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Affinity measurement is a fundamental step in the discovery of monoclonal antibodies (mAbs) and of
antigens suitable for vaccine development. Innovative affinity assays are needed due to the low through-
put and/or limited dynamic range of available technologies.
We combined microfluidic technology with quantum-mechanical scattering theory, in order to develop

a high-throughput, broad-range methodology to measure affinity. Fluorescence intensity profiles were
generated for out-of-equilibrium solutions of labelled mAbs and their antigen-binding fragments migrat-
ing along micro-columns with immobilized cognate antigen. Affinity quantification was performed by
computational data analysis based on the Landau probability distribution.
Experiments using a wide array of human or murine antibodies against bacterial or viral, protein or

polysaccharide antigens, showed that all the antibody-antigen capture profiles (n = 841) generated at dif-
ferent concentrations were accurately described by the Landau distribution.
A scale parameter W, proportional to the full-width-at-half-maximum of the capture profile, was

shown to be independent of the antibody concentration. The W parameter correlated significantly
(Pearson’s r [p–value]: 0.89 [3 � 10�8]) with the equilibrium dissociation constant KD, a gold-standard
affinity measure.
Our method showed good intermediate precision (median coefficient of variation: 5%) and a dynamic

range corresponding to KD values spanning from ~10�7 to ~10�11 Molar. Relative to assays relying on
antibody-antigen equilibrium in solution, even when they are microfluidic-based, the method’s turn-
around times were decreased from 2 days to 2 h.
The described computational modelling of antibody capture profiles represents a fast, reproducible,

high-throughput methodology to accurately measure a broad range of antibody affinities in very low vol-
umes of solution.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
Author summary

High-affinity monoclonal antibodies are widely used for diag-
nostic, therapeutic and prophylactic purposes. Measuring the affin-
ity of an antibody for its antigen is thus a critical parameter for the
identification of new medicines and vaccines. Because currently
available technologies have significant limitations in throughput,
sample volume and dynamic range, there is a need for improved
affinity assays. We used an existing immuno-assay technology in
miniaturized compact-disk format as a basis to develop a compu-
tational model based on quantum physics theory, and used this
model to quantify affinity. The method models the fluorescence
intensity signal emanating from antibodies interacting with their
immobilized target antigen. We validated this method using differ-
ent concentrations of a large array of human or animal antibodies
against bacterial or viral antigens of different biochemical nature.
The affinity parameter derived from our experiments was found
to correlate strongly with a well-characterized existing affinity
parameter. The microfluidics-based approach was 20 times faster
than the existing methodologies. In conclusion, the methodology
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offers great promise as a fast high-throughput tool, either to iden-
tify and screen new high-affinity antibodies for diagnostic or ther-
apeutic use, or for use in the context of immunological studies.
1. Introduction

Affinity-matured, functional monoclonal antibodies (mAbs) are
favored candidates for many successful prophylactic and therapeu-
tic treatments, against various infectious diseases and conditions
[1]. Having a high affinity for its target antigen is a prerequisite
for a mAb to effectively exert its functionality against a given
pathogen. Human antibody repertoires are an excellent source of
functional mAbs, because they are naturally affinity-matured in
response to an infection or vaccination, through an efficient B-
cell selection process. However, highly potent mAbs are rare, and
the field of mAb discovery for infectious diseases remains con-
strained by technical challenges of efficiently screening and cap-
turing such mAbs. Affinity refers to the strength of a monovalent
interaction between an epitope and a single complementarity-
determining region on the binding site of the fragment antigen-
binding molecule (Fab) [2,3] (this in contrast to avidity, i.e. the
combined strength of multivalent interactions between the Fabs
and one or more epitopes, which is the hallmark of most licensed
vaccines [4]). The reversible bimolecular interaction defining affin-
ity is determined by hydrophobic, electrostatic and/or van der
Waals forces and hydrogen bonds. This interaction can therefore
also be described in thermodynamic terms, as an equilibrium dis-
sociation constant (KD).

Immunoassays quantifying affinity can operate on the charac-
terization of binding kinetics (association and dissociation rates),
such as surface plasmon resonance (SPR) [5,6]. Alternatively, these
assays rely on endpoint analysis, as is the case for enzyme-linked
immunosorbent assay (ELISA) titration [7]. Drawbacks of the first
category are the complicated measurement of the long dissociation
times imposed by very high-affinity (KD � 10�12 M) binding, and
the potential of artifacts due to mass-transport effects and steric
hindrance of reagents [8]. ELISA-based methods can handle wider
KD ranges (10�13 to 10�07 M [9]), but are based on in-solution mea-
surements performed after the equilibrium between antigen-
bound and free antibodies has been reached [10]. These methods
consequently require incubation times in the order of days, poten-
tially leading to protein instability and buffer contamination
[11,12]. Another obstacle is the requirement of high sample and
reagent volumes. The latter challenge is addressed by the use of
microfluidic technologies, such as the Gyrolab ligand-binding plat-
form operating in an automated compact-disk (CD) format [13].
Affinity measurements based on this technology are derived from
the distribution of fluorescence intensity (FI) changes (‘capture
profiles’). These profiles are detected when, due to centrifugal
and capillary forces, fluorescent-labeled antibodies flow through
and are captured onto antigen-coated microcolumns. However,
the currently available equilibrium-based method still requires a
pre-incubation step taking up to 48 h [14–16], rendering it unsuit-
able for rapid high-throughput measurements.

In the present study, we exploited the advantages of the
microfluidic setting to develop a novel computational methodol-
ogy to quantify affinity (here more broadly defined as the overall
strength of the mAb/Fab—antigen interaction) before the system
has reached equilibrium. Using a mathematical approach, affinity
scores were computed based on an empirically detected similarity
in curve shape between the capture profiles and a stable probabil-
ity distribution, the Landau distribution [17]. This mathematical
function belongs to the General Extreme Value Distribution class,
and characterizes fluctuations of energy loss by ionization of
charged particle beams passing through a thin layer of matter.
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Shortly after its introduction, an approximated version of the Lan-
dau distribution was developed. This version was subsequently
shown to represent a ‘‘universal” descriptor of the energy-loss pro-
cess in a number of different scattering regimes [18]. By fitting the
approximated Landau distribution to the capture profiles gener-
ated for a large antibody-antigen panel, we explored the method’s
utility with respect to dynamic range, precision, and statistical cor-
relation with the dissociation constant KD, a gold-standard affinity
measure. Our results suggest that this methodology is rapid, robust
and high-throughput, and has broad applicability as an affinity-
based screening tool of mAbs in human immunological studies.
2. Materials and methods

2.1. Antibody solutions

Gyrolab experiments were performed using solutions of puri-
fied mAb or Fabs (listed in Supplementary Table S1) at different
concentrations, as specified in Supplementary data file 1. Solutions
were made using Rexipp A or H buffer (Gyros cat #P0004820 or
P0004822) for murine or human antibodies, respectively. No
human or animal sera were used.

2.2. Binding assays using SPR

Binding affinities of the mAbs and Fabs against MenB antigens
fHbp (10 mAbs, 7 Fabs), NHBA and NadA (3 mAbs each) were mea-
sured by SPR using a Biacore T200 instrument at 25 �C (GE Health-
care). For the single-cycle kinetics (SCK) experiments,
commercially available Human Fab or Mouse Antibody Capture
Kits (GE Healthcare) were used to covalently immobilize anti-
human Fab antibodies or anti-mouse IgGs by amine coupling on
a carboxymethylated dextran sensor chip (CM-5; GE Healthcare).
Experimental running buffer contained 10 mM Hepes, 150 mM
NaCl, 3 mM EDTA, 0.05% (vol/vol) P20 surfactant at pH 7.4. An aver-
age density level yielding ~8000–10,000 response units (RUs) was
prepared for the immobilization on two flow cells of the CM5 chip.
The immobilized IgGs were then used to capture between ~800–
1200 RU of the tested mAbs or Fabs on the second flow cell. To
determine the KD and kinetic parameters, a titration series of five
consecutive injections of increasing and variable analyte concen-
trations in the nanomolar range (spanning from 3.125 to 200 nM,
flow rate: 40 lL/min) was performed, followed by a final surface
regeneration step with 10 mM glycine pH 1.7–2 (180 s, flow rate:
10 lL/min). Antibody-coated surfaces without captured mAb were
used as the reference channel. Signals using a blank injection (buf-
fer only) were subtracted from each curve, and reference sensor-
grams were subtracted from experimental sensorgrams to yield
curves representing specific binding. The data shown in Fig. 3 are
representative of at least two independent experiments. SPR data
were analyzed using the standard SCK method [36] implemented
by Biacore T200 evaluation software (GE Healthcare). Each sensor-
gram was fitted with the 1:1 Langmuir binding model, including a
term to account for potential mass transfer, to obtain the individ-
ual kon and koff kinetic constants. Individual values were then com-
bined to derive the single averaged KD values reported. Additional
details of SPR data analysis have been reported previously [37].

2.3. Gyrolab experiments

Experiments were performed on a Gyrolab workstation (Gyros).
Biotinylated recombinant antigens were diluted in PBS with 0.01%
Tween 20 and used as capture reagents at 100 mg/ml. Protein anti-
gens were biotinylated using EZ-Link sulfo-NHS-LC-Biotin (Thermo
Scientific, cat. #21335) at a molar excess of 10 mol biotsin: 1 mol
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protein. Polysaccharidic antigens were biotinylated using EZ-Link
Biotin-LC-Hydrazide (Thermo Scientific, cat. #21340) following
manufacturer instructions. All antigens were internally produced.
Using the standard Gyrolab capture-analyte-detect method [13],
antibody solutions (as specified above) were run in dose–response
curves to select the linear range (performed in triplicate), then
used at a single concentration for affinity analysis (performed in
15 replicates).

The following Abs were used as detection reagent at 25 nM
diluted in Rexipp F buffer (Gyros, cat. #P00004825): goat anti-
human IgG, Fcc fragment specific-Alexa 647 (Jackson cat. #109-
605-098); goat anti-human IgG, Fab fragment specific-Alexa 647
(Jackson cat. #109-606-097); goat anti-mouse IgG, Fcc fragment
specific-Alexa 647 (cat. #Jackson 115-605-164). Wash station
and pump solutions consisted of PBS with 0.01% Tween 20 (Sigma
cat. #P1379). All mAbs were analyzed using Gyrolab Bioaffy 200
CDs (Gyros cat# P0004180) and standard Gyrolab three-step
method [13]. The laser-induced fluorescence detector measures
FI changes over the column. The Gyrolab Viewer software produces
3D visualization of the antibody-antigen capture profile in a heat-
map format representing the FI as function of the transversal and
radial direction of the flux. A 2D curve is then generated by inte-
grating FI measurements along the transversal coordinate and
reporting transversally integrated FIs against the 93 discreet radial
coordinates of the CD, corresponding to the 93 laser scanning radii.

2.4. Modeling antibody-antigen capture profiles using an
approximated Landau distribution

The 2D antibody-antigen capture profiles generated by the
Gyrolab Viewer software were compared with the approximated
Landau probability distribution L xð Þ [18]:

L xð Þ ¼ A � exp �1
2

x� xc
W

þ exp � x� xc
W

� �� �� �
ð1Þ

where, according to the nomenclature of Fig. 1C, x is the radial coor-
dinate along the column, xc is the radial coordinate of the FI peak,W
is a scale parameter proportional to the FWHM of the curve, and A is
an overall normalization multiplier that, in the linear range of this
assay as defined below, is proportional to the total FI.

To apply Eq. (1) to the current analysis method, we added a cor-
rection for experimental background noise (y0), obtaining L0ðxÞ:
L0 xð Þ ¼ y0 þ LðxÞ ð2Þ

as the mathematical representation of FI measured along the
radial coordinate of the capture column. Non-linear regression
was used to fit Eq. (2) to the data with the least-squares method
as implemented in the nls() function in R version 3.3.1 [38]. All cor-
relations, between experimental and fitted data as well as between
W and KD estimates, were evaluated using Pearson’s correlation
analysis, implemented in the cor.test() function in the same version
of R.

2.5. Identification of the assay’s linear response range

The linear response range of the assay comprised the range of
values n of the antibody concentration in solution for which the
overall FI generated was proportional to the concentration itself.
To identify this range, each mAb or Fab solution was tested at mul-
tiple antibody concentrations (typically � 7) to generate a dose–re-
sponse curve, which was then compared with the four-parameter
logistic (4PL) function:

f nð Þ ¼ dþ a� d

1þ n
c

� �b ð3Þ
3666
where f nð Þ is the response measured as total FI of the capture pro-
file, n is the antibody concentration expressed in mg/mL, a is the
minimum asymptote (i.e. the response at 0 mg/mL concentration),
d is the maximum asymptote (i.e. the maximum response for a sat-
urated solution), c is the logistic inflection point (i.e. the concentra-
tion for which the curve changes convexity, at the center of the
linear range) and b is a slope factor (i.e. the steepness of the
response curve in the linear range).

The least-square fit of the 4PL function to the W scores for the
different concentrations was used to determine the values of the
4PL parameters. The concentration range to be considered effec-
tively linear in the best fitting curve was determined according
to the methodology described in [39], whereby the lower and
upper concentrations nbend delimiting as bending points the linear
range are calculated as:

nbend ¼ c
a� ybend
ybend � d

� 	�b

ð4Þ

where ybend is either:

ybendlower ¼
a� d
1þ 1

k

� �þ d; or : ybendupper ¼
a� d
1þ k

þ d ð5Þ

and k = 4.6805 [39].
With simple algebra we obtain:

nbendlower ¼ c
1
k

� 	�b

; nbendupper ¼ cÂ � k�b ð6Þ

The region between the bend points nbendlower and nbendupperis
defined as the linear range of the assay.

2.6. Estimation of the W score

To determine the W score of an antibody-antigen pair, we
selected only the 2D capture profiles generated for antibody con-
centrations falling in the linear response range. If <3 profiles would
satisfy this condition, more profiles would be generated at the
appropriate concentrations, in order to have at least 3 replicates.
Eq. (2) was then fitted to the data of each capture profile indepen-
dently, obtaining one estimate for the W score from each replicate.
The affinity score of the antibody-antigen pair was then obtained
as the arithmetic mean of the individual W values.

The above described methodology has been patented under
WO2015014922 A3 [27]. Supporting data for all figures are pre-
sented in Supplementary Data File 1.

3. Results

3.1. FI profiles of microfluidic antibody-antigen interactions are
analogous to an approximated Landau distribution

Our method for determining binding affinities derives from the
3D antibody-antigen interaction profiles generated by standard
three-step (capturing molecule - analyte - detecting molecule
[13]) Gyrolab methods. These profiles represent the FI values
detected when antibodies in solution interact with their immobi-
lized cognate antigen (Fig. 1A). From these profiles, 2D capture pro-
files were derived by reporting the integrated FI data measured
along the longitudinal axis, versus the radial flux dimension along
the 93 laser scanning points on the CD. Typically, a flat background
FI signal from the first scanning points was followed by a sharp
peak, and then a slower decrease with a long tail (Fig. 1B). After
subtraction of the experimental background signal, the asymmet-
ric curve shape was empirically considered as resembling the
approximated Landau probability distribution (Fig. 1C). This func-
tion has as key determinants the x-coordinate at the FI peak (xc),



Fig. 1. The approximated Landau distribution accurately describes capture profiles from a broad panel of antibody-antigen pairs. (A) Example of a 3D visualization of the
antibody-antigen capture profile in a heat-map format, as generated by Gyrolab Viewer software. Fluorescence intensity (FI) measurements on the vertical axis are shown vs.
the radial direction (parallel to the flux) and the angle (transversal) direction. (B) 2D capture profile generated from the 3D data by integrating FI measurements over the
transversal direction and plotting the integrated FIs against the radial coordinate of the CD (red dots). The approximated Landau distribution obtained as best fit of Eq. (2) to
the data is shown as a black line. (C) Example of an approximated Landau distribution of the energy loss of electrons passing through a thin silicon layer [17]. A: area-under-
the-curve. FWHM: full-width-at half-maximum. xc: x-coordinate at peak. (D) Same as panel B, for a subset of 200 antibody-antigen pairs randomly selected from the main
database of 841 profiles as detailed in Fig. S1 and Table S1. (E) Frequency distribution of Pearson’s product-moment correlation coefficients (r) obtained by regression analysis
between raw and fitted data for the 841 profiles shown in Fig. S1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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and the parameters W and A. The latter two are proportional to the
curve’s full-width-at-half-maximum (FWHM) and the area under
the curve, respectively. The application of this mathematical func-
tion to the experimental set-up is described by Eqs. (1) and (2)
(Materials & Methods).

The observed resemblance led us to hypothesize that the Lan-
dau distribution provides a characterization that is generalizable
to other antibody-antigen interactions tested in this setting. This
hypothesis was tested by generating binding curves for a wide
variety of antibody-antigen pairs. To this end, we used a panel of
human or murine antibodies of different valencies combined with
bacterial or viral, protein or polysaccharide coating antigens (83
mAbs/antigen, 53 Fabs/antigen; see Table S1). We then evaluated
the impact of antibody concentration on the distribution. Testing
each pair at multiple concentrations yielded 841 binding curves,
after which the approximated Landau distribution was fitted to
the raw data per pair, to determine the curves providing the best
fit (Fig. S1; subset shown in Fig. 1D). Visual inspection of raw
and best-fit curves consistently identified Landau-like-shaped
curves across the array of antibody-antigen pairs and concentra-
tions (with the best fit observed for profiles with a narrow peak).
Moreover, when we evaluated the goodness-of-fit using regression
analysis, the observed frequency distribution of Pearson’s
coefficients (Fig. 1E) indicated a strong correlation between raw
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and predicted data (r mean [95% CI]: 0.988 [0.967–0.998]). A slight
decrease in the goodness of fit was observed for curves with higher
W, with r mean going from 0.996 at W = 2 to 0.978 at W = 14, as
shown in Fig. S2. However, all correlations had strong statistical
significance (all p-values < 10�10) and the very high correlation
coefficients supported the generalizability of the model across
the entire range of observed W.

Overall, the data confirmed that in this microfluidic experimen-
tal setting, the proposed mathematical function can be applied to
faithfully characterize FI profiles of antibody-antigen interactions,
irrespective of the biochemical nature of the antigen, or the
valency of the antibody. Interestingly, the Landau-like curve shape,
of which the W parameter is a key determinant, was detected irre-
spective of the concentration of antibodies in solution, leading to a
deeper investigation of the relationship between W and
concentration.

3.2. W scores are concentration-independent

To accurately determine whether concentration can affect the
W score, we selected five antibody-antigen pairs representative
of the dataset’s diversity (Table S1). We generated capture profiles
at seven different antibody concentrations per pair (except for one
pair which was tested at 14 concentrations). For each pair, we used



Fig. 2. The W score is independent from the antibody concentration. Each row shows data for a different antibody-antigen pair. Green: mAb C18 - human respiratory
syncytial virus prefusion F protein (hRSV PreF). Blue: Fab 1A12 – N. meningitidis serogroup B (MenB) adhesin A (NadA). Purple: mAb HCA204 - human mAb Adalimumab. Red:
mAb 30G4 - MenB fHbp protein. Orange: mAb 23H6 - Group B Streptococcus capsular polysaccharide serotype Ia (GBS Ps Ia). Each pair was tested at 14 (mAb 30G4) or 7
(other Abs) concentrations. (A) Graphs show, for the antibody concentration indicated, 2D capture profiles (colored dots) and the approximated Landau distribution obtained
as best fit of Eq. (2) to the data (black lines). Three concentrations within the linear range were randomly selected for each antibody-antigen pair. (B) W scores obtained for
each antibody concentration within the linear range are shown as colored dots vs. the concentration itself. Arithmetic means of W scores (solid lines) with 95% confidence
intervals (dashed lines) are indicated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Eqs. (3) and (4) (see Materials and Methods) to determine the lin-
ear binding range, i.e. the range where the antibody concentration
is proportional to the total FI level of the capture profile. Per pair,
we then generating profiles for at least four different concentra-
tions (ranging across pairs from 0.014 to 17 lg antibody/mL)
within the respective linear binding range.

Fig. 2A shows, for each antibody-antigen pair, three of the gen-
erated binding profiles for a given antibody concentration within
the linear range. Landau-like curves were observed for all pairs
and concentrations. While, as expected, FI peaks increased with
the concentration, curve widths remained constant across the con-
centration range. Accordingly, the W scores remained independent
from concentration, as shown by plots of W scores vs. antibody
concentrations generated per pair (Fig. 2B). The absence of a con-
centration effect on W was statistically supported by linear regres-
sion between antibody concentrations andW scores, yielding slope
coefficients that were all not significantly different from zero.

Overall, the data indicated that the W score represents a
concentration-independent, intrinsic characteristic of the
3668
antibody-antigen binding, suggesting that the parameter may be
related to the affinity of this binding.

3.3. W Score is a robust and high throughput estimator of affinity

To further explore the correlation between Landau peak width
at half height and antigen binding, we considered the FI profiles
and corresponding Landau curves produced for three different
antibodies with either a high, moderate or a low affinity for the
same Neisseria adhesin A (NadA) antigen (KD values: 10�10, 10�09

or 10�08 M, respectively) as shown in Fig. 3A. Higher binding affin-
ity appeared to be associated with sharper curves, i.e. smaller
FWHM values and W scores. This observation could be explained
by a faster binding along the radial coordinate.

To validate the inverse relationship between W and antibody
affinity for the antigen, we generated W scores and KD values, at
one or more repeats each, for a panel of 23 antibodies against
either Neisseria Heparin-Binding Antigen (NHBA, 3 mAbs), NadA
(3 mAbs), or factor H binding protein (fHbp; 10 mAbs, 7 Fabs);
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see Fig. 3B. The highest affinities measured (KD � 10�11 M) corre-
sponded to a W score of approximately 4, while the lowest affini-
ties (KD = 10�8 to 10�7 M) corresponded to W scores between
approximately 11 and 12. A least-squares regression comparing
(log10-tranformed) W scores and KD values across the entire range,
demonstrated a highly significant, linear correlation (Pearson’s r
[p-value]: 0.78 [1.12 � 10�5]). Only one of the 23 antibodies tested
(an anti-fHbp mAb; circled in Fig. 3B) generated both a low KD

value (4.6 � 10�9 M) and a low W score (4.2), with a mean that
was five standard deviations higher than the confidence range of
the regression. Because only a single experimental KD value could
be generated for this mAb, we considered the result as a potential
outlier eligible for removal. Reanalysis of the correlation yielded a
Pearson’s r of 0.89 (p-value = 3.56 � 10�8). Overall, the data were
indicative of a broad dynamic range spanning W scores from ~ 4
to 12 corresponding to KD values from 10�8 to 10� 11 M, with
high-affinity (KD < 10�10 M) antibodies corresponding to W
scores < 5.

We then evaluated assay precision. Assessments were per-
formed on W scores obtained by repeated testing of the same
antibody-antigen pair, either within the same CD (within-assay/
CD variability, i.e. repeatability) or between different CDs
(between-assay/CD variability, i.e. intermediate precision). Fig. 4A
shows the repeatability of W scores (range: 2.8─12.4) derived
from 3 to 16 technical repeats performed for each antibody-
antigen pair from a subset (n = 76) of the larger panel (see Supple-
mentary Data File 1). The coefficients of variation (CVs) followed
the typical U-shaped curve of immunoassays, showing lower vari-
ability at intermediate values of the measured parameter, and
higher variability at the extremes of the parameter’s range. Overall,
repeatability was reasonably low (median/maximum CV: 5%/18%).
Between-assay variability (Fig. 4B) was assessed by testing 10 Ag/
Ab pairs from the same subset, in three or four independent runs
(different CDs). Per run, each pair was tested in � 3 technical repli-
cates per CD. Within-run estimates of W were averaged to deter-
mine the overall W score of the given run, and within-CD
averages were compared by least-squares regression to determine
between-run CVs. As compared with the within-assay measure-
ments, the range of variability was reduced, with no obvious trend
toward extreme W scores (median/maximum CV: 5%/11%). The
data were indicative of a good assay intermediate precision, and
supported the feasibility of an experimental protocol based on a
single CD, with multiple technical repeats to be averaged within
the same CD. Overall, assay precision appeared to be independent
from the W score, which was shown to be a homoscedastic and
highly reproducible parameter. Given the overall ~10% assay preci-
sion and the experimental range, W estimates are reported with
one significant figure.

Finally, by applying the described experimental protocol, we
achieved accurate affinity measurements for 14 mAbs (the maxi-
mum number of pairs processable per CD [19]) within 2 h by
two runs of a single CD, using less than 5 lL per sample. This high-
lighted the quick turnaround time and low sample volume require-
ment of our approach. Collectively, the data indicated that the
presented W score-based affinity measurements, derived by fitting
an approximated Landau distribution on microfluids-based FI cap-
ture profiles, is a robust, high-throughput, and fast methodology,
applicable to a wide range of affinities of mAbs or Fabs in low sam-
ple volumes.
4. Discussion

Recent years have seen a rise in innovative technologies for B-
cell isolation, interrogation of the human repertoire, and genera-
tion of recombinant antibodies. This created a surge in numbers
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of mAbs to be tested and characterized for one of their key fea-
tures, the affinity of binding to the target antigen. Affinity mea-
surement is thus a critical step in the evaluation of mAbs for
diagnostic or prophylactic applications, and may also be key to
select mAbs for use in the identification of microbial antigens suit-
able for vaccine development. Considering the caveats of currently
available technologies to quantify affinity [8,12,14,15,20], there is a
need for a rapid high-throughput method using low quantities of
antibody, to allow efficient characterization of large numbers of
mAbs. We developed a computational approach based on data gen-
erated by a microfluidic system. In our approach, FI profiles charac-
terizing the antibodies’ capture onto antigen-coated micro-
columns, are fitted to an asymmetric probability function (the
approximated Landau distribution), from which an affinity score
W is computed. We then assessed assay performance across a
range of antibody-antigen combinations and antibody
concentrations.

The Landau-like profile was chosen empirically, due to its mor-
phological analogy with the experimental fluorescence intensity
profiles. Other skewed distributions potentially achieving similar
or better goodness of fit were not explored, as the model was
widely applicable across a highly diverse array of antibody-
antigen pairs. It was consistently observed irrespective of the
species (bacterial or viral) and chemical nature (proteic or polysac-
charidic) of the antigen, and the valency (mAbs or Fabs) of the
antibody. Although possibly coincidental, the breadth of this spec-
trum suggests that the underlying dynamics of capture along the
microfluidic column may share some fundamental analogy with
the quantum–mechanical process of energy loss for charged
particles through matter, for which the Landau distribution was
originally developed [17].

Deriving the Landau approximated function from the generative
process of the current microfluidic setup could help clarifying the
analogy, but the modeling effort exceeds the scope of the present
work. Significant differences between the quantum–mechanical
and the microfluidic system do exist. In the quantum–mechanical
process of ionizing particles traversing matter, the variable exhibit-
ing a Landau distribution is the energy lost by the incoming parti-
cles (see Fig. 1C), which is assumed small versus the incoming
particles energy. In our microfluidic process, the Landau-
distributed variable is the horizontal coordinate at which the anti-
body is captured by the coated antigen. Indeed, the horizontal
coordinate along the capture column may be considered a proxy
for the kinetic energy lost by the antibodies flowing through the
column. Intuitively, the faster the antibody is injected into the col-
umn, the farther it will travel before its capture. Since at the end of
the process every captured antibody is immobilized on the column,
those that were captured last will be the ones that have lost the
highest amount of kinetic energy, and vice versa.

In the quantum–mechanical process, the equivalent of our W (Q
in the notation of [18]) is the mean number of collisions, i.e. the pri-
mary ionization, and is approximately proportional to the length of
the material traversed. The thicker the material the broader the
curve, since the increasing number of interactions augments the
likelihood of particles loosing higher amounts of energy, hence
broadening the tail of the distribution.

TheW score derived from our methodology was, like the affinity
gold standard measure KD, a concentration-independent parame-
ter, representing an intrinsic quality of the given antibody-
antigen pair: the weaker the interaction, the broader the curve.
In the microfluidic column the kinetic energy of the antibodies
flowing through the antigen lattice is reduced by random hits, until
the chemical potential of the epitope-epitome interaction (affinity)
exceeds the residual kinetic energy, and the antibody is captured. A
stronger affinity will achieve the capture sooner, i.e., after a smaller
number of interactions, as if the microcolumn was effectively



Fig. 3. Relationship between the affinity constant KD and the W score. (A) Plots represent 2D capture profiles (represented by colored dots) generated for three antibodies
against the N. meningitidis NadA protein with either a high (green, KD ~ 10�10 M), medium (red, KD ~ 10�09 M) and low (blue, KD ~ 10�08 M) affinity. Corresponding
approximated Landau best fit curves are represented by solid lines of the same color. FWHM: full-width-at half-maximum. (B) W scores (x-axis) and KD values (y-axis) for
antibodies against N. meningitidis antigens are presented, comprising 10 mAbs against fHbp (black), 3 mAbs against NHBA (blue), 3 mAbs against NadA (red) and 7 Fabs
against fHbp (pink). Color-coded symbols and horizontal or vertical bars represent means and standard errors of the associated W and KD values. Solid straight line: least-
square linear regression of KD vs. W. Grey-shaded area: 95% confidence interval of the linear regression. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Assay precision. (A) Repeatability: within-assay coefficients of variation (CVs) are plotted against the W scores derived from 76 mAbs/Fabs tested at least three times
within the same experiment. Symbol sizes are proportional to the number of replicates (3–16) per experiment. The curve is a quadratic fit to the data. (B) Intermediate
precision: between-assay CVs are plotted against W scores derived for 10 mAbs/Fabs, each tested in three or four independent experiments. Least-squares linear regression
with 95% confidence intervals are shown as solid and dotted lines, respectively.
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shorter, while a weaker affinity will allow for more hits, as for an
effectively thicker column, confirming the analogy with the quan-
tum–mechanical system.

These observations may expand the ‘‘universal” character of the
Landau distribution originally observed for charged particles [18]
into the domain of biological macromolecules, suggesting the pres-
ence of a scaling property applicable across physics and biochem-
istry that warrants further investigation.

The dynamic range ofW explored in the present work was com-
parable to that found for existing methods; assay precision (me-
dian intermediate precision: 5%) and accuracy were satisfactory,
given the robust correlation between the W score and KD (Pear-
son’s r [p-value]: 0.89 [3 � 10�8]), that was measured in an SPR
affinity set-up (see Materials and Methods). Although the experi-
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mental set up of the microfluidic platform was also geared towards
measuring monovalent Ag-Ab interactions, i.e. affinity, we cannot
exclude the possible contribution of cooperativity effects induced
by bi-valent bonds between the two Ab fragments and the anti-
genic substrate, that would introduce an avidity component in
the readout. The good correlation with SPR-derived affinity mea-
surements, the out-of-equilibrium characteristic of the method,
the high concentration of antibodies in the solution flowing
through the micro-column that creates a strong competition for
the substrate and the spacing among the microbeads that favours
monovalent interactions, all suggest that W should be considered
a proxy for affinity rather than avidity. In an attempt to further
clarify this point, within the limited dataset available, we com-
pared Ws obtained for matched Fabs and mAbs against the same
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antigens (see the Supplementary Table S2). With four monomeric
antigen proteins we observed a substantially identical W against
eleven Fab/mAb pairs (all ratios W(Fab)/W(mAb) between 0,9
and 1,2, well within the experimental variability of the assay,
except one ratio = 1,4) confirming that mAbs establish along the
column mainly monovalent links with their substrate, determining
an affinity measurement. Against an omo-trimeric antigen protein
tested against 4 matched Fabs/mAbs the ratio W(Fab)/W(mAb)
ranged from 1,3 to 2,5 suggesting that bi-valent interactions could
become more relevant for multimeric substrates. However, the
diverse, non-standardized expression and purification systems
used for Fabs and mAbs in the present study may significantly
affect the measurement, suggesting that an ad-hoc study would
be required for a conclusive assessment.

Recently, the manufacturer of the platform released a commer-
cial software called GyrolabTM Affinity Software Module, to estimate
affinity from in-solution equilibrium-based methods. The main
advantages of the microfluidic affinity assay in its standard
equilibrium-based format are the minimal sample/reagent vol-
umes, and the limited operator involvement and laboratory work
due to the automated system [13]. Its main limitation lies in the
turnaround time, given that the required preincubation step can
take up to two days [14–16]. Our approach retains all the above-
mentioned advantages while circumventing this time-consuming
preparatory step. This allows linking the increased productivity
to a high throughput, as demonstrated by the 2-hour total turn-
around time needed to process 14 mAbs in duplicate runs. In addi-
tion, the obtained assay precision may even invite exploring the
feasibility of reducing the number of repeats in certain cases (as
proposed for Gyrolab-based IgG measurement in a regulatory con-
text [21]) as a means to further accelerate the analyses. Moreover,
in our out-of-equilibrium setting the accidental presence of multi-
ple monoclonals with different affinities in the same sample is
detected as a deviation from the Landau-curve fit, while in solution
equilibrium-based settings the monoclonal with higher affinity is
likely to dominate the binding signal and the contamination to
go un-noticed. Finally, we observed that the adherence of the cap-
ture profiles to the Landau distribution increased at higher affini-
ties. As a consequence, the dynamic range (corresponding to KD

values of 10�7 to 10�11 M, comparable to equilibrium-based
microfluidic affinity testing [19]) may be extended to include W
scores equivalent to KD values of 10�12 M or beyond. Collectively,
this suggests that our approach offers a valuable tool to perform
a first, rapid high-throughput screening for high affinity binders.
Lead molecules can then be further characterized, including pre-
cise affinity determination, with standard methods such as SPR
or Bio-Layer Interferometry (BLI), significantly accelerating the
identification of the best mAbs. The short turnaround time also
caters to the demands of emergency situations requiring rapid
high-throughput affinity screening of multiple mAbs, for example
to support the immunological data-sets required to fast-track clin-
ical trial approvals for biotherapeutics. This may be relevant for
screening of mAbs in the context of pandemics of infectious dis-
eases, e.g. those against SARS-CoV-2 for therapeutic or prophylac-
tic uses, or mAbs against cytokines involved in COVID-19
pathology for use as post-exposure treatment [22,23]. Additionally,
the assay can be utilized in the context of antimicrobial resistance,
to screen mAbs for use as highly pathogen-specific alternatives to
antibiotics, such as those described in [24,25]. In the vaccine con-
text, the method has already been successfully applied to dissect
the human antibody response to a multicomponent MenB vaccine,
by profiling the affinity of binding to different target antigens of
Fabs isolated from single B cells from vaccinees [26]. Lastly, we
note that the current work presents, to the best of our knowledge,
the first description of computational modeling of antibody affinity
based on a Landau distribution.
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5. Conclusion

By basing our computational model to quantify antibody affin-
ity on an existing microfluidic technology, we capture a wide range
of affinities in a rapid, precise and high-throughput manner, while
consuming minimal amounts of reagents. This method has broad-
range applicability as an effective tool for affinity-based screening
of mAbs and their fragments to identify and characterize novel bio-
therapeutics, and for use in the context of human immunological
studies.

An enticing future perspective is to extend the use of the
mAbs/Fab-based method to the measurement of avidity of poly-
clonal antibody responses in serum from immunized or naturally
infected subjects. This could be achieved by applying a deconvolu-
tion algorithm to capture profiles from polyclonal samples,
allowing identification of profiles of subpopulations of mAb-like
clones, which can then be characterized for their avidity and abun-
dance [27]. Avidity reflects the level of B-cell maturation upon
antigenic stimulation, driving antibody functionality [28,29].
Hence, W score-based information can be used to monitor avidity
maturation in clinical vaccine development, e.g. to complement
Gyrolab-based anti-SARS-CoV-2 antibody levels elicited by
COVID-19 vaccines [30]. The method’s practical value is exempli-
fied by recent analysis of clinical trial samples from recipients of
adjuvanted vaccines (submitted manuscript) in the context of
studies comparing immune responses between different licensed
adjuvants [31–33]. Finally, given the robust correlation with the
KD observed for mAb/Fab-based analyses, the adapted methodol-
ogy may also offer a major advantage over the commonly used
chaotrope-based avidity indices, for which such correlation is not
consistently observed [34,35].
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