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Abstract: Acid Mine Drainage (AMD) results from sulfide oxidation, which incorporates hydrogen
ions, sulfate, and metals/metalloids into the aquatic environment, allowing fixation, bioaccumulation
and biomagnification of pollutants in the aquatic food chain. Acidic leachates from waste rock dams
from pyritic and (to a lesser extent) coal mining are the main foci of Acid Mine Drainage (AMD)
production. When AMD is incorporated into rivers, notable changes in water hydro-geochemistry and
biota are observed. There is a high interest in the biodiversity of this type of extreme environments for
several reasons. Studies indicate that extreme acid environments may reflect early Earth conditions,
and are thus, suitable for astrobiological experiments as acidophilic microorganisms survive on
the sulfates and iron oxides in AMD-contaminated waters/sediments, an analogous environment
to Mars; other reasons are related to the biotechnological potential of extremophiles. In addition,
AMD is responsible for decreasing the diversity and abundance of different taxa, as well as for
selecting the most well-adapted species to these toxic conditions. Acidophilic and acidotolerant
eukaryotic microorganisms are mostly composed by algae (diatoms and unicellular and filamentous
algae), protozoa, fungi and fungi-like protists, and unsegmented pseudocoelomata animals such as
Rotifera and micro-macroinvertebrates. In this work, a literature review summarizing the most recent
studies on eukaryotic organisms and micro-organisms in Acid Mine Drainage-affected environments
is elaborated.

Keywords: AMD (Acid Mine Drainage); metal mining; extremophilic organism; green algae; micro-
macroinvertebrates; fungi; Rotifera; Euglena; protozoa

1. Introduction

Acid Mine Drainage (AMD) is one of the main hydrological and geochemical problems
derived from anthropogenic influence on the geosphere, which affects many countries with
intense mining activities [1,2].

AMD is produced when sulfide-bearing materials suffer direct oxidation, which is
then spread by the indirect oxidation of ferric ions. Chemical oxidation processes can be
biologically “catalyzed” by some bacteria [3]. Along with pyrite reactions [4], many other
associated reactions can be produced by the remaining metals which, in the form of sulfur,
appear along with pyrite. As a result of these reactions and due to the very acidic waters,
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numerous soluble contaminating elements, are stored on pyrite surfaces and transported by
inland streams. This process is affected by numerous factors including the type, abundance
and distribution of sulfides and minerals with neutralizing capacity as well as oxygen
concentration, humidity, temperature, exposed pyrite surface area, types of bacteria, etc. [5].
When transported to inland streams, AMD can contaminate surfaces, ground sediments
and soils, as a consequence of its very low pH as well as by a high content of sulfates and
heavy metals in water and a high metallic content in sediments [6,7].

Both active and abandoned mines are major sources of AMD [8], which is not only
generated in sulfide mines, e.g., the Iberian Pyrite Belt, but also to a lesser extent in coal
mines, e.g., the Northern Appalachian Coalfield. In the nearest streams, this could result
in species loss and significant structural changes to freshwater organisms [9] and loss of
species richness [10] and macroinvertebrate abundance [11].

AMD is responsible for the disappearance of several species of algae and diatoms, such
as the Cyclotella and Fragilaria genera [12], and for loss of diatomic diversity in impacted
sites [13] dominated by typical species of acidic waters [14,15], for example Pinnularia
acoricola and Eunotia exigua. At the community level, the highest metal concentrations
(along with pH < 3 and high Eh potential) implicate the lowest diversity [16], while at
the individual level changes in frustule morphology are observed [15,17]. With respect to
filamentous green algae, acidophilic species of the Mougeotia and Klebsormidium genus are
abundant in AMD streams [18,19], as are other unicellular algae such as Chlamydomonas
or Euglena, which may be very abundant in such environment, along with Protozoa and
some multicellular protists. In relation to the impact of AMD on macroinvertebrates, there
is evidence of a high impact on density and taxa richness [20] as well as a change in the
shape of the food pyramid [21]. In places affected by AMD, species of macroinvertebrates
can be found, which are tolerant to these environments, for example, chironomids; on the
other hand, the most sensitive species, for example, flies, are excluded as a result of the low
pH and high concentrations of metals [22].

Therefore, the main objective of this review is to summarize the scientific literature
related to AMD production and its effects on eukaryotic organisms thriving in the wa-
ter or sediments of streams and rivers, focusing on the following subjects: Acid Mine
Drainage and the impact of AMD on algae, Protozoa, fungi and yeast as well as on micro-
and macroinvertebrates.

2. Acid Mine Drainage

Around the world, there are mines that have been abandoned and pose a long-term
threat to aquatic ecosystems due to the continuous or intermittent flow of acidic drainage
water containing high concentrations of various heavy metals [23]. AMD is predominantly
caused when sulfide minerals present in metallic ores, coal beds, or the strata overlying and
underlying the coal are exposed to weathering causing oxidation [24,25], which later on is
propagated through indirect oxidation by ferric ions produced mainly by chemolithotrophic
bacteria [26,27]. Chemical reactions such as hydrolysis and oxidation can transform sulfide
minerals into sulfuric acid, decreasing the pH of water at active or abandoned mine
sites [28]. Mine facilities, tailings and waste rocks left in these sites are major contamination
sources of AMD (Okabayashi et al., 2005). Metal-bearing minerals are abundant in finely-
ground mine tailings or fine particles of by-product from mining activities [28]. Tailings
with 5% pyrite and arsenopyrite are high enough to produce AMD [29].

In mine waste materials containing sulfide minerals (pyrite, galena, sphalerite and
arsenopyrite), AMD is produced due to natural oxidation reactions involving the exposed
sulfides, air, water, and soil microorganisms [30]. An AMD with high potential of reactivity
promotes the dissolution of the bedrock, mobilising heavy metals that will change the
stream water quality and the groundwater system [30]. The Iberian Pyrite Belt (IPB) has
one of the world’s largest concentrations of sulfide deposits, running from Lousal, Portugal
to Aznalcóllar, Spain [31]. In Andalusia, southwestern Spain), thousands of years of
mining in the IPB have resulted in enormous metal wastes [32] that severely degrade the
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environment [4,33]. The IPB zone has massive sulfide reserves of around 1700 Mt that are
distributed across more than 50 massive sulfide deposits [34]. The Spanish side of the IPB
has 88 mines [4,35], most generating AMD, in an area with more than 4000 ha of waste rock
and tailings [31]. The Odiel River Basin is a well-known fluvial system in a catastrophic
ecological situation due to AMD affecting 37% of its drainage network length [33]. The
Odiel River is affected from its upper section to the Huelva estuary. In fact, the Ria de
Huelva is one of the most heavily metal-contaminated estuaries in the world as a result of
AMD from the IPB mines [36].

Coal originates in the burial of organic matter in swamps, and pyrite is also formed
in these environments. One of the major sources of water pollution in and around both
active and abandoned coal mines is AMD [37]. This becomes even more severe with marine
influence in coal deposits, due to the presence of additional framboidal pyrite [38]. Pyrite
in coal oxidizes when exposed to air and water, producing Fe (III) and H2SO4 [39]. Fe (II)
ions are oxidized, forming Fe oxide and producing H+ ions, lowering the pH of the water
and making it corrosive [39]. The Northern Appalachian Coalfield in the eastern US has a
historical legacy of coal mining [40] and represents one third of the abandoned mine-related
problems in the country [41]. The Witbank Coalfield, located in the headwaters of the
Olifants River in Mpumalanga Province, South Africa is dominated by past and present
coal mining, and AMD from these mines results in both a low pH and high total dissolved
solids in this river, which then flows through areas of intensive agriculture [42].

Small-scale gradients of pH and metals within such systems can be useful as field
model systems to study the biological effects of acid and metal pollution [23]. The informa-
tion gained is very important because it might be useful to develop bioassessment methods.
The mitigation of not only the physical, chemical and biological, but also the socioeconomic
impacts of AMD is one of the major challenges faced by the mining industry worldwide,
and many countries have been investing in the development of efficient treatment methods
for wastewater from mining.

3. Eukaryotic Organisms in AMD-Polluted Extreme Environments
3.1. Diatoms

The diatoms are one of the most effective ecological indicators [14–17,20,31,43] in
AMD-contaminated environments, due to their ubiquity in aquatic habitats [44] and high
effectiveness for assessing aquatic health [45]. Thus, they are good indicators of pH
changes and very abundant in environments impacted by low pH [46]. Diatoms respond
to chemical stress at community and individual levels. At a community level, the highest
metal concentrations (i.e., Fe: 6 g/L, Zn 1.7 g/L, Cu 347 mg/L, Cd 3.5 mg/L, Ni 3 mg/L,
Mn 0.3 mg/L) and low pH (i.e., 2.0-4.5) result in low diatom diversity (Shannon–Winer
diversity index < 2.2 on a 5-point scale) [14–16], and the species change to more acidophilic
or acidobiontic varieties better-prepared to endure these harsh conditions. This decrease in
species richness has been observed in many works [13,15,16,20,31,43,47,48], and is more
prominent for diatoms than for macroinvertebrates [23].

The dominant and typical species in acidic waters are Pinnularia acoricola, Pinnularia aci-
dophila, Pinnularia aljustrelica, Eunotia exigua (Figure 1) and Nitzschia hantzschiana [13–15,31].
The three Pinnularia species found in the impacted sites; P. aljustrelica is the most abundant
due to its capacity to survive a very low pH, i.e., 1.9–4.2 [15,49]. Achnanthidium minutissi-
mum is a difficult species, able to tolerate different environmental conditions and usually
the only Achnanthidium species reported in AMD polluted streams [50], being abundant in
a wide variety of habitats and environmental conditions [51]. However, A. minutissimum
can also appear in unimpacted sites, being the dominant species in less-impacted sites [14].
It is considered to generally be the first taxon to colonize different habitats (e.g., rocks, sedi-
ments) [52], and has the ability to invade open areas following changes in environmental
conditions [53].
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Figure 1. (A) Pinnularia acidophila, (B) Pinnularia acoricola, (C) Pinnularia aljustrelica, (D) Pinnularia
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Some of the other ‘true inhabitants of highly acidic waters’ [20] include Nitzschia
capitellata, Nitzschia subcapitellata and Pinnularia subcapitata [54]. In sites with pH below 4.5,
Eunotia exigua, Nitzschia cf. thermalis, Pinnularia acidophila, Pinnularia acoricola, Pinnularia
subcapitata and Pinnularia aljustrelica can appear [31]. This fact is supported by other authors
who have found these species under similar environmental conditions [16,46,49,55].The
Pinnularia and Achnanthes genera (especially Pinnularia) are often the most frequent in
impaired sites [56], implying that these genera are tolerant to AMD [22,57] and making
them particularly useful as bioindicators of low pH [58].

In the Lousal and Aljustrel mining areas located in the Portuguese part of the IPB,
the species found (in descending order of dominance) include Brachysira vitrea, Eunotia
exigua and Pinnularia c.f. acidophila (Figure 1). In the Aljustrel mining area, with sulfated
high to extreme metal/metalloid concentrations and low pH waters, P. aljustrelica, E. exigua
(Figure 1) and Nitzschia aff. hantzschiana are the dominant species [15]. However, E. exigua
is an acidobiontic taxon, and is the most widespread species in AMD-contaminated streams
such as the Río Tinto [16,31,59–61] and the Aljustrel streams [14,15,17,55] (Table 1).

Table 1. Diatom species with pH and metal concentrations (mg/L), pH tolerance range and opti-
mum pH.

Species Name pH Tolerance Range Optimum pH Metal Concentrations

Pinnularia aljustrelica 2.0–5.0 2.0–3.0

Fe 1300 to 6000
Cu 230–350
Zn 118–170

Pinnularia acidophila 2.0–4.5 2.0–2.2

Pinnularia acoricola 2.0–6.0 2.0–3.0

Nitzschia thermalis 2.0–7.0 3.0

Nitzschia hantzschiana 2.0–6.8 2.0–2.2

Eunotia exigua 3.0–5.0 3.0

Similar metal concentrations
as above, but species valves
are morphologically affected

by metals (teratologies)

Brachysira vitrea 4.5–7.5 4.8
Fe 1100
Zn 0.30
Cu 0.64

Metals lower biodiversity in several important ways. Diatoms have developed mecha-
nisms such as biotransformation, biomineralization, bioaccumulation and biosorption to
cope with heavy metal toxicity [62]; nevertheless, pollution-tolerant and pollution-sensitive
diatoms have different responses to metal pollution [63]. When exposed to metals, commu-
nity size can be impaired through reduction of cell number, selection for smaller species,
and decrease in cell size within a given species [17,64–66]; diatom growth can be delayed
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or inhibited, therefore reducing diatom biomass [67] and decreasing the rates of survival
and growth. Diatoms are able to sequestrate large quantities of metals from waters [68].
The most common taxa presenting abnormal valves due to metals/pH or metal-pH combi-
nation are Fragilaria capucina [69], Fragilaria rumpens and A. minutissimum [69] and Eunotia
exigua [15].

Thus, the observed differences in diatom community structure result from the com-
bined action of low pH and highly soluble heavy metals [54,70]. Diatoms can also be
susceptible at the individual level showing changes in frustule morphology [17]. The
resistance of A. minutissimum to metals is still under discussion, with contradictory results
in the literature. It is usually considered an indicator of metal pollution [71], although it
could also indicate good general water quality [72].

3.2. Unicellular and Filamentous Green Algae

Although AMD environments are not appetizing to many species, some genera of
unicellular and filamentous green algae can adapt and survive; among these are species
from the unicellular genera Chlamydomonas, Chlorella, Cyanidium, Dunaliella, Euglena [73,74]
and from the filamentous genera Klesormidium, Microspora, Mougeotia, Ulothrix, Stigeo-
clomium, Zygnema and Microthammion. The genera Mougeotia, Ulothrix, Chlamydomonas,
Chara and Nitella are typical of these environments; however, they may not be as abundant
as diatoms [75–77].

Cyanidium is a red algae genus, or rhodophite. It has been observed at pH 1.2–1.8 in
waters close to the Rio Tinto mines. Dunaliella, Chlamydomonas and Chlorella are unicellular
green algae from the Chlorophyceae family. Both Chlamydomonas and Dunaliella may be
motile, with the presence of flagella. Curiously, Dunaliella has no cell wall. Chlamydomonas
acidophila is the most abundant species in acid waters, showing a high tolerance to copper
and other heavy metals [78,79] Euglena mutabilis is abundant in shallow waters and easily
forms large tufts that can look like filamentous algae. Oxygen bubbles are frequently
observed in some places where Euglena thrives. All microalgae contribute to enhanced
oxygen production (up to 200% saturation) and organic carbon, which reduces the olig-
otrophic conditions of AMD-polluted waters and increases the oxidative activity of aerobic
chemoautolithotrophic bacteria and heterotrophic bacteria [80].

The acidophilic species of the Mougeotia genus can survive in the AMD environment,
in waters with a pH of 2.9–4.1 [18]. The abundance and distribution of Klebsormidium
sp. in AMD affected waters makes this species a good ecological indicator of this type of
contamination, and Klebsormidium-dominated algal mats are particularly good indicators of
high iron concentrations in water [81]. Additionally, Mougeotia, can be abundant in AMD
streams [19,81], possibly because of strong competition for low DIC (dissolved inorganic
carbon) in acidic environments [82]. The genus Klebsormidium is known to be metal resistant,
and is been related with metal-rich polluted waters. K. subtile, K. rivulare, K. flaccidium and
K. acidophilum are other species related with AMD-contaminated environments [19,51,77].
Chlamydomonas sp. shows tolerance in a wide range of physical and chemical conditions in
a lake contaminated by AMD, being consistently present [83].

The Microspora genus is very abundant in mines with high levels of metal pollution,
and is considered by [84] as a good bioindicator. The Ulothrix genus, on the other hand, is
predominant in biofilms from AMD-contaminated sites, having a great capacity to recover
Cu and As.

Several of the microorganisms described above are represented in Figure 2.
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3.3. Protozoa, Fungi and Yeasts in AMD-Polluted Waters

In AMD-polluted waters, several groups of heterotrophic protists may be observed.
The main groups include protozoa: ciliates such as Urotricha and Oxytricha, flagellates such
as Bodo and Ochromonas, amoebas such as Actinophyrs and Naegleria, etc., and heliozoa.
In acidic waters, these genera play an essential role in nutrient recycling in spite of their
oligotrophic characteristics [85].

Fungi are more acidotolerant than acidophilic, although some filamentous fungi, such
as as Acontium, Cephalosporium and the yeast Trichosporon, are able to growth up to pH 0 [85].
In [86], a wide variety of filamentous fungi are described, including Scytalidium, Bahusakala,
Phoma, Heteroconium, and even Penicillium and diverse ascomycetes and zygomycetes. In
addition to their role as components of an acidic river ecosystem, fungi play an important
role in the biomineralization of iron and the accumulation of intracellular deposits of toxic
metals [87,88]; see examples below (Figure 3).
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3.4. The Impact of AMD on Micro-Macroinvertebrates

AMD represents an extremely stressful and long-term source of pollution due to the
anthropogenic disturbance of geological layers. Characteristic low pH and high metal
concentrations have been highlighted as the main drivers of micro- (<500 µm length) and
macroinvertebrate (>500 µm, length) diversity and community composition in streams
affected by AMD [11,20,90], while acidification may induce an increase in the bioaccumula-
tion of metals in insect larvae with consequences for the food chain and aquatic fauna [91].
The main microinvertebrates observed in these waters are from phylum Rotifera, consid-
ered pseudocoelomate “animals” [89,92,93].

Variation in macroinvertebrate assemblages and densities has also shown a strong rela-
tionship with other water chemistry variables in addition to metals, such as dissolved oxy-
gen and conductivity, inducing a clear shift from metal-sensitive (e.g., Ephemeroptera, Ple-
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coptera and Trichoptera) to metal-tolerant (Diptera, Coleoptera and Collembolla) taxa [94–98].
The order Ephemeroptera is a group highly sensitive to metals; however, some species, such
as Baetis rhodani and Caenis cf. luctuosa, exhibit tolerance to these contaminants [99,100].

Among metal-tolerant taxa, Chironomidae (Diptera) assemblages often represent a
significant portion of the sediment-dwelling fauna at deteriorated sites, and are hence
especially useful as bioindicators and for sediment quality assessment [101–103]. Chirono-
mid species have been found in acidified metal-polluted temperate [103,104], tropical and
high-altitude streams [96,105] as well as unpolluted glacier-elevated water streams [106].
Species of Chironomus may have physiological adaptations responsible for such tolerance,
as those species coming from contaminated points are able to adjust their body metals
concentration when compared to other species [97]. Chironomids from elevated altitudes
and metal-contaminated sites contain more melanin than species from reference sites at
lower altitudes [107]. This fact highlights the importance of melanin in chironomids as
a UV-B radiation protector and metal chelator. In addition, genetic adaptation has been
found to be a metal tolerance tool in Chironomus species from highly contaminated environ-
ments [108–110]. In [97], it was found that only one tolerant strain of chironomids was able
to survive in the most metal-rich points in the Andes, which indicates that tolerance could
have been developed as an answer to naturally existing acid and metal-rich environments,
and thus may have preceded human-influenced alterations due to mining activity. The
adaptation of this unique chironomid species to very large metal values may have come
with direct costs, as represented by smaller specimens in comparison to those from species
in similar reference streams, in the form of reallocation of energy towards resistance tools
such as metal-binding metallothioneins. Melanin production or cuticle sclerotization in
chironomids [107] may convey a trade-off evidenced as reduced growth [111].

Chironomids are used as potential biomonitors at different organizational levels in
order to indicate the biological effects of metal pollution. At the cytological level, genotoxic
damage produces micronuclei in the structure of salivary gland chromosomes of larvae of
Chironomus acidophilus in a river with high concentrations of Cu, Fe, Mn and Zn [112]. At
the organism level, cause–effect relationships between morphological abnormalities such
as deformities of the mouthparts and metal-rich stream sediments have been demonstrated
in both, laboratory [113,114] and field [115–118]. This was the case for Chironomus tentans
larvae, where fused, split, missing, extra and abnormally-shaped teeth on the mandible
were associated with different metal levels [119].

Most taxa within the Chironomidae (Figure 4) are collector-filterers and collector-
gatherers while a few (e.g., Cryptochironomus sp., Endochironomus spp., Glyptotendipes spp.,
Polypedilum spp. and Chironomus spp.) are predatory on oligochaetes in AMD-contaminated
sites [100], which indicates that these group show different ecological response patterns to
AMD [103]. Moreover, shredder-climbers can be the dominant group at impacted sites and
could be more adaptive in AMD affected streams than other groups, as Fe-loving bacteria
growing on leaves coated with Fe hydroxide become an option as a food resource [120].

In general, stress conditions may benefit the increase of secondary consumers, chang-
ing, considerably, the food chain shape [103]. This phenomenon has been described for
macroinvertebrates from AMD impacted streams [100] and implies major shifts in resource
utilisation, possibly reducing the number of trophic levels and consequently simplifying
the food web. While these ecological processes still need further analysis in AMD environ-
ments, they can explain the use of Tanypodinae as bioindicators. This is because AMD leads
to a significant change in the community structure of chironomid larvae. On the other hand,
the taxonomic richness within the Chironomidae remains stable in acid mine drainage
because the loss of sensitive species is compensated for by tolerant species [100]. Sites
with severe AMD have a significant decrease in abundance of stationary collector-filterer
prey (primarily Hydropsychidae, caddisflies that occur in high densities), showing that
both the diversity and abundance of macroinvertebrate prey decreases as AMD impact
increases [121]. Thus, AMD contamination sites can have high biodiversity because of
high tolerant species richness, as well as considerable variability in metal tolerance among
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macroinvertebrate taxa and species (Byrne et al., 2012). When compared to reference sites,
the functional diversity of macroinvertebrates is lessened, and their functional structure is
much simpler [122].
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4. Conclusions

This research study sought to put in evidence the importance of extremophile or-
ganisms in AMD-affected environments. This mini-review summarizes the eukaryotic
groups inhabiting these environments. AMD affects the organisms inhabiting the water
and sediment substrates, which are subjected to high concentrations of metals and sulfates
along with low pH. AMD-provoked changes in the ecological environment at both the
community level and the individual level are responsible for species disappearance and the
loss of diversity and abundance. Only those organisms capable of developing adaptation
mechanisms to these extreme conditions survive and succeed [123].

Further research in this area is crucial in order to minimize the evident environmental
consequences of mining exploration through the centuries, with bio- and eco-friendly
solutions having particular appeal.

New applications using these extreme organisms in biotechnology and astrobiology
studies are the main reason for their study at present. An example is a recent study of the
Tintillo River [124], contaminated by Río Tinto in Huelva, Spain, where bacterial filaments
and diatoms are capable of forming iron stromatolites as laminated sedimentar structures.
Furthermore, the active biosorption and bioleaching of sulfur are suggested by the black
and white coloration of microbial filaments inside these stromatolites. AMD systems are
hazardous to physical, chemical, and biological agents; however, they also provide valuable
biogeochemical information which can aid in inferring past geochemical conditions on
Earth, and perhaps even other planets such as Mars.
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