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Abstract

The advent of checkpoint immunotherapy, particularly with programmed death-1 (PD-1)
and programmed death-ligand 1 (PD-L1) inhibitors, has provided ground-breaking results
in several advanced cancers. Substantial efforts are being made to extend these promising
therapies to other refractory cancers such as gliomas, especially glioblastoma, which rep-
resents the most frequent and malignant glioma and carries an exceptionally grim progno-
sis. Thus, there is a need for new therapeutic strategies with related biomarkers. Gliomas
have a profoundly immunosuppressive tumour micro-environment and evade immunolog-
ical destruction by several mechanisms, one being the expression of inhibitory immune
checkpoint molecules such as PD-L1. PD-L1 is recognised as an important therapeutic
target and its expression has been shown to hold prognostic value in different cancers.
Several clinical trials have been launched and some already completed, but PD-1/PD-L1
inhibitors have yet to show convincing clinical efficacy in gliomas. Part of the explanation
may reside in the vast molecular heterogeneity of gliomas and a complex interplay within
the tumour micro-environment. In parallel, critical knowledge about PD-L1 expression is
beginning to accumulate including knowledge on expression levels, testing methodology,
co-expression with other checkpoint molecules and prognostic and predictive value. This
article reviews these aspects and points out areas where biomarker research is needed to

develop more successful checkpoint-related therapeutic strategies in gliomas.
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Gliomas are the most common primary brain tumours in adults, and
glioblastoma multiforme constitutes the most malignant glioma,
categorised as a World Health Organization grade IV tumour [1].
Standard of care for newly diagnosed glioblastoma is a multimodal
regimen comprising maximal surgical resection, radiation therapy and
chemotherapy [2-5]. Unfortunately, the disease almost inevitably
relapses due to its aggressive, diffusely infiltrative behaviour and
inherent treatment resistance [5,6]. In recurrent glioblastoma, treat-
ment options are very limited and have minimal efficacy [4]. Despite
advances made in the last decades, extensive research efforts have
not translated into significant improvements in the prognosis, since
the introduction of temozolomide in 2005 [2-5]. Novel and more
efficacious therapies for primary and recurrent disease are therefore
urgently needed.

The interplay between cancer and the immune system is a hallmark
of cancer biology [7]. A salient feature of gliomas is the ability to solicit
profound local and systemic immunosuppression within the tumour
micro-environment (TME), thereby abolishing antitumoural immune
defence [8,9]. This has led to the advent of immunotherapy [9-12].
While chemotherapy and targeted therapy seek to target tumour cells
directly and ameliorate underlying signalling defects in tumour cells,
immunotherapy fundamentally differs by modulating the native immune
system, with the purpose of tilting immune balance from a pro-
tumourigenic towards an anti-tumourigenic state, in order to mount an
effective antitumour response [13]. In an era of personalised and
precision medicine, attention is increasingly shifting from conventional
cytotoxic and targeted therapy towards immunotherapy, which has
emerged as a novel treatment paradigm [9,14-17]. In the realm of
various immunotherapeutic strategies, the concept of immune
checkpoint inhibition has attracted the most attention in recent years. In
particular, therapeutic targeting of the immune checkpoints cytotoxic
T-lymphocyte associated antigen-4 (CTLA-4), programmed death-1
(PD-1, CD279) and programmed death-ligand 1 (PD-L1, B7-H1) has
been revolutionary [18-22].

Immune checkpoints are co-inhibitory or co-stimulatory molecular
immune system modulators that normally ensure appropriate toler-
ance to self-antigens and physiological immune homeostasis while
minimising tissue damage and precluding autoimmunity [22-25].
PD-1 is a key immune inhibitory receptor predominantly located on
the surface of activated CD3*/CD8" T-cells, B-cells, natural killer
(NK) cells and monocytes [23-26]. PD-1 primarily functions peripher-
ally by negatively regulating T-cell mediated signalling upon ligation to
its transmembrane ligands, PD-L1 and programmed death-ligand
2 (PD-L2, B7-DC) [23-25]. (Figure 1). Under physiological, non-
inflammatory conditions, PD-L1 is expressed in antigen-presenting
cells and some non-lymphoid tissues [23-27]. Engagement of PD-L1
to PD-1 on T-cells attenuates effector T-cell activity by inducing
exhaustion, anergy and apoptosis of activated CD8" cytotoxic T-cells,
inhibiting proinflammatory cytokine production and recruiting CD4*
CD25"FoxP3" regulatory T-cells, a potently immunosuppressive

effector T-cell subset [23-28]. A multitude of cancers have the ability

Key points

e PD-L1 is overexpressed in gliomas and seems to be asso-
ciated with factors such as glioma grade and molecular
subtype, but PD-L1 expression has not demonstrated
prognostic or predictive significance as a potential bio-
marker in gliomas.

o Although clinical trials with PD-1/PD-L1 inhibitors have
not yet shown significant clinical efficacy in glioma
patients and there are no approved PD-1/PD-L1 inhibi-
tors for therapeutic use in gliomas, trial data indicate
potential efficacy in certain highly selected subgroups of
patients.

o A multi-combinatorial approach with a particular focus on
the lack in T-cell infiltration and accumulation of immu-
nosuppressive cells such as microglia/macrophages may
be necessary to overcome the profoundly immunosup-
pressive tumour micro-environment in gliomas.

e Combined biomarker strategies with PD-L1 in combina-
tion with other biomarkers reflecting either immune phe-
notype or tumour genotype are most likely needed to
obtain successful PD-1/PD-L1 immune checkpoint-

related therapies.

to harness and co-opt the PD-1/PD-L1 pathway as a maladaptive
shield by upregulating PD-L1 expression to escape immune surveil-
lance and eradication, favouring tumour growth [26-29]. This consti-
tutes one of multiple operational mechanisms of tumour immune
evasion [29].

PD-1/PD-L1 inhibitors are therapeutic monoclonal antibodies
(mADbs) that antagonise PD-1 or PD-L1 to reverse immunosuppression
and restore antitumour immunity [30]. PD-1/PD-L1 inhibitors in non-
small cell lung cancer (NSCLC) [31] and melanoma [32] have altered
the prognostic landscape, demonstrating remarkable clinical efficacy
with the prospect of durable remission alongside acceptable toxicity.
This has led to clinical implementation of PD-1/PD-L1 inhibitors in
various cancers assuming an integral, frontline position next to con-
ventional therapies [18-22]. Great efforts are therefore being made
to extend these therapies to refractory cancers including gliomas
[10,12]. However, to apply personalised immunotherapy successfully
in clinical practice, accurate biomarkers are needed in therapeutic
decision-making and prognosis stratification, and PD-L1 assessed by
immunohistochemistry has shown compelling potential as a biomarker
in some cancers [33-36]. Understanding the role of PD-L1 and similar
co-expressed markers in gliomas may lead to new successful thera-
peutic strategies.

Herein we summarise current evidence on PD-L1 expression in
gliomas, including expression levels, differential expression on various

cell types, co-expression with other immune checkpoint molecules,
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FIGURE 1 Mechanisms of immune evasion mediated by the PD-1/PD-L1 signalling pathway. PD-1/PD-L1 interaction in the
immunosuppressive tumour micro-environment of gliomas leads to decreased proliferation and exhaustion of effector T-cells as well as decreased
cytokine production, providing the tumour cell with survival benefits. Blocking the PD-1/PD-L1 pathway with anti-PD-1 or anti-PD-L1
monoclonal antibodies leads to differentiation of effector T-cells by stimulating the PI3K/Akt or Ras/MAPK pathways and suppression of T-reg
differentiation, which ultimately enhances anti-tumour immunity. Abbreviations: PD-L1 Programmed death-ligand 1, PD-1 Programmed death-1,
GAL-9 Galectin 9, TIM-3 T-cell immunoglobulin mucin-3, LAG-3 Lymphocyte-activation gene 3, TCR T-cell receptor, MHC Major histocompatibility
complex, APC Antigen presenting cell, CD Cluster of differentiation, T-reg Regulatory T-cell, IL Interleukin, VEGF Vascular endothelial growth

factor, TGF Transforming growth factor. Created with BioRender.com

and technical caveats and challenges related to PD-L1 immunohisto-
chemistry. Furthermore, the prognostic and predictive potential of
PD-L1 as a biomarker is reviewed. Last, the future of biomarker-based

immune checkpoint inhibitor strategies in gliomas is discussed.

THE ROLE OF THE PD-1/PD-L1 PATHWAY IN
THE BRAIN

Though there is still much to be learned, neurodegenerative and neuro-
inflammatory animal models have provided invaluable insights into the

role of PD-1/PD-L1 in the normal brain. Thus, it is recognised that
neurons, microglia/macrophages, astrocytes, oligodendrocytes and
endothelial cells in the brain can express PD-L1 under normal
conditions [37-39]. During neuroinflammatory conditions, PD-L1 is
upregulated in activated resident glial cells due to cytokine release.
Through the upregulation of PD-L1, they govern infiltrating T-cell
activity and diminish T-cell responses, thereby confining and limiting
detrimental CNS damage [38-40]. PD-L1 deficient mice exposed to
coronavirus demonstrated an increased inflammatory response
resulting in more rapid clearance of the virus, but with the costs of
earlier symptom onset and increased morbidity [41]. Genetic ablation
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of PD-L1 in T-cells, in addition to increased incidence and aggravated
disease, caused local endothelial dysfunction in a spontaneous mouse
model of CNS autoimmunity [42]. These data point towards a critical
immune modulatory checkpoint role for PD-L1 in multiple aspects of
brain function.

Knowledge of PD-L1 expression in various CNS compartments is
exceedingly sparse. Interestingly though, there have been reports on
soluble PD-L1 (sPD-L1), which is believed to be released from PD-L1
positive cells [43]. sPD-L1 is reported to contribute to systemic immu-
nosuppression and is proposed as a potential minimally invasive
biomarker. In gliomas, elevated sPD-L1 levels have been reported in
peripheral blood and cerebrospinal fluid and associated with aggres-
sive behaviour [43,44].

PD-L1 EXPRESSION IN GLIOMAS
Frequency and distribution of PD-L1 expression

Expression of PD-L1 in tumour cells has been consistently documented
in cancers such as NSCLC, melanoma, renal cell carcinoma, urothelial
carcinoma and colorectal cancer [18-20,33,36]. In gliomas, preclinical
models have demonstrated PD-L1 expression [45-50]. Table 1 pro-
vides a comprehensive overview of studies evaluating PD-L1 protein
and/or gene expression in human gliomas [24,44,51-68]. These studies
reported highly variable tumour cell PD-L1 expression rates in gliomas
ranging from 6.1%-88% (Table 1). In 2003, Wintterle et al. [24]
provided the first evidence of PD-L1 protein expression in malignant
glioma specimens in 10 out of 10 patients (nine glioblastomas and one
mixed glioma, which is not further specified in the article) using
immunohistochemistry. However, neither staining patterns nor scoring
cut-offs were specified. A study by Berghoff et al. [55] reported
diffuse/fibrillary PD-L1 expression in 88% and membranous PD-L1
expression in 37.6% of newly diagnosed glioblastoma patients using full
histological slides in contrast to other studies in Table 1 using tumour
microarrays (TMAs). Interestingly, the two abovementioned studies
both utilised the 5H1 clone and reported some of the highest expres-
sion rates among all the studies in Table 1. 5H1 is a non-commercial
antibody clone and was one of the most frequently used clones among
the studies. In comparison, two commercial antibody clones, SP142
and SP263, gave much lower expression frequencies. A microarray
study using SP263 reported a rate of membranous PD-L1 protein
expression of 23.4% in diffuse gliomas with a 5% threshold [68]. Garber
et al. [57] conducted a study comprising 347 patients with gliomas of all
grades and found a 6.1% expression rate using the SP142 clone, but
positivity was confined to glioblastomas only. Another study reported
similarly low rates using SP142 [65].

PD-L1 expression has primarily been studied in newly diagnosed
gliomas. However, some studies have compared PD-L1 expression in
primary and recurrent disease and have reached differing conclusions.
Heynckes et al. [63] reported significant reductions in PD-L1 gene
and protein expression in recurrent glioblastoma compared to de novo

glioblastoma. In a sub-cohort of 18 patients with recurrent

glioblastoma, Berghoff et al. [55] found membranous PD-L1 protein
expression to be more frequent in newly diagnosed glioblastoma than
matched recurrent glioblastoma specimens, while no such difference
was detected for diffuse/fibrillary PD-L1 expression. Meanwhile, in a
small cohort (n = 16), Miyazaki et al. [60] did not observe reductions
in the frequency of PD-L1 expression in recurrent glioblastoma com-
pared to the initial tumour. However, some patients had received
immunotherapy prior to recurrence, potentially introducing biases.

It is noticeable that while some of the studies in Table 1 report
high PD-L1 protein expression in gliomas, PD-L1 expression at the
mRNA level in gliomas in The Cancer Genome Atlas (TCGA) is one of
the lowest median levels across various cancers [69]. Chen et al. [70]
examined PD-L1 protein expression in different cancers and found
glioblastoma to have a moderate frequency of PD-L1 protein expres-
sion when positivity was defined as = 1% of tumours cells being
positive. It is well-known that correlation between mRNA and protein
expression can be low. The discrepant expression levels could be
explained by differential post-transcriptional modifications in different
cancers combined with the limited samples sizes in the protein stud-
ies, compared to the large TCGA datasets.

Yao et al. [52] made an interesting discovery of significantly
upregulated expression of PD-L1 at the tumour edge compared to the
tumour core. Such findings prompt concerns over heterogeneity of
PD-L1 expression. Spatial intratumoural expression heterogeneity is a
well-known phenomenon in PD-L1 immunohistochemistry and
represents a sampling bias in small tissue materials [71,72]. Therefore,
biopsies compared to resection specimens, and TMAs compared to
full histological slides, may be more prone to sampling bias and
ultimately erroneous PD-L1 classification [71-73].

A threshold for PD-L1 positivity on immunohistochemistry has
not been established yet in gliomas [68]. In the studies listed in
Table 1, the cut-offs applied to categorise a sample as positive ranged
from 21% to 225% of tumour cells positive for PD-L1, albeit
several studies did not sufficiently describe their cut-off thresholds
[24,44,51-54,59-61,63].

The most commonly evaluated staining pattern was membranous
staining compared to diffuse/fibrillary and cytoplasmic staining. In
general, there is a tendency towards higher PD-L1 expression rates in
studies evaluating diffuse/fibrillary staining compared to those using
membranous staining. A prevailing theory is that diffuse/fibrillary
staining reflects PD-L1 expression in the pathognomic neurofibrillary
matrix of gliomas, a histomorphological characteristic not seen in
other cancers [55,73]. The biological significance of the differing
staining patterns remains unresolved, though some state that only

membranous PD-L1 expression has biological pertinence [34,73].

Correlation of PD-L1 expression to grade and
molecular subtype

Several studies have demonstrated a significant correlation between
tumoural PD-L1 expression and glioma grade [44,51,52,57,59,61,62].
A large study comprising a total of 976 samples reported higher
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PD-L1 gene expression levels at the level of mRNA using mRNA
microarray and RNAseq data in glioblastomas compared to low-grade
gliomas [59], which is corroborated by several other studies evaluating
PD-L1 protein expression [44,51,57,61,62]. Using western blot analy-
sis, Yao et al. [52] demonstrated increased PD-L1 protein expression
in high-grade gliomas compared to low-grade gliomas.

In three studies [55,59,61], PD-L1 was significantly upregulated
in the mesenchymal subtype compared to the other transcriptional
glioblastoma subtypes, namely classic, neural and proneural [74].
Doucette et al. [74] reported a concordant preferential enrichment of
immunosuppressive and immune effector genes within mesenchymal
glioblastoma. Taken together, these findings imply differential immu-
nogenicity in glioblastoma subtypes, with mesenchymal glioblastoma
being particularly immunologically reactive. This may be a potential
confounding variable in evaluation of therapeutic response [61,62,74].
In other cancers, similar associations with specific molecular sub-
groups have been revealed. For example, triple negative breast cancer
and microsatellite instability (MSI)-high colorectal cancer have been
found to display higher levels of tumour cell PD-L1 expression than
other subtypes [75].

The role of the tumour micro-environment

The historical and somewhat archaic dogma of central nervous system
(CNS) immune privilege has evolved over time and been replaced by
an understanding of a dynamic crosstalk between the CNS and the
immune system [16].

The TME of gliomas is a critical determinant and regulator of
tumourigenesis, immunosuppression and disease progression, and
harbours a plethora of non-neoplastic cells including tumour infiltrat-
ing immune cells [76,77].

(TAMs) are the
dominant immune cell subset in glioblastoma, estimated to constitute
up to 30% of glioblastoma tissue cells [77-80]. Infiltration by TAMs,
particularly those exhibiting M2-phenotype, has been found to hold

Tumour-associated microglia/macrophages

unfavourable prognostic impact in gliomas [78-80].

Tumour-infiltrating lymphocytes (TILs) are another essential
component of the immune infiltrate in gliomas, although present in
substantially lower numbers than in other malignancies [55,56]. CD8"
TILs have been reported to be favourably prognostic in gliomas
[81,82]. Regulatory T-cells, an immunosuppressive T-cell subtype,
constitute a substantial proportion of TILs and an elevated CD8"
T-cells/regulatory T-cells ratio has been correlated with improved
prognosis [12,55].

While the primary focus has been on PD-L1 expression by tumour
cells, there is an increasing awareness of PD-L1 expression in non-
neoplastic cells of the TME [22]. PD-L1 expression in tumour infiltrat-
ing immune cells is described in several cancers including glioblastoma
[20,53,78,83-86]. Bloch et al. [80] reported that glioma cells upregulate
PD-L1 expression in tumour-infiltrating macrophages and circulating
monocytes through interleukin-10 signalling, thereby acquiring an

immunosuppressive phenotype. Microglial PD-L1 expression has

immune inhibitory capabilities and can down-regulate T-cell activation
[86]. Liu et al. [53] found neuronal PD-L1 expression in brain tissue
adjacent to glioblastoma to be associated with a favourable prognosis,
whereas a lack in neuronal PD-L1 expression was associated with high
tumoural PD-L1 expression and poor prognosis. The prognostic
impact of neuronal PD-L1 expression is however disputed by Berghoff
etal. [55].

The clinical impact of immune cell PD-L1 expression is inconsis-
tently reported. However, a meta-analysis across various cancers
found PD-L1 positive tumour infiltrating immune cells to predict
improved survival (HR = 0.784, 95% Cl: 0.616-0.997, P = 0.047).
Immune cell PD-L1 expression was even associated with enhanced
response to PD-1/PD-L1 inhibitors [87]. Despite the essential role of
the TME, only few of the glioma studies in Table 1 have evaluated
PD-L1 expression in non-neoplastic cells, and these studies have
generally reported limited expression [44,51,64-66].

The significance of immune cell PD-L1 expression in defining
PD-L1 positivity is reflected in the differing PD-L1 scoring algorithms.
While some cancers (NSCLC, melanoma) use the tumour proportion
score in which only membranous staining of viable tumour cells is
evaluated, others (urothelial carcinoma) use the combined positivity
score or inflammatory cell scoring, which include or are restricted to
PD-L1 expression in specific immune cells, respectively [88].

The concept of microenvironmental heterogeneity has arisen
from intriguing research demonstrating a close association between
immunologic phenotype/TME composition and molecular tumour
status [76,77]. In accordance with other studies [59,64,89], Pratt et al.
[68] found isocitrate dehydrogenase (IDH)-wildtype gliomas to
express PD-L1 more frequently than IDH-mutant tumours. Berghoff
et al. [64] additionally reported IDH-wildtype gliomas to have signifi-
cantly more CD3"PD-1" TIL infiltration. The clinical implications of
such a PD-L1/IDH-wildtype association could be that IDH-mutated
gliomas are deemed unsuitable for PD-1/PD-L1 inhibitor therapy.

PD-L1 regulation

The regulatory mechanisms of PD-L1 expression are poorly under-
stood but are mediated through two fundamental mechanisms—
innate immune resistance, which mediates constitutive expression,
and adaptive immune resistance mediating inducible expression [13].
PD-L1 expression is determined by exogenous and endogenous
regulatory factors and regulation is performed at several levels includ-
ing the level of transcription, post-transcription and post-translation
[90-93]. Inducible PD-L1 expression is mediated by proinflammatory
exogenous factors derived from tumour cells and immune cells of the
TME. Interferon-y (IFN-y) is the most potent inducer of PD-L1 expres-
sion, and is derived mainly from T-cells and possibly NK cells [90-94].
Upon binding of IFN-y to its receptor, the IFN-y receptor, the
upregulation of PD-L1 is mediated by downstream activation of the
JAK-STAT pathway in a negative feedback mechanism [90,91]. In
gliomas, IFN-y has been found to play an important role in PD-L1

expression in tumour cells, as well as the TME, including infiltrating
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microglia/macrophages and myeloid cells. PD-L1 serves as a negative
feedback mechanism following, rather than preceding, T-cell activa-
tion and IFN-y secretion [95].

STAT3, another regulator, is a transcription factor acting down-
stream of cytokines such as interleukin-6, interleukin-10 and growth fac-
tors and can also upregulate PD-L1 [90-92]. In addition to inflammatory
stimuli, intrinsic signals such as aberrant activation of oncogenic signal-
ling pathways [90-94], including the MAPK and PTEN/PI3K/AKT path-
ways, are regulators of constitutive PD-L1 expression. Although not
consistently verified in other studies [55,57,61], Parsa et al. [96] found
loss of phosphatase and tensin homolog (PTEN), a negative regulator of
the phosphoinositide-3-kinase (PI3K) pathway, which regulates cellular
proliferation, to confer oncogenic overactivation of the PI3K/PTEN/
AKT/mTOR pathway and induce PD-L1 expression. Lastly, epigenetic
regulation of PD-L1 includes DNA methylation and microRNA regulation
[91-93].

Quantification of immunohistochemical PD-L1
expression

The studies in Table 1 evaluating PD-L1 expression predominantly
employed a pathologist-based manual scoring applied to PD-L1 immu-
nohistochemistry. Five studies have performed automated analyses
[54,56,61,62,68]. Knudsen et al. [54] performed digital quantification
of membranous PD-L1 staining yielding a PD-L1 mean membrane
fraction of 0.049%. Manual scoring by visual quantification of immu-
nohistochemistry is limited by subjectivity and prone to great inter-
and intraobserver variability, thus representing a potential pitfall in
the interpretation of PD-L1 expression [97]. Automated digital image
analysis is increasingly being implemented for immunohistochemical
quantification of tissue biomarkers to obtain accurate, reliable and
reproducible estimates, provide accelerated workflow of an otherwise
tedious process and prevent erroneous classification [97,98]. Auto-
mated analysis also has the potential of recapitulating the full scope
of PD-L1 expression and better account for spatial heterogeneity.
Ultimately, it is expected to facilitate more accurate allocation of
precision medicine to eligible patients. Although validation is needed,
digital image analysis of PD-L1 expression in a melanoma study

displayed excellent concordance with manual scoring [99].

PD-L1 EXPRESSION AND PATIENT
OUTCOME

Prognostic value of PD-L1 expression

In general, results are highly inconsistent as to whether tumoural PD-L1
expression correlates with prognosis in different cancers. However, a
meta-analysis comprising studies across multiple solid tumours has
documented a significant association of tumoural PD-L1 expression with
poor prognosis [33]. Among others, PD-L1 protein expression confers

unfavourable prognosis in NSCLC, renal cell carcinoma and ovarian

cancer [33,36,100]. The differing prognostic significance of PD-L1
expression across different tumours may be inextricably linked to regula-
tory mechanisms. Some tumours are classified as “immunologically hot”
and present with abundant effector T-cell infiltration, high IFN-y levels
and thus have high cytokine-driven PD-L1 expression in tumour cells
and the TME. These tumours typically respond better to PD-1/PD-L1
inhibitors and could be predicted to have better prognoses [101]. Other
tumours are classified as “immunologically cold” with sparse T-cell
infiltration and low tumoural PD-L1 expression, primarily induced by
oncogenic activation and thus potentially a worse prognosis [101]. It
would be very interesting for future studies examining regulation of
PD-L1 to incorporate analysis of TME to gain more insights into the
effect of IFN-y on the TME.

In Table 1, there are 11 studies that have examined the prognos-
tic value of PD-L1 expression in gliomas [53-56,58-61,66-68].
Approximately half of these reported elevated PD-L1 expression
levels to be associated with poor survival [53,56,59,66,68].

Applying a 5% cut-off, Ndoum et al. [56] found high PD-L1
protein expression to be significantly associated with poorer overall
survival (OS) in glioblastoma. O®-methylguanine-DNA methyl-
transferase (MGMT) promoter methylation status was excluded as a
covariate due to incomplete patient data. Pratt et al. [68] applied a 5%
cut-off for membranous PD-L1 expression in recurrent IDH-wildtype
glioblastoma and reported PD-L1 expression to be adversely associ-
ated with OS in multivariate analysis (HR = 1.957, 95% Cl 1.11-3.45,
P = 0.0208). In 54 glioblastoma cases, Han et al. [66] also found high
PD-L1 protein expression to be associated with poor OS
(HR =4.958, 95% Cl 1.557-15.79, P = 0.007). Additional patient
stratification according to PD-L1 status and PD-1 positive tumour
infiltrating mononuclear cell density revealed that the group with high
PD-L1 expression and low PD-1 positive tumour infiltrating mononu-
clear cell density had significantly worse OS compared with other
groups. This led the authors to suggest that the combination of
tumoural PD-L1 expression and PD-1 positive tumour infiltrating
mononuclear cell density could provide greater and more accurate
prognostic value than PD-L1 expression alone. Contrary to the
abovementioned studies, Knudsen et al. [54] and Berghoff et al. [55]
did not find a correlation between PD-L1 protein expression and OS
in glioblastoma patients. Similar to Ndoum et al. [56], Berghoff et al.
[55] excluded MGMT methylation as a covariate.

Several studies have also examined the prognostic significance of
PD-L1 gene expression by using gene expression profiling data from
TCGA, but reaching contradictory results. Ndoum et al. [56] reported
a worse prognosis in glioblastomas exhibiting high PD-L1 gene
expression in multivariate analysis (HR = 1.52, 95 CI% 1.03-2.25,
P = 0.0343), and Wang et al. [59] also found PD-L1 to predict worse
survival in gliomas. Pratt et al. [68] demonstrated an association
between high PD-L1 expression and adverse OS in a small group of
recurrent non-glioma CpG island methylator phenotype glioblastomas
(IDH-wildtype) supporting the findings at the protein level. Con-
versely, Berghoff et al. [55] did not find high PD-L1 gene expression
to predict poorer OS in gliomas. However, the results are not entirely
comparable because of the use of different parts of the TCGA dataset
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generated by various platforms. For example, Ndoum et al. [56] used
lllumina RNAseq data. However, when analysing Agilent microarray
data, the same data used by Berghoff et al. [55], Ndoum et al. [56]
reached the same conclusion of no survival difference between
PD-L1 low and high expressers. Poor correlation has previously been
reported between Agilent microarray and RNAseq data [73].

A meta-analysis of six glioma studies reported a significant
association between high PD-L1 expression (protein or gene) and
worse OS (HR = 1.30, 95% Cl: 1.02-1.65, P = 0.032), which remained
significant in subgroup analysis of glioblastomas (HR = 1.40, 95% Cl:
1.03-1.90, P = 0.030) [102]. Nevertheless, the results should be

12/2014 Melanoma (2nd line, M)
03/2015 NSCLC (2nd line, M)
10/2015 Melanoma (1st line, C)
71/2015 RCC (2nd line, M)
05/2016 HL (2nd line, M)
11/2016 HNC (2nd line, M)
02/2017 Bladder cancer (2nd line, M)
08/2017 CRC (2nd line, M)
09/2017 HCC (2nd line, M)
12/2017 Melanoma (Adjuvant, M)
04/2018 RCC (1st line, C)
07/2018 CRC (3rd line, C)
08/2018 SCLC (3rd line, M)
03/2020 HCC (2nd line, C)
05/2020 NSCLC (1st line, C)
06/2020 Oesophagus cancer
(2nd line, M)

Atezoli
(PD-
20

1

05/2016 Bladder cancer

(2nd line, M)
10/2016 NSCLC (2nd line, M)
04/2017 Bladder cancer

(1st line, M)
12/2018 NSCLC (1st line, C)
03/2019 Breast cancer

(1st line, C)
03/2019 SCLC (1st line, C)
12/2019 NSCLC (1st line, C)
05/2020 NSCLC (1st line, M)
05/2020 HCC (1st line, C)

interpreted cautiously due to limited sample size, the lack of analysis
for publication bias and insufficient stratification.

The discrepant findings on prognostic significance could be
explained by several factors of which retrospective study design and
immense methodological heterogeneity are among the most
important and are discussed in the “Pitfalls and challenges” section.
Another issue is that it is unclear whether any of the studies were
adequately powered. A pivotal caveat is that none of the studies
fully took account of or controlled for established prognostic factors
such as Karnofsky performance status (KPS), steroid use, MGMT-
and |DH-status, potentially confounding the results. However,

l

05/2017 Bladder cancer
(2nd line, M)

02/2018 NSCLC
(adjuvant, M)

03/2020 SCLC (1st line, C)

FIGURE 2 Timeline illustrating the rapidly progressive development in FDA approvals of PD-1 and PD-L1 inhibitor-based therapies in
different cancers since pembrolizumab was approved as the first PD-1/PD-L1 inhibitor in 2014. Data was retrieved from https://www.
cancerresearch.org. Abbreviations: M Monotherapy, NSCLC Non-small cell lung cancer, HNC Head and neck cancer, HL Hodgkin lymphoma, C
Combination therapy, MSI-H Microsatellite instability high, IMMR Mismatch repair deficiency, PMBCL Primary mediastinal large B-cell lymphoma,
HCC Hepatocellular carcinoma, MCC Merkel cell carcinoma, SCC squamous cell carcinoma, SLCL Small-cell lung cancer, TMB Tumour mutational
burden, RCC Renal cell carcinoma, CRC Colorectal cancer. Created with BioRender.com
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Berghoff et al. [55] presented particularly solid results. They were able
to control for several relevant factors (KPS, age, extent of resection,
presence of PD-L1 positive neurons, PD-L1 staining type, PD-1
density) using multivariate analysis in a cohort with 117 patients.
Another robust study by Knudsen et al. [54], the most recent study,
also performed multivariate analysis in a cohort of 163 patients
utilising digital PD-L1 quantification. Both of these studies came to
the same conclusion that there is no prognostic value of tumoural
PD-L1 in glioblastoma.

PD-1/PD-L1 inhibitor clinical trials in gliomas

The prominent role of PD-1/PD-L1 in cancer biology has prompted
the development of therapeutic high-affinity mAbs targeting PD-1 or
PD-L1 [30]. Figure 2 illustrates the fast pace at which approvals by
the Food and Drug Administration have been granted to PD-1/PD-L1
inhibitors over time. There are currently no approved immune check-
point inhibitors for use in gliomas [68], but proof-of-concept for the
efficacy of PD-1/PD-L1 inhibitors has been provided in preclinical
glioma models in which PD-1/PD-L1 inhibition has shown to restore
anti-tumour T-cell activity, generate tumour cell regression and
improve survival, thus paving the way for clinical trials [45-50].

Kim et al. [50], using a syngeneic orthotopic murine glioma model,
found that triple therapy with an anti-T-cell immunoglobulin and
mucin-domain containing protein 3 (TIM-3) mAb, anti-PD-1 mAb and
stereotactic radiosurgery resulted in 100% OS (P < 0.05) compared
with dual therapy with anti-TIM-3 mAb plus radiation (63.2%) or a
PD-1 inhibitor (57.9%), or monotherapy with anti-TIM-3 mAb (0%
0S). Zeng et al. [49] demonstrated that combined stereotactic radio-
surgery and PD-1 inhibition generated a significant and synergistic
survival improvement conferring a median OS of 52 days compared to
27 and 30 days with radiation or PD-1 inhibition as single arm modali-
ties, respectively. Furthermore, 10%-40% of the mice became long-
time survivors (>90 days after implantation) in the combination group.
In a study with orthotopically GL261-injected mice, simultaneous
blockade of PD-L1 and CTLA-4 led to a remarkable long-term survival
rate of 90% [45]. Interestingly, survival rate increased to 100% by
targeting indoleamine 2,3-dioxygenase simultaneously with CTLA-4
and PD-L1 with a significant decrease in regulatory T-cells compared
to dual therapy.

These preclinical studies have paved the way for the currently
active clinical trials with PD-1/PD-L1 inhibitors in gliomas summarised
in Table 2 [103]. In Table 3, preliminary and final data from PD-1/PD-
L1 inhibitor clinical trials in gliomas are listed [103-120] and some of

the most significant studies are discussed below.

Nivolumab

Nivolumab is a fully human IgG4 PD-1 immune checkpoint inhibitor
[109]. The open-label phase llI trial, Checkmate 143 (NCT02017717)
was the first large-scale randomised clinical trial to examine PD-1/PD-

L1 inhibitors in gliomas [109]. Patients with recurrent glioblastoma

were randomised to receive either nivolumab or bevacizumab until
disease progression, unacceptable toxicity or death. At completion,
the study did not meet its primary endpoint of OS with no significant
improvements in survival in patients receiving nivolumab (mOS
9.8 months, 95% Cl, 8.2-11.8) compared to bevacizumab (mOS
10.0 months, 95% ClI, 9.0-11.8) with HR = 1.04 (95% ClI, 0.83-1.3;
P = 0.76.). Secondary outcomes of PFS (1.5 months vs. 3.5 months)
and objective response rate (ORR) were significantly higher (7.8%
vs. 23.1%) with bevacizumab. Interestingly though, patients receiving
nivolumab displayed more durable responses providing hopes for a
small subgroup of long-term survivors. Exploratory, multivariate
subgroup analyses revealed that MGMT-methylation and lack of
baseline corticosteroid use were associated with improved OS in the
nivolumab group. In the bevacizumab group, MGMT-methylation was
also associated with improved survival. Subsequently, combined
analyses of MGMT-methylation and lack of corticosteroid use yielded
a trend towards longer mOS in patients receiving nivolumab
compared to bevacizumab (17 months vs. 10 months, HR = 0.58,
95% Cl, 0.30-1.11). These results could potentially identify a
subgroup of responders. Particularly, the results on lack of baseline
corticosteroid use are intriguing. While it could be that patients with
baseline corticosteroid use have more progressive disease, a potential
effect of steroids on the immune system and activation of T-cells is
also plausible.

Patients were classified according to baseline tumoural PD-L1
expression <1% or 21% with positivity defined as membranous
staining in 21% of tumour cells and survival was reported to be similar
between the two subgroups. Subgroup analyses should be interpreted
cautiously though, because of the limited number of patients.
A classification of the patients based on expression of PD-L1 in
tumour cells and/or microglial cells and macrophages would have
been interesting as well as evaluation of tumour mutational burden
(TMB) and mismatch repair (MMR).

Pembrolizumab

Pembrolizumab is a humanised anti-PD-1 antibody. The phase I trial
by Nayak et al. [111] (NCT02337491) did not find any significant
difference in PFS and OS when pembrolizumab was administered
alone or combined with bevacizumab compared to a historical cohort.
The study performed immunocorrelative studies with potential
tumour microenvironmental biomarkers such as PD-L1 expression
and TIL density. PD-L1 was evaluated by immunohistochemistry using
the 28-8 clone with the same threshold as in Checkmate 143 [109].
None of the biomarkers predicted outcome but analyses were based
on relatively small sample sizes and, in part, archival samples. Analyses
of MGMT-status and baseline corticosteroid use corroborated the
results from Checkmate 143 [109].

The multi-cohort phase 1 trial, Keynote-028, evaluated
pembrolizumab monotherapy across various tumour types including
recurrent glioblastoma (n = 26) with some of the key eligibility criteria

being bevacizumab-naive glioblastoma and PD-L1 positive [112].
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Though utilising the same threshold of 21%, the definition of PD-L1
positivity differed somewhat from the two aforementioned studies
[109,111]. Keynote-028 included membranous staining in stromal
cells and staining of the stroma in addition to tumour cells, which is a
less explored approach in gliomas. Thus, this PD-L1 assessment might
be less robust. Overall, only modest efficacy in a small subgroup of
patients was found, similar to Checkmate 143 [109,112]. Correlative
analysis of PD-L1 to outcome is pending, but the exclusion of PD-L1
negative glioblastomas from the trial precludes definitive conclusions

on the predictive value of PD-L1 expression.

Neoadjuvant PD-1/PD-L1 inhibition

Interestingly, recently published results of neoadjuvant PD-1/PD-L1
inhibition have reinvigorated optimism [115,116] and shed light on
the importance of timing of checkpoint immunotherapy. In a random-
ised, multi-institutional study by Cloughsey et al. [115] comprising
35 patients with recurrent, surgically resectable glioblastoma, patients
receiving neoadjuvant pembrolizumab followed by adjuvant
pembrolizumab displayed significantly prolonged median OS (417 days
vs. 228.5 days) and PFS (99.5 days vs. 77.5 days) compared to
patients receiving adjuvant therapy only. By leveraging T-cell receptor
sequencing, gene expression profiling, mass cytometry and quantita-
tive multiplex immunofluorescence, several biological alterations of
the tumoural immune landscape were documented including
upregulated T-cell and IFN-y related gene expression, focally
upregulated PD-L1 expression in the TME and enhanced T-cell clonal
expansion, suggestive of enhanced anti-tumour response in neo-
adjuvant settings of PD-1 blockade. Although not documenting similar
clinical efficacy, a single-arm phase Il clinical trial of neoadjuvant and
adjuvant nivolumab also reported alterations within the TME including
enhanced T-cell receptor clonal diversity in tumour-infiltrating T-cells
and increased immune cell infiltration [116].

Taken together, the preliminary clinical results in gliomas have
been disparate and disappointing. Definitive conclusions should,
however, not be made because of the paucity and, in part, immaturity
of the results. More data from completed, ongoing and pending trials

are eagerly anticipated to provide more clarification.

Predictive value of PD-L1 expression

In cancers highly amenable to PD-1/PD-L1 inhibition, the ORR has
generally proven to be low to moderate [19-21,35,121]. Accordingly,
PD-1/PD-L1 inhibition in gliomas is expected only to be applicable in
a highly selected subset of patients, which further underscores the
urgent need for predictive biomarkers in refining the selection of
eligible patients to derive benefits from checkpoint inhibitor therapy
[57,65].

Emerging data supports the idea that tumoural PD-L1 expression
enriches for response to PD-1/PD-L1 inhibition in some cancers
[21,34,35,121]. A study by Topalian et al. [19] reported PD-L1-

positive tumours to have a 36% ORR (P = 0.006) using a 5% positivity
cut-off for membranous PD-L1 expression, while no PD-L1 negative
patients displayed objective responses. In NSCLC, a pooled analysis
found PD-L1 positivity (tumour cell staining 21%) to be associated
with higher overall ORR to PD-1 inhibitors (OR = 2.44, 95% CI:
1.61-3.68) compared to PD-L1 negative tumours. However,
determining the predictive value of PD-L1 is still a burgeoning field. If
PD-L1 expression in gliomas is a predictor of responsiveness to
PD-1/PD-L1 blockade, the association is likely to be non-linear. Inter-
estingly, treatment response to PD-1/PD-L1 inhibitors has also been
documented in up to 17% of PD-L1 negative cancer patients, some
even displaying advantageous long-term outcomes [121]. While an
underlying explanation could be intratumoural heterogeneity of
expression, it could also point towards PD-L1 not being a
dichotomous, exclusionary biomarker that only may provide adequate
predictive significance in conjunction with other biomarkers [34].
PD-1" TILs, TMB, and neoantigen load have been proposed as other
candidate biomarkers [34].

Tumour mutational burden and mismatch repair
deficiency as biomarkers

In several cancers, TMB and/or MMR deficiency (AMMR) have been
identified as potential markers of response to immune checkpoint
blockade, presumably due to enhanced neoantigen formation,
heightened immunogenicity and immune infiltration [64,65,123-126].
TMB-high tumours such as lung cancer (9.9 mutations/megabase) and
melanoma (12.9 mutations/megabase) have documented high
response rates [64,65,123-125]. Gliomas, particularly glioblastomas
(2.2 mutations/megabase), are considered poorly immunogenic
harbouring comparatively lower TMB than other malignancies
[64,65,124]. Nevertheless, in the setting of dMMR syndromes,
patients with hypermutated gliomas have benefitted from immune
checkpoint blockade [127,128]. Tumours with dMMR are TMB-high
tumours. Collective data suggest that dAMMR renders greater respon-
siveness to immune checkpoint inhibitors compared to MMR
proficient tumours [65,123], which has led to a tissue agnostic FDA
approval of pembrolizumab in dMMR tumours [107]. An association
between dMMR and hypermutation has been reported in gliomas,
although the exact underlying mechanisms are unclear [129].

In a recent comprehensive study with more than 10,000 gliomas,
Touat et al. [129] delineated two pathways by which gliomas acquire
a hypermutated state—through de novo hypermutation and a more
common post-therapy pathway due to acquired resistance by a
temozolomide driven expansion of MMR-deficient cells and
accumulation of temozolomide induced mutations in recurrent
chemo-sensitive glioblastoma. Retrospectively, the study did not find
any efficacy of PD-1 inhibitor therapy in a subgroup of hypermutated
gliomas.

Samstein et al. [125] documented high TMB to be associated with
improved survival in patients receiving checkpoint inhibitors across

various malignancies except for gliomas in a retrospective study.
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The recent phase 2 study KEYNOTE-158 (NCT02628067) evalu-
ated pembrolizumab in various non-colorectal cancers (n = 233)
[120]. Tumours were classified as AIMMR/MSI-high based on immuno-
histochemical loss of at least one MMR protein or MSI at polymerase
chain reaction. Among various cancers, only patients with brain
tumours (histological subtype was not specified) failed to show radio-
logical responses. Lombardi et al. [107] obtained similar results and
concluded that immunohistochemical MMR loss may be uncorrelated
with dMMR and cannot be used as a predictive biomarker in high-
grade gliomas for checkpoint inhibitor therapy.

We may speculate as to why hypermutated gliomas differ in
response to immunotherapy compared to other hypermutated
cancers. As stated by Touat et al. [129], the fact that the events
leading to dMMR are late events in post-treatment gliomas compared
to other cancers could be an explanation. Thus, it might be expected
that patients with constitutional mismatch repair deficiency
(CMMRD), a rare autosomal recessive hereditary cancer predisposi-
tion, would respond and benefit to checkpoint inhibition. In fact, there
have been case-reports describing favourable effect of checkpoint
inhibition in CMMRD patients [127,130]. Such beneficial effects could
indeed be due the early onset and accumulation of genetic alterations,
ultimately leading to sufficient immune responses within this group of
patients [130].

Other reasons for the unresponsiveness to immunotherapy in
hypermutated gliomas compared to other hypermutated cancers
could be that hypermutated gliomas might harbour poor neoantigen
quality (missense mutations versus frameshift-producing insertions-
deletions) making quantity alone insufficient as a predictor in gliomas
[129]. It could also be because of an extensive lack in CD8+ T-cell
infiltration, which has been repeatedly reported [65,107,114,129].
Thus, even though tumour genotype can shape the TME, hyper-
mutation does not necessarily equal increased immune cell infiltration,
and TMB high tumours do not always harbour an immunologically hot
phenotype [114,129]. The effect of TMB/dMMR on the TME requires
in-depth characterisation in future studies. Lastly, the threshold for
defining TMB-high could be too low compared to other cancers, as
noted by Samstein et al. [124] and thus only ultra-mutated glioma
may benefit from checkpoint immunotherapy as seen in MMR defi-

ciency syndromes [127,128].

IMMUNE CHECKPOINT CO-EXPRESSION

Several other inhibitory immune checkpoint receptors involved in
regulating T-cell functions such as CTLA-4, TIM-3, lymphocyte activa-
tion gene 3 protein (LAG-3), 2B4 (CD244) and B and T lymphocyte
attenuator (BTLA) have been identified and studied individually, but
their co-expression and relative contribution to T-cell exhaustion is
poorly elucidated and data is only beginning to emerge [131].
Matsuzaki et al. [132] isolated TILs from ovarian cancer patients
and found TILs expressing New York oesophageal squamous cell
carcinoma 1 (NY-ESO-1) to co-express PD-1 and LAG-3. By inhibiting
these two checkpoints during T-cell priming, an augmented in vitro

proliferation and cytokine production in NY-ESO-1 specific CD8" TlLs
were generated. Similar findings have been reported in melanoma
with TIM-3 and PD-1 in T-cells [133].

Early data from Baitch et al. [134] described extended co-
expression of 4 or more of the inhibitory immune checkpoints
BTLA, TIM-3, LAG-3, KRLG-1, 2B4, CD160, PD-1 and CTLA-4 in
tumour-antigen specific CD8* effector T-cells contrary to naive T-
cells in metastatic lesions of melanoma patients. They also found
many of the corresponding ligands to be expressed in tumour cells
and/or cells of the TME. Upregulation of alternative immune check-
points has also been described as an adaptive mechanism in
response to PD-1 inhibition [135]. Knudsen et al. [55] reported
PD-L1 and Galectin-3 co-expression in tumours cells and microglia/
macrophages in glioblastoma patients, though without prognostic
value.

These data suggest that intervention at multiple levels of the
immune response will be needed to effectively ameliorate immuno-
suppression and elicit T-cell immunity, which most likely cannot be
achieved through single-agent therapy [94,135-138].

THERAPEUTIC STRATEGIES WITH PD-1/PD-
L1 INHIBITORS

Preclinical studies, as previously discussed, and clinical data suggest
that inhibition of PD-1/PD-L1 concurrently or sequentially with other
immune checkpoints or other modalities may augment antitumour
activity [48-50].

In the CheckMate 067 melanoma trial, the combination of
nivolumab and ipilimumab, compared to monotherapy with either,
provided higher antitumour activity and longer OS [32]. Similar trials
of multiple immune checkpoint inhibition are currently being
conducted in gliomas, as illustrated in Table 2.

The possibility of combining PD-1/PD-L1 inhibitors with
other immunotherapies, such as tumour vaccines, adoptive T-cell
therapies and oncolytic virotherapies are also being investigated
[8-12].

Combination therapy could also implicate other modalities, as
preclinically documented by Zeng et al. [49]. In a phase | clinical trial
(NCT02313272) evaluating the combination of pembrolizumab,
hypofractionated stereotactic radiation and bevacizumab in recurrent
high-grade gliomas, ORR was 83% (95% Cl: 63-95) and 62.5% (95%
Cl: 24.5-91.5) and mOS 13.45 months (95% Cl: 9.46-18.46), and
9.3 months (95% Cl: 8.97-18.86) in bevacizumab-naive and
bevacizumab-resistant patients, respectively [113]. Radiation therapy
is known to counteract tumour-induced immunosuppression by
increasing expression of the major histocompatibility complex
class | and proinflammatory cytokines, and by enhanced tumour
antigen-presentation [62].

Combinatorial strategies with PD-1/PD-L1 inhibitors and molecu-
larly targeted therapies such as bevacizumab are also being investi-
gated. However, combination therapy with bevacizumab has not

yielded successful results, as reported by Nayak et al. [111].
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One of the most recent avenues being explored is the effect of
the microbiome on response to checkpoint inhibition [139].

Arguably, the search for immunologic antitumour potency should
be counterbalanced by vigilance for additive immune-related toxic-
ities, which could be a critical limiting factor of combination therapy
[4,10]. Exemplified by Larkin et al. [32], grade 3 and 4 treatment-
related adverse events (TRAEs) in melanoma patients increased from
16.3% and 27.3% with nivolumab and ipilimumab monotherapy,

respectively, to 55% with combination therapy.

PITFALLS AND CHALLENGES

PD-1/PD-L1 is recognised as a crucial targetable pathway in several
cancers [17-21]. Nevertheless, the significance in gliomas is uncertain.
A growing body of evidence documents upregulated PD-L1 expres-
sion in gliomas, albeit yielding highly variable expression, as well as
inconsistencies in prognostic value across different studies. This may
reflect variability in the immunohistochemical methodology, such as
differences in antibody clones with distinct target epitopes and affini-
ties, assays, platforms, staining protocols, evaluated staining patterns,
staining intensity, cut-off definitions, evaluated cell types and scoring
algorithms, as well as differences in study characteristics such as
retrospective study design, heterogeneous cohorts, antecedent
therapies, grading and primary versus recurrent disease [35]. Besides
spatial heterogeneity, temporal heterogeneity is another concern
[140]; PD-L1 expression at a given time point is a dynamic process
believed to evolve over time and be influenced by therapies. There-
fore, considerations of tissue source, preparation, and timing of
sample collection are also pertinent [24].

An important barrier is the singularity in which each therapeutic
PD-1/PD-L1 inhibitor has been co-developed with a specific PD-L1
immunohistochemistry assay using a specific PD-L1 antibody clone,
platform, staining protocol and scoring criteria [141,142]. Such one-
drug-one-assay paradigm entails the risk of divergent patient PD-L1
classification depending on the assay used [142]. Harmonisation and
interchangeability of the different assays are a prerequisite in order to
obtain comparable data and a common basis for therapeutic decision
making. In NSCLC, comparative studies of diagnostic PD-L1 assays
have demonstrated high concordance in membranous tumour cell
PD-L1 expression evaluation between the 22C3, 28-8 and SP263
assays, strongly indicative of interchangeability, while SP142 was as a
clear outlier detecting lower PD-L1 levels [142,143]. On the contrary,
immune cell PD-L1 assessment displayed poor interobserver concor-
dance. This could be due to a lack of pre-specified assessment criteria,
and because immune cell PD-L1 assessment is a more unfamiliar and
untrained skill among pathologists [142,143].

Comprehensive preclinical data support the feasibility and poten-
tial efficacy of PD-1/PD-L1 inhibition in gliomas, but enthusiasm has
been tempered by inconsistent preliminary clinical findings. The lack
of success may be ascribed to multiple factors. It could in part pertain
to deficient preclinical animal models unable to sufficiently replicate
the immunosuppressive TME [36,144]. Presumably, the most impor-

tant impediment is the complex immunosuppressive milieu. While

PD-1/PD-L1 inhibitors remove “the brakes” placed on the immune
system, the effects of PD-1/PD-L1 inhibitors are mediated by a
severely defective host cellular immunity, due to compromised T-cell
functions and a scarcity of effector cells in the TME, which instead is
dominated by immunosuppressive myeloid cells and regulatory T-cells
[114,137,138,144].

Gliomas comprise a group of tumours that exhibit enormous
inter- and intratumoural heterogeneity [5]. In future studies, consis-
tent stratification according to molecular subclasses and prognostic
factors (e.g., MGMT, IDH, KPS, steroid use, prior therapy) could in part
eliminate confounders and thereby disclose true clinical responders to
checkpoint immunotherapy and elucidate the prognostic value of
PD-L1 [5].

The selective permeability of the blood-brain-barrier and other
constraints of intracranial localisation are potential major hindrances
to the benefits of checkpoint inhibitors in glioma. The integrity of the
blood-brain-barrier is compromised and disrupted in cancer, thus
increasing its permeability and allowing for trafficking into the brain
[144,145]. This is supported by a phase Il trial in which
pembrolizumab displayed intracranial effects on untreated or progres-
sive cerebral metastases in metastatic melanoma and NSCLC patients
without significant toxicity [146]. Though encouraging and indicative
of intracranial accessibility, methods to bypass the blood-brain-barrier
are being investigated, such as intracranial catheter applied therapies
[10,144,145].

The widespread use of supportive steroids in glioma patients has
several undesirable immunological consequences that compound
pre-existing immunosuppression, potentially abrogating the effects of
checkpoint immunotherapy. Dexamethasone is known to deplete
T- and B-cells, decrease permeability of the blood-brain-barrier and
dampen inflammatory cytokines [145]. Steroid use has even been
associated with compromised survival and treatment inefficiency in
gliomas [147,148], as underscored by CheckMate 143 [109].

A further complicating aspect is the additional interactions within
the PD-1/PD-L1 axis. In addition to PD-1, PD-L1 also binds CD80
(B7-1) on activated T-cells [13,22]. PD-L2 is another PD-1 ligand and
inhibits T-cell activation by binding with higher affinity than PD-L1
[149]. These findings suggest different functional effects of PD-1 and
PD-L1 inhibitors, which underpin the need to understand the

functional significance of such interactions.

CONCLUSION

Checkpoint immunotherapy has ushered in a new era in precision
medicine, but preliminary clinical data in gliomas have been modest
and disappointing. Nonetheless, the astounding efficacy seen in other
cancers justifies continued research of PD-1/PD-L1 as a therapeutic
target and biomarker in gliomas, especially glioblastomas. In particular,
there is hope to be found in the efficacy demonstrated in certain
highly selected subgroups of patients. Given the wide-ranging
heterogeneity of gliomas and the multi-tiered immunosuppressive

mechanisms employed, the future success of PD-1/PD-L1 inhibitors
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in gliomas undoubtedly relies on rational combinatorial therapies. The
key to unleashing anti-tumour immunity lies within the micro-
environment and future studies are warranted to more comprehen-
sively evaluate expression of PD-L1 and other biomarkers in the TME.
Research indicates a lack of T-cell infiltration in the TME and an
enrichment of immunosuppressive microglia/macrophages in gliomas.
Thus, approaches aimed at increasing cytotoxic T-cell infiltration and
targeting TAMs and other myeloid-derived cells expressing potential
biomarkers such as CD204, which has been associated with poor
prognosis in glioblastoma, should be explored in combination with
PD-1/PD-L1 inhibitors as potential immunotherapeutic targets [78].

To identify potential responders to checkpoint immunotherapy, a
single parameter will most likely not suffice either. Instead, a multi-
modal approach with combined biomarkers, particularly combinations
reflecting both immune/TME phenotype and tumour genotype should
be explored. An IFN-y signature has been proposed as a new predic-
tive biomarker, which would reflect immune/TME phenotype [95]. In
addition to PD-L1, the genomic biomarkers TMB and MMR are some
of the most successful predictive biomarkers in cancer checkpoint
immunotherapy. Similar to PD-L1, TMB and MMR have not yet
provided convincing results in glioma, but they have primarily been
evaluated in single biomarker settings.

An impending transition and redefinition of the biomarker arena
is underway based upon technological advances, which are expected
to generate more elaborate, integrated and multi-dimensional immune
signatures and genetic profiles characterising the tumoural and micro-
environmental landscape of gliomas. The hope is that such merging of
various biomarker strategies will designate a new generation of
combined biomarker signatures with high clinical value in glioma
patients [11,150]. Further large-scale biomarker-driven clinical trials
are warranted to elucidate the biomarker potential of PD-L1 in

gliomas.
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