), infrared (IR), and visible regions [9–14]. In particular,
the wavelength of visible light is approximately located in the range of 380 nm to 780 nm.
Visible light is important in our living environments because of the sensitivity of the
human eye to visible light; thus, visible light photodetectors are one of the most popular
applications. To detect light effectively, the photodetectors must have a fast response and
higher sensitivity. Photodiodes such as P-N junctions and P-I-N structures are popular
types of photodetectors. However, such structures display low photoresponsivity and need
to boost the electrical signals via amplifiers [15,16]. The P-N junction design exhibits the low
leakage current property. In contrast, the structure of the metal–semiconductor Schottky
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contact demonstrates various advantages such as high switching frequency, low forward
bias voltage, and narrow depletion region. In comparison, metal–semiconductor–metal
(MSM) photodetectors with two metal–semiconductor Schottky contacts have faster light
detection capabilities and higher bandwidths [17,18].

Flexible photodetectors may become the next generation of optoelectronic devices
owing to their portable and wearable properties, such as bionic imaging, mobile devices,
image sensors, and eye cameras [19–24]. Silicon (Si) is a promising material in modern
industrial optoelectronics for fabricating flexible photodetectors. Researchers have been
devoted to studying Si-based flexible photodetectors, such as nanostructures and hetero-
junctions with Si [25–29]. To fabricate the flexible, conductive electrodes, the printing
processes made it possible to deposit conductive thin films on flexible substrates [30].
Because the screen-printing process does not require an expensive vacuum system, the
process is a cost-effective printing technique to fabricate flexible, conductive electrodes [31].
Furthermore, the advantages of the screen-printing process are that it is simple, rapidly fab-
ricated, and produced in large quantities. The process is also applied on any shape surface,
such as plastics, glass, or clothes [32,33]. For fabricating electrodes with a screen-printing
process, the conductive materials of the printed ink are chosen to be smaller than the mesh.
The conductive materials of ink include carbon nanotubes, silver powders, and silver
nanowires [34–39]. R. Faddoul et al. synthesized silver flake pastes and successfully screen-
printed them on low-temperature cold-fired ceramic (LTCC) substrates [30]. The electrical
resistivity of the ink varied from 1.6 × 10−8 to 3.3 × 10−8 Ω-m, which was in the same
order of magnitude as bulk silver (1.58 × 10−8 Ω-m). H. Lan et al. fabricated nanosilver
paste on a glass substrate via electric-field-driven (EFD) micro-scale 3D printing technology.
Although the nanosilver paste displayed better sheet resistance of 1.48 Ω/sq, the fabrication
process needed a high-voltage power supply [40]. The photosensitivity should remain
in the bending condition for a stable flexible photodetector. Hence, flexible, conductive
electrodes must maintain electricity and light transmittance at any bending angle.

In this study, two important methods were proposed to fabricate highly sensitive
and durable bending flexible MSM broadband visible light photodetectors. The first
issue was to lower the reflectance of Si substrates. Flexible Si with a textured substrate
was fabricated using wet etching sodium hydroxide (NaOH) solution, and pyramid-like
structures were shown to exist on the surface of flexible Si. The textured surface enhanced
the light-trapping ability and effectively decreased the reflection rate of the incident light.
The ultraviolet/visible/near infrared (UV/VIS/NIR) spectrophotometer results display a
lower average reflectance of 20.76% on flexible Si with pyramid-like structures. The second
issue was the fabrication of printable, semitransparent, and Schottky contact electrodes
on flexible Si with textured substrates to form MSM structures. Conductive Ag paste
electrodes were screen-printed on flexible Si with pyramid-like structures. The advantage
of semitransparent Ag paste electrodes is that they increase the transparency of the incident
light and effectively raise the ability of photo-to-electrical transformation. The highest
visible light photosensitivity was 1.75 × 104 at 19.5 W/m2. The photocurrents of the flexible
MSM broadband visible light photodetector were slightly changed under concave and
convex conditions, indicating stable and durable bending properties.

2. Materials and Methods
2.1. Flexible and Surface Texturization of Si Substrate Fabrication

A 6-inch P-type silicon (100) wafer was cut into 9 cm2 square substrates. The square
substrates were sequentially cleaned with acetone, ethanol, and deionized (DI) water
(18 MΩ·cm−1) and then dried with nitrogen gas to remove moisture. To fabricate a flexible
Si substrate, square Si substrates were separated into several segments by microslides and
immersed in a 40 wt % sodium hydroxide (NaOH) solution with a capped vessel. The
temperature of the NaOH solution was maintained at 70 ◦C during the etching process by
a thermostat oil batch (EYELA PS-1000, EYELA Co., Tokyo, Japan) with a magnetic stirrer.



Nanomaterials 2022, 12, 2428 3 of 10

The above immersion sequence in NaOH solution is called the wet etching process. The
etching times of the wet etching process were 1, 2, 3, 4, 5, and 6 h.

After the etching process of Si substrates, the flexible Si substrates were also sequen-
tially cleaned with the abovementioned cleaning process. To manufacture the surface
texturization on flexible Si substrates, the substrates were immersed in 5 wt % NaOH
solution and 5% v/v isopropyl alcohol (IPA) at 70 ◦C for 30 min in a thermostatted oil bath
with magnetic stirring. The fabrication process flow of flexible Si with surface texturization
is illustrated in Figure 1a.
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Figure 1. The fabrication process of (a) flexible Si with surface texturization and (b) Ag electrodes
with the screen-printing method. (c) Schematic diagram of the photoelectric measurement system
with the MSM structure. The electrical properties of the MSM structure were measured using the
probe system, and the incident light power was controlled by the lamp.

2.2. Silver Paste MSM Broadband Visible Light Photodetector Fabrication

To fabricate the MSM visible light photodetector with Schottky contact, silver (Ag)
metal was chosen as the top and back electrodes. Here, we fabricated printable, semitrans-
parent, conductive Ag paste as top electrodes on flexible and surface-texturized P-type
Si substrates to enhance visible light absorption and sensitivity. Conductive Ag paste
was utilized as the 250/in2 meshed electrode in the screen-printing process. To fabricate
printable, semitransparent, conductive Ag paste, polyurethane (PU), AgF, and DI water
were mixed. The mixed Ag paste solution was ultrasonicated with an ultrasonicator for
10 min and then stirred for 1 h with a magnetic stirrer. The concentrations of PU and the
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AgF solution ratio were fixed at 1:4, and the amount of DI water solvent was 0.5, 1, 1.5,
and 2. The respective DI water solvents of various Ag paste solutions were numbered
8005, 8010, 8015, and 8020, as illustrated in Table 1. Then, various Ag paste solutions were
screen-printed on the 250/in2 meshed electrodes. After fabricating the top electrodes, the
250/in2 meshed Ag paste electrodes were annealed at 160 ◦C for 30 min. The fabrication
process of the MSM broadband visible light photodetector is displayed in Figure 1b.

Table 1. Different numbers correspond to different proportions of homemade silver pastes.

Sample Name 8005 8010 8015 8020
PU:AgF:H2O 1.0:4.0:0.5 1.0:4.0:1.0 1.0:4.0:1.5 1.0:4.0:2.0

PU:AgF:H2O
(wt %) 18:73:9 16: 67:16 15:62:23 14:57:29

2.3. Characteristics

Morphology measurements were observed using scanning electron microscopy (SEM,
JEOL 6700; JEOL, Tokyo, Japan). The crystallinity was found using X-ray diffraction
(XRD, D8 DISCOVER, Bruker Co., Billerica, MA, USA) instruments with an incident
X-ray wavelength of 1.5418 Å. The optical properties of MSM structures were determined
with a variable-angle UV/VIS/NIR spectrophotometer. The electrical properties of MSM
structures were measured with a Keysight B1500A (Keysight, Santa Rosa, CA, USA). The
photoelectric measurement system of the MSM structures is illustrated in Figure 1c.

3. Results and Discussion
3.1. Flexibility and Surface Texturization of Si

Generally, the thickness of the 6-inch bulk P-type Si substrate was 675 µm, and the
substrate was rigid and inflexible. To achieve the flexibility of the Si substrate, the wet
etching process was utilized to cut the thickness of the Si substrate. As the thickness of the Si
substrate approached 30 µm, the substrate attained flexibility [41]. Traditionally, chemical-
mechanical planarization (CMP) process has been utilized to slim the thickness of silicon
substrate. The surface of the silicon substrate is flat after the expensive CMP process, and the
reflectivity of the incident light is high. Our solution approach could avoid using expensive
tools, and it obtained a textured and flexible silicon surface. Figure 2a displays the thickness
of Si substrates with increasing etching time from 1 to 6 h. The results indicated that the
thicknesses of the Si substrates were 586.9 µm, 403.1 µm, 183.8 µm, 128.0 µm, 37.21 µm,
and 15.55 µm, with etching times of 1, 2, 3, 4, 5, and 6 h, respectively. These results showed
that the thickness of Si substrates decreased with increasing etching time during the wet
etching process, indicating the controllable thickness of Si substrates with the etching time
in the wet etching process. The thickness of Si substrates with increased etching time was
observed in the cross-section SEM images, as shown in Figure S1. These results displayed
the uniform thickness of Si substrates during the wet etching process. Considering the
following etching steps for surface texturization, Si substrates with thicknesses of 37.21 µm
with 5 h of etching were chosen in our study. To check the crystallinity of Si substrates with
the etching process, XRD was utilized. Figure 2b indicates the XRD results of Si substrates
with thicknesses of 675 µm and 37.21 µm. The thicknesses of 675 µm and 37.21 µm were
not etched and were etched for 5 h on Si substrates, respectively. The results displayed only
the (004) peak located at 69.13◦ in both Si substrates, indicating that the crystal structure of
the Si substrates was nondestructive after the wet etching process.

To effectively improve the conversion efficiency from visible light to electricity to
enhance the sensitivity of broadband visible light photodetectors, the surface texturization
of Si substrates was fabricated. Here, Si substrates with a thickness of 37.21 µm were chosen
for immersion in a solution of 5 wt % NaOH and 5% v/v IPA at 70 ◦C for 30 min to fabricate
surface-textured Si substrates. Figure 2c displays the SEM images of flexible Si substrates
with textured structures after NaOH and IPA solution immersion at 70 ◦C for 30 min.
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The results indicated that uniform pyramid-like structures were observed on the surface
of flexible Si substrates. The height of the pyramid-like Si structures decreased between
1.2 µm and 1.6 µm. The inset of Figure 2c shows that the length and width of the pyramid-
like Si structures were 8.4 µm and 7.9 µm, respectively. To observe the reflectance of flexible
Si substrates with pyramid-like structures, a UV/VIS/NIR spectrophotometer was used.
Figure 2d indicates the reflectance of flexible Si with and without surface texturization.
The results indicated that the average reflectance of flexible Si with and without surface
texturization was 20.76% and 37.06%, respectively. The results showed that the reflectance
of flexible Si with pyramid-like structures was reduced in the range from 400 nm to 800 nm,
indicating the enhanced light-trapping effect of visible light by pyramid-like structures.
Therefore, the reflectance of incident visible light was effectively reduced.
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Figure 2. (a) The thickness of Si substrates with increasing etching time, (b) the XRD results of Si
substrates with thicknesses of 675 µm (bulk) and 37.21 µm (flexibility), (c) the SEM images of flexible
Si substrates with textured structures after NaOH and IPA solution immersion at 70 ◦C for 30 min,
and (d) the reflectance of flexible Si with and without surface texturization.

3.2. Electrical and Optical Properties of Conductive Silver Paste

To fabricate the flexible MSM broadband visible light photodetector, semitransparent,
conductive Ag paste electrodes were manufactured on flexible and surface-textured Si
substrates using a screen-printing process. The semitransparent, conductive Ag paste was
synthesized by mixing PU, AgF, and DI water. The concentrations of PU and AgF solution
ratio were fixed at 1:4, and the concentrations of DI water solvents were varied from 0.5 to 2.
Here, the different DI water concentrations of 0.5, 1, 1.5, and 2 with PU and AgF homemade
paste solutions were numbered 8005, 8010, 8015, and 8020, respectively (see Table 1).
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To discuss the sensitivity of the flexible MSM broadband visible light photodetector with
conductive Ag paste electrodes in different DI water concentrations, the I-V characterization
is shown in Figure 3a. Figure 3b indicates the current density of the flexible MSM broadband
visible light photodetectors in the dark and 19.5 W/m2 visible light with conductive Ag
paste electrodes in different DI water concentrations. The photo currents and dark currents
of the flexible MSM broadband visible light photodetectors with conductive Ag paste
electrodes in different DI water concentrations were derived from Figure 3a. The increased
current density under 19.5 W/m2 visible light indicated the photoresponse of visible light.
The photosensitivity was derived by the formula shown below [42–44]:

S =
IP − ID

ID
× 100% (1)

where S is the sensitivity to visible light, IP is the photocurrent density, and ID is the
dark current density. The sensitivity of the flexible MSM visible light photodetectors
under 19.5 W/m2 was 1.38 × 103, 2.03 × 103, 1.75 × 104, and 6.13 × 103, corresponding
to the flexible MSM broadband visible light photodetectors numbered 8005, 8010, 8015,
and 8020 conductive Ag paste electrodes, respectively. The results indicated the highest
sensitivity of the flexible MSM broadband visible light photodetector with 8015 conductive
Ag paste electrodes. The photosensitivity of the flexible MSM broadband visible light
photodetector was affected by the light transmittance and electrical conductivity of the
electrodes. Hence, the highest photosensitivity of the flexible MSM broadband visible
light photodetectors indicated better electricity and higher visible light transmittance with
the numbered 8015 conductive Ag paste electrode compared to other Ag paste electrodes.
Thus, the homemade numbered 8015 conductive Ag paste electrode was suitable for the
flexible MSM broadband visible light photodetector. Other related studies for visible light
photodetectors are introduced in the following statements: J. B. Yoon et al. fabricated a
perfectly aligned CuO nanowire array on a silicon dioxide (SiO2) nanograting substrate as
a visible light photodetector, and the photosensitivity was 172.21% in the visible light range
under 22.5 µW/cm2 [45]; T. R. Yew et al. synthesized Co-doped ZnFe2O4 thin films on a
boron-doped silicon substrate as a visible light photodetector, and the photosensitivity was
181 (1.81 × 104%) with 400 ◦C annealing at a wavelength of 630 nm under 17.9 W/m2 [46].
Compared to the reference works, our device reached the same order of visible light
photosensitivity under 19.5 W/m2. Figure 3c displays the current density of the flexible
MSM broadband visible light photodetector with 8015 conductive Ag paste electrodes
under different light power densities from 2 W/m2 to 20 W/m2. The results indicated an
increasing photocurrent as the visible light power density increased, indicating increasing
photosensitivity. To observe the optical properties of the conductive Ag paste electrodes, a
UV/VIS/NIR spectrophotometer was utilized. Figure 4a,b illustrate the reflectance and
transmittance of the numbered 8015 conductive Ag paste solution. The results showed that
the reflectance of the numbered 8015 conductive Ag paste solution fell between 54.74%
and 60.71% in the wavelength range of visible light, from 400 nm to 800 nm, as shown
in Figure 4a. Figure 4b shows that the transmittance of the numbered 8015 conductive
Ag paste solution varied between 34.83% and 36.98% in the wavelength range of visible
light, from 400 nm to 800 nm. The results indicated the semitransparency of the numbered
8015 conductive Ag paste. Hence, the numbered 8015 conductive Ag paste was suitable
for the electrodes of flexible MSM broadband visible light photodetectors. The light
transmitted through any interface can exhibit the behavior of reflectance, absorption, and
transmittance. The reason for the incommensurate transmittance and reflectance curves is
due to the absorption.
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3.3. Flexibility Characteristics of Flexible MSM Broadband Visible Light Photodetectors

To measure the flexibility of the flexible MSM broadband visible light photodetectors,
the photoresponses of bending with different radii were measured. Figure 5a displays the
current density of the flexible MSM broadband visible light photodetector bent with various
curvature radii in concave conditions. The results indicated that the photocurrent density
fell between 7.57 × 10−2 mA/cm2 and 8.20 × 10−2 mA/cm2 in concave bending with
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bending radii of 1.4 cm, 1.7 cm, 2.4 cm, and 3.5 cm. Figure 5b displays the current density
of the flexible MSM broadband visible light photodetector bent with various curvature
radii under convex conditions. The results indicated that the photocurrent density varied
between 7.49 × 10−2 mA/cm2 and 8.30 × 10−2 mA/cm2 in convex bending, with bending
radii of 1.4 cm, 1.7 cm, 2.4 cm, and 3.5 cm. The photocurrent of the flexible MSM broadband
visible light photodetector slightly changed under both concave and convex bending
conditions, indicating the stability and durability of our fabricated flexible MSM broadband
visible light photodetector devices.
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4. Conclusions

In summary, we successfully fabricated printable Ag paste electrodes for highly sensi-
tive flexible MSM broadband visible light photodetectors. A flexible Si substrate with a
pyramid-like structure was successfully manufactured using a wet etching process. The
surficial pyramid-like structure on the flexible Si substrates minimized the reflectance
of the incident light, and the average reflectance decreased from 37.06% to 20.76% as a
pyramid-like structure was formed. The semitransparent conductive Ag paste electrodes
were successfully deposited on flexible Si using a screen-printing process. The reflectance
of the homemade numbered 8015 conductive Ag paste solution fell between 54.74% and
60.71%, and the transmittance varied between 34.83% and 36.98% in the wavelength range
of visible light, from 400 nm to 800 nm. The highest visible light photosensitivity with the
homemade 8015 Ag paste electrode was 1.75 × 104 at 19.5 W/m2. The photocurrents of the
flexible MSM visible light photodetector were slightly changed under concave and convex
conditions, displaying stable and durable bending properties.
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