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Abstract 

Objective  To explore the effectiveness of renal denervation (RDN) on blood pressure with the appropriate dosage of phenol/ethanol 

solution in spontaneously hypertensive rats (SHRs). Methods  RDN was performed on the bilateral renal artery. Forty SHRs were divided 

into four groups according on the dosage of phenol (10% phenol in absolute ethanol): sham group, 0.5 mL phenol group, 1 mL phenol group 

and 1.5 mL phenol group (n = 10 in each group). Blood pressure was measured by tail-cuff plethysmography. Plasma creatinine was deter-

mined four weeks after the treatment. The kidneys and renal arteries were collected and processed for histological examination. Results  A 

sustained decrease in systolic blood pressure (SBP) was only observed after the application of 1 mL phenol for four weeks, while SBP was 

lowered during the first week after RDN and increased in the following three weeks in the 0.5 mL and 1.5 mL phenol groups compared with 

the sham group. Renal norepinephrine (NE) was significantly decreased four weeks after RDN in the 1 mL and 1.5 mL phenol group com-

pared with the sham group, but not in the 0.5 ml group. RDN with 1 mL phenol obviously reduced glomerular fibrosis. Histopathological 

analysis showed that tyrosine hydroxylase immunoreactivity was lower in the 1 mL and 1.5 mL phenol groups compared with the sham 

group. Moderate renal artery damage occurred in the 1.5 mL phenol group. Conclusion  Chemical denervation with 1 ml phenol (10% 

phenol in absolute ethanol) effectively and safely damaged peripheral renal sympathetic nerves and contributed to the sustained reduction of 

blood pressure in SHRs. 
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1  Introduction 

Hypertension is a highly prevalent chronic condition across 
the world and contributes to heart failure, stroke, chronic 
kidney disease and even death.[1,2] The total number of adults 
with hypertension in 2000 was estimated at 972 million, 
which is predicted to increase to 1.56 billion in 2025.[3] By 
using three or more antihypertensive agents, one of which is a 
diuretic, 8.9% of the population in the United States achieve 
a goal of blood pressure (BP) < 140/90 mmHg,[4] but these 
people may have drug resistant hypertension. 

Recently, renal sympathetic denervation (RDN) has be-
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come a promising strategy for the treatment of resistant 
hypertension.[5–9] The SYMPLICITY HTN-1 trial and the 
HTN-2 trial have found that percutaneous renal artery abla-
tion with catheter-based radiofrequency energy can effec-
tively reduce arterial blood pressure in humans.[5,6] RDN not 
only lowers BP, but also plays a pivotal role in disorders 
with sympathetic hyperactivity, including tachyarrhythmia, 
heart failure, insulin resistance and chronic kidney disea-
se.[10–13] Nonetheless, the negative result of the first prospec-
tive, randomized, SYMPLICITY HTN-3 challenged the 
feasibility of RDN.[14] There are several possible reasons for 
this negative result. On one hand, catheter-based RDN and 
chemical-based RDN are blind procedures because the ac-
curate interprocedural makers of success have not been 
identified yet. On the other hand, incomplete interruption of 
renal nerves with RDN may have led to the negative 
result.[15] RDN has not been abandoned yet.[16] Therefore, it 
is necessary to establish a stable RDN model to exploit the 
effect of RDN in the treatment of hypertension. 
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There are several RDN approaches, such as cryoabla-
tion,[17] intravascular or extracorporeal ultrasound[18,19] and 
local application of a chemical or neurotoxin.[20–26]  

In 1997, Muhlbauer, et al.[27] applied a 10% phenol/ 
ethanol solution for 2 min to make an RDN model. In 2004, 
Luippold, et al.[28] used the same method to establish the 
RDN rat model again. However, a commonality of these 
two studies and previous research was the lack of a set dose 
of phenol.[29,30] More importantly, the details of the experi-
mental procedure was unclear. Thus, it is necessary to ex-
plore the details of the RDN rat model and determine the 
best volume of phenol. 

The details of the method of chemical corrosion of renal 
sympathetic nerve with a mixture of phenol and ethanol are 
unclear, including the ablation criteria and ablation time, in 
several previous studies,[25,26,28,31–33] contributing to different 
results. Our study aimed to develop a model with spontane-
ously hypertensive rats (SHRs) that permitted the quantifi-
cation of RDN by delivering different dosages of phe-
nol-ethanol to local renal artery. 

2  Methods 

2.1  Ethics statement 

All procedures were performed following the relevant 
ethical standards of the National Institute of Health (NIH 
Publications No. 8023, revised 1978) and were approved by 
the committees on animal research of Huadong Hospital 
affiliated to Fudan University. 

2.2  Animals and protocol 

Forty male SHRs were used at the age of 12 weeks 
(240–260 g) from Vital River Laboratory Animal Technol-

ogy Company (Beijing, China). All animals were randomly 
divided into four groups: sham group, 0.5 mL phenol group 
(denervation with 0.5 mL 10% phenol in absolute ethanol), 
1 mL phenol group and 1.5 mL phenol group (n = 10 in 
each group). BP was measured while the rats were con-
scious by tail-cuff plethysmography (BP-2000 Blood Pres-
sure Analysis System II, America) at baseline and every 
week after surgery. Body weight was measured every week. 
Four weeks later, plasma was collected after anesthetization 
with sodium pentobarbital (100 mg/kg, i.p.). Then the ani-
mals were killed. After perfusion with 0.9% saline solution 
intracardially, the right renal artery and the kidney were 
harvested for histological analysis. 

2.3  Renal artery denervation 

Animals received general anesthesia with sodium pento-
barbital (100 mg/kg, i.p.). After the abdomen was opened 
with an incision in the dorsal midline, renal arteries and 
veins were identified after isolation of the surrounding con-
nective tissue and periadventitial fat. Phenol (10% phenol in 
ethanol) was applied to the surface of the renal artery (from 
renal hilus to the abdominal aorta) with a cotton swab and a 
small paint brush over 2 min. Then, vessels were washed 
with saline before closing the skin of the abdomen (Figure 1). 
In the sham group, saline was used to proceed to renal artery 
denervation instead of phenol. After surgery, rats were 
placed on warm pads until fully recovered.  

2.4  Evaluation renal norepinephrine (NE) 

Kidney samples were quantified using a commercial 
ELISA kit (Beijing FuRuiZe Biological and Technology 
Company, China). 

 

Figure 1.  Images of RDN surgery. (A): The right renal artery and kidney are exposed; (B): the right renal artery is isolated, and the 
periadventitial fat and connective tissues are removed; (C): phenol was applied to the surface of the renal artery with a small paint brush from 
the renal hilus to the abdominal aorta over 2 min. RDN: renal sympathetic denervation. 
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2.5  Histological examination and immunohistochemistry 

Renal arteries and kidneys were fixed with 4% parafor-
maldehyde, dehydrated, embedded in paraffin, sectioned at 
5 µm, and stained with hematoxylin-eosin (HE) and peri-
odic acid-Schiff (PAS). Renal nerves received HE staining 
and immunohistochemical staining for tyrosine hydroxylase 
(TH, Abcam, Cambridge, UK). 

Renal fibrosis was evaluated as described.[34] The per-
centage of the fibrous area was calculated by Image-Pro 
Plus 6.0. The intensity and distribution of TH staining was 
assessed by a semiquantitative scoring system: 0 = no reac-
tion, 1 = patch/very weak reaction, 2 = weak to moderate 
reaction, and 3 = strong reaction. The renovascular damage 
was also scored by an ordinal semiquantitative grading sys-
tem: 0 = no injury (no endothelial loss or medial change), 1 
= minimal injury (< 25% vessel circumference in endothe-
lial loss and < 25% of media thickness in depth in medial 
change), 2 = mild injury (25 to <50% vessel change), 3 = 
moderate injury (50 to < 75% vessel circumference in en-
dothelial loss and 50 to < 75% of media thickness in depth 
in medial change), and 4 = severe injury (≥ 75% vessel cir-
cumference in endothelial loss and ≥ 75% of media thick-
ness in depth in medial change or injured media thickness < 
50% of unaffected media).[35] 

2.6  Statistical analyses 

All data are presented as the means ± SE. Comparisons 
between groups were determined by one-way ANOVA with 
the Bonferroni posthoc test using SPSS 22.0. Differences were 
considered statistically significant at a value of P < 0.05. 

3  Result 

3.1  Survival characteristics of rat model  

One rat died five days after surgery in the 1.5 mL phenol 

group because of severe synechia of abdominal tissues and 
intestinal obstruction. 

3.2  BP and body weight 

The one-week follow-up showed systolic blood pressure 
(SBP) was significantly lower in the 0.5 mL phenol, 1 mL 
phenol and 1.5 mL phenol groups. In the following three 
weeks, SBP was comparable between the 0.5 mL phenol 
and sham group (P > 0.05), while the 1.5 mL phenol group 
had higher SBP than the sham group (P < 0.05 at 16 weeks). 
In contrast, SBP in the 1 mL phenol group was significantly 
reduced compared to the control over the whole four weeks 
after the surgery (P < 0.01 each week, Table 1). 

Compared with the sham group, RDN did not affect 
body weight in the 0.5 mL, 1 mL or 1.5 mL group through-
out the following four weeks (Table 2). 

3.3  Renal NE and plasma creatinine 

Renal NE in the 1 mL phenol and 1.5 mL phenol groups 
was markedly decreased four weeks after the surgery com-
pared to the sham group and 0.5 mL phenol group (P < 
0.01). There no significant differences in plasma creatinine 
between any groups (Table 3). 

3.4  Histological examination  

Obvious injury to nerves was caused by RDN in the 1 
mL phenol and 1.5 mL phenol groups, while the sham 
group and 0.5 mL phenol group showed almost intact renal 
nerves (Figure 2). The TH semiquantitative score was sig-
nificantly decreased in the 1 mL phenol and 1.5 mL phenol 
groups compared to the other two groups (P < 0.01, Table 3). 
Compared with the sham group, renal fibrosis was attenu-
ated by RDN in the 1 mL group, but there were no differ-
ences among the sham group, 0.5 mL group and 1.5 mL 
group (Figure 3). These results demonstrate that 0.5 mL  

Table 1.  Effect of RDN on systolic blood pressure. 

Group 13 weeks 14 weeks 15 weeks 16 weeks 17 weeks 

Sham, mmHg 176.3 ± 1.73 178.1 ± 1.65 185.0 ± 1.59 189.8 ± 1.31 194.2 ± 1.88 

0.5 mL phenol, mmHg 177.8 ± 1.70 169.5 ± 2.42# 180.5 ± 1.37 186.2 ± 1.31 192.3 ± 1.37 

1 mL phenol, mmHg 178.5 ± 1.75 167.1 ± 1.25* 171.0 ± 1.63* 165.4 ± 1.30* 163.1 ± 1.82* 

1.5 mL phenol, mmHg 175.9 ± 1.63 167.3 ± 1.81* 190.2 ± 1.63 195.4 ± 1.28# 200.5 ± 2.39 

Results are expressed as the mean ± SE. *P < 0.01 vs. sham group; #P < 0.05 vs. sham group. RDN: renal denervation. 

Table 2.  Effect of RDN on body weight. 

Group 13 weeks 14 weeks 15 weeks 16 weeks 17 weeks 

Sham, g 248.9 ± 2.07 251.5 ± 4.19 229.5 ± 4.68 255.7 ± 6.37 286.1 ± 5.99 

0.5 mL phenol, g 247.2 ± 2.99 247.5 ± 5.59 219.5 ± 5.89 236.4 ± 9.74 270.6 ± 7.75 

1 mL phenol, g 247.8 ± 3.22 250.2 ± 5.71 232.2 ± 5.55 249.9 ± 7.12 278.7 ± 6.19 

1.5 mL phenol, g 247.8 ± 1.24 250.4 ± 2.82 227.5 ± 2.95 239.7 ± 4.21 279.2 ± 3.38 

Results are expressed as the mean ± SE. RDN: renal denervation. 
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Table 3.  Effect of RDN on renal artery damage score, TH score, creatinine, renal norepinephrine and renal fibrosis. 

Group 
Renal artery  

damage score 

TH semiquantitative 

score 

Plasma creatinine, 

μmol/L 

Renal norepinephrine, 

ng/g 

Renal  

fibrosis (%) 

Sham 0.25 ± 0.33 2.58 ± 0.27 40.5 ± 1.02 120.3 ± 6.32 11.8 ± 0.96 

0.5 mL phenol 1.01 ± 0.31 2.45 ± 0.24 39.7 ± 1.39 93.1 ± 5.58 10.3 ± 0.92 

1 mL phenol 1.02 ± 0.36 0.50 ± 0.27* 39.5 ± 2.21 24.1 ± 7.31* 7.4 ± 3.56# 

1.5 mL phenol 3.01 ± 0.42* 0.61 ± 0.23* 40.2 ± 0.99 22.5 ± 8.81* 10.1 ± 3.54 

Results are expressed as the mean ± SE. *P < 0.01 vs. sham group; #P < 0.05 vs. sham group. RDN: renal denervation. 

 

Figure 2.  Representative images of renal nerves with HE and TH staining four weeks after RDN or sham operation. Fragmented 
and unclear nuclei (arrow), × 400. Scale bar = 50 µm. RDN: renal denervation. 

 

Figure 3.  Representative images of sections of kidney in PAS staining (× 400). Scale bar = 50 µm. PAS: periodic acid-Schiff. 
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Figure 4. Representative images of renal artery in HE staining (× 100). Scale bar = 200 µm. A thickened intima-media layer was ob-
served in the 1.5 mL phenol group (arrow). 

phenol was not enough to destroy the sympathetic nerve and 
that chemical ablation had little influence on renal function. 

Significant vascular intimal hyperplasia was observed in 
the renal artery in the 1.5 mL phenol group. In contrast, the 
sham group, 0.5 mL phenol group and 1 mL phenol group 
had a normal renal artery (Figure 4). Renal artery damage 
score was obviously increased in the 1.5 mL phenol group 
compared to the other three groups (P < 0.01, Table 1), 
which means it might be excessive to ablate the renal nerve 
chemically with 1.5 mL phenol. 

4  Discussion 

The major findings of our study are: (1) the RDN SHR 
model was successfully established with 1 ml phenol/etha-
nol solution; and (2) we found a precise dose of phenol that 
could attenuate renal fibrosis and effectively and safely 
lower SBP, while excess phenol could cause renal artery 
damage and intestinal obstruction.  

As a method for chemical corrosion of the renal sympa-
thetic nerve with a mixture of phenol and ethanol, the details 
of ablation were unclear, including the ablation criteria and 
ablation time in a large number of previous studies,[25,26,28,31–33] 
contributing to different results. In pilot experiments, we 
observed a phenomenon of severe intestinal obstruction 
when applying a 10% phenol/ethanol solution for 2–5 min 
and a 20% phenol/ethanol solution for 2 min. Therefore, 
consistent with previous research,[27–29] we adopted a 10% 
phenol/ethanol solution for 2 min in our experiment. 

In this study, we developed the RDN rat model with 1 
mL phenol/ethanol solution and validated the RDN model 
in several ways. First, as one of the major models of hyper-
tension, SHRs normally have high blood pressure during the 
first 10 weeks after birth. The development of hypertension 
in SHRs is similar to essential hypertension in humans.[36] In 

previous research, renal denervation has been effective in 
the treatment of refractory and drug-resistant hypertension 
in human.[6,37] It can lead to a decrease in blood pressure in 
SHRs.[38–41] In line with these studies, we found reduced in 
blood pressure in all treatment group within one week after 
the surgery. However, SBP kept decreasing only in the 1 
mL phenol group and not in the 0.5 mL and 1.5 mL phenol 
groups in the following three weeks.  

Second, as an accurate index of renal sympathetic nerve 
activity, increased renal NE spillover occurs in hypertensive 
subjects.[42] Biochemical and pharmacological studies have 
shown that the neurotransmitter released by the renal sym-
pathetic nerve is NE. Thus, there is a reduction of over 90% 
in renal tissue NE content after surgical section or destruc-
tion of the renal sympathetic nerve.[38,41,43] In this study, 
renal NE was significantly decreased after application of 1 
ml phenol/ethanol to the isolated renal artery than sham 
group within four weeks, which was similar to the findings 
of Trostel and Osborn[21] and Katayama, et al.[38] and was 
consistent with the change in SBP.  

Third, as the rate-limiting enzyme, tyrosine hydroxylase 
is involved in catecholamine synthesis within the postgan-
glionic nerve terminals. It has been used as a marker of 
sympathetic innervation.[44,45] In 2010, Burgi, et al.[46] found 
that tyrosine hydroxylase immunoreactivity could be an 
indicator of sympathetic activity. Sakakura, et al.[35] adopted 
immunohistochemical staining of tyrosine hydroxylase to 
assess the ablation of the periarterial sympathetic nerve, 
because tyrosine hydroxylase converts tyrosine to L-DOPA. 
In this study, the result showed weaker reaction of TH 
staining in the renal nerve in the 1 mL and 1.5 mL phenol 
groups than the sham group and 0.5 mL phenol group. 
These results indicated that 1 mL and 1.5 mL phenol, but 
not 0.5 mL, can effectively destroy the renal nerve and de-
crease sympathetic activity. 
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There was a slight reduction of renal NE in the 0.5 mL 
phenol group compared to the control group. The response 
to TH staining of renal nerves in 0.5 mL phenol was the 
same as the sham group. Therefore, 0.5 mL phenol was not 
enough to destroy the renal nerve. In contrast, there was a 
marked reduction of renal NE and a weaker reaction to TH 
staining in the 1.5 mL phenol group than the sham group, 
which means 1.5 mL phenol indeed does work. There was 
obvious injury of the renal artery on HE staining in the 1.5 
mL phenol group, which may have been related to the in-
crease in SBP over the following three weeks. Additionally, 
no obvious glomerulosclerosis was found in any group. 
More importantly, compared with the control group, appli-
cation of 1 mL phenol/ethanol relieved glomerulosclerosis. 
Although phenol is a toxic compound, it has little influence 
on renal function. 

Renal nerve regeneration can occur after RDN. Sakakura, 
et al.[47] found that focal nerve regeneration at the sites of 
radiofrequency ablation occurred approximately 60-180 
days after the surgery in a swine model. Moreover, evidence 
from Rousselle, et al.[48] demonstrated that poorly organized 
neuromatous regeneration occurred as early as seven days 
after RDN with the same model. These results were differ-
ent from ours, where no renal nerve regeneration occurred 
four weeks after the RDN. This might be associated with the 
method of RDN. Generally, RDN is done by radiofrequency 
ablation to large arteries in swine, sheep and dogs,[17,23,49] 
while it done chemically to small renal arteries in rats. RDN 
was performed on the intima of the renal artery in the for-
mer, while it was in the adventitia in the latter. Bai, et al.[50] 
found that the effect of RDN was more effective in adventi-
tia than intima. Moreover, more phenol does not necessarily 
lead to better results. Similarly, it is crucial to choose the 
appropriate radiofrequency ablation energy or endovascular 
ultrasound nerve ablation energy to confirm the effect of 
RDN in clinical trials.  

4.1  Limitation 

The postoperative follow-up time was only four weeks, 
and the sample sizes were relatively small. The effect of 
long-term RDN on BP and the potential mechanism will be 
investigated in future studies.  

4.2  Conclusion 

RDN with 1 mL phenol/ethanol could effectively and 
safely lower BP. The efficacy of nerve ablation was deter-
mined by measuring renal NE depletion and the reduction in 
blood pressure, especially in histological examination of the 
renal nerve.  
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