
����������
�������

Citation: De, P.; Aske, J.; Sulaiman,

R.; Dey, N. Bête Noire of

Chemotherapy and Targeted

Therapy: CAF-Mediated Resistance.

Cancers 2022, 14, 1519. https://

doi.org/10.3390/cancers14061519

Academic Editor: Catherine

Tomasetto

Received: 11 February 2022

Accepted: 14 March 2022

Published: 16 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Bête Noire of Chemotherapy and Targeted Therapy:
CAF-Mediated Resistance
Pradip De 1, Jennifer Aske 1 , Raed Sulaiman 2 and Nandini Dey 1,*

1 Translational Oncology Laboratory, Avera Cancer Institute, Sioux Falls, SD 57105, USA;
pradip.de@avera.org (P.D.); jennifer.aske@avera.org (J.A.)

2 Department of Pathology, Avera McKennan Hospital, Sioux Falls, SD 57105, USA; raed.sulaiman@plpath.org
* Correspondence: nandini.dey@avera.org

Simple Summary: Tumor cells struggle to survive following treatment. The struggle ends in either
of two ways. The drug combination used for the treatment blocks the proliferation of tumor cells
and initiates apoptosis of cells, which is a win for the patient, or tumor cells resist the effect of
the drug combination used for the treatment and continue to evade the effect of anti-tumor drugs,
which is a bête noire of therapy. Cancer-associated fibroblasts are the most abundant non-transformed
element of the microenvironment in solid tumors. Tumor cells play a direct role in establishing the
cancer-associated fibroblasts’ population in its microenvironment. Since cancer-associated fibroblasts
are activated by tumor cells, cancer-associated fibroblasts show unconditional servitude to tumor cells
in their effort to resist treatment. Thus, cancer-associated fibroblasts, as the critical or indispensable
component of resistance to the treatment, are one of the most logical targets within tumors that
eventually progress despite therapy. We evaluate the participatory role of cancer-associated fibroblasts
in the development of drug resistance in solid tumors. In the future, we will establish the specific
mode of action of cancer-associated fibroblasts in solid tumors, paving the way for cancer-associated-
fibroblast-inclusive personalized therapy.

Abstract: In tumor cells’ struggle for survival following therapy, they resist treatment. Resistance
to therapy is the outcome of well-planned, highly efficient adaptive strategies initiated and utilized
by these transformed tumor cells. Cancer cells undergo several reprogramming events towards
adapting this opportunistic behavior, leading them to gain specific survival advantages. The strategy
involves changes within the transformed tumors cells as well as in their neighboring non-transformed
extra-tumoral support system, the tumor microenvironment (TME). Cancer-Associated Fibroblasts
(CAFs) are one of the components of the TME that is used by tumor cells to achieve resistance to
therapy. CAFs are diverse in origin and are the most abundant non-transformed element of the
microenvironment in solid tumors. Cells of an established tumor initially play a direct role in the
establishment of the CAF population for its own microenvironment. Like their origin, CAFs are also
diverse in their functions in catering to the pro-tumor microenvironment. Once instituted, CAFs
interact in unison with both tumor cells and all other components of the TME towards the progression
of the disease and the worst outcome. One of the many functions of CAFs in influencing the outcome
of the disease is their participation in the development of resistance to treatment. CAFs resist therapy
in solid tumors. A tumor–CAF relationship is initiated by tumor cells to exploit host stroma in favor
of tumor progression. CAFs in concert with tumor cells and other components of the TME are abettors
of resistance to treatment. Thus, this liaison between CAFs and tumor cells is a bête noire of therapy.
Here, we portray a comprehensive picture of the modes and functions of CAFs in conjunction with
their role in orchestrating the development of resistance to different chemotherapies and targeted
therapies in solid tumors. We investigate the various functions of CAFs in various solid tumors in
light of their dialogue with tumor cells and the two components of the TME, the immune component,
and the vascular component. Acknowledgment of the irrefutable role of CAFs in the development
of treatment resistance will impact our future strategies and ability to design improved therapies
inclusive of CAFs. Finally, we discuss the future implications of this understanding from a therapeutic
standpoint and in light of currently ongoing and completed CAF-based NIH clinical trials.
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1. Introduction

Cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) are
non-transformed, tumor-cell-activated heterogeneous populations of cells having multiple
origins and functions [1,2]. Detailed descriptions of the origin, functions, interactions with
tumor cells, and heterogeneity of CAFs were previously provided by us elsewhere [3,4].
CAFs are activated by tumor cells in their favor. Once activated in an established tumor,
CAFs act as crucial supporters of tumor growth, progression, and response to treatment.

The functions of CAFs in an established tumor include the following: (1) ECM (extra-
cellular matrix) remodeling via collagenolysis to promote invasion and EMT (endothelial–
mesenchymal transition); (2) increasing tissue stiffness to initiate angiogenic resistance
and immune suppression; (3) induction of tumor angiogenesis; (4) secretomic induction
of EMT by TGFbeta; (5) increasing secretomic factors of tumor-promoting or immune-
suppressing ligands such as hepatocyte growth factor; fibroblast growth factors 1 and 2;
stromal cell-derived factor 1 (SDF1/CXCL12); chemokine (C-C motif) ligands (CCL) 2, 5, 7,
and 16; interleukin 6/8; and platelet derived growth factor; (6) metabolic reversal of reverse
Warburg effect (non-glycolysis in tumor cells, glycolysis in stroma cells) and ‘lactate shuttle’
effect; (7) immune evasion via activation of M2 macrophages (CD163 positive); (8) inhibition
of apoptosis in tumor cells; (9) activation of many of pro-proliferative tumor cell signaling;
(10) immune reprogramming and antigen presentation; (11) adaptation to oxidative stress
and hypoxic response; (12) promotion of stemness-promoting signals; (13) promotion of
metastasis-associated phenotypes; (14) attenuation of drug response [1,5–18].

The range of functions of CAFs is comprehensive, and the actions of CAFs are con-
textual. The interactions of CAFs with tumor cells and TME components change with the
evolution of the tumor, its metastatic progression, and its response to therapy. In summary,
the functions of CAFs are structured to assist and promote tumor cells via direct and indirect
interactions. Thus, CAFs form a centralized communication network within the TME that
favors tumor cell growth, metastasis, and resistance to drug treatment [19]. The versatility
of the functions of CAFs’ make them abettors of drug resistance and identifies them as
prospective anti-tumor therapy targets [20,21]. Here, we investigate the role of CAFs in
the development of resistance to chemotherapy and targeted therapy. We seek to evaluate
whether co-targeting CAFs will have a participatory benefit towards managing the burden
of resistance. We discuss the opportunity that CAFs present to improve and evolve the
management of the disease from a tumor-centric approach to a tumor–CAF-centric approach.

2. CAF Heterogeneity and Resistance to Chemotherapy in Solid Tumors
2.1. CAF Heterogeneity

CAFs are heterogeneous in terms of their origin in different organ-type cancers, as
well as in the progression of the disease. The heterogeneous subpopulations of CAFs,
such as myoblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs), have been exten-
sively studied in fibroinflammatory PDAC disease characterized by dense and highly
proliferating desmoplastic stroma. In fact, Li et al. identified genes associated with the
differentiation of myCAFs and iCAFs [22–24]. Adipose-derived MSCs (AD-MSCs) have
been shown to possess a high multilineage potential and self-renewal capacity and were
reported as the CAF sources in PDAC by Miyazaki et al. [24]. Their study identified that
AD-MSCs could differentiate into distinct CAF subtypes, myCAFs and iCAFs, depending
on the different co-culture conditions in vitro. The diverse functions of iCAFs and myCAFs
have also been reported in cholangiocarcinoma; breast cancers; prostate, head, and neck
squamous cell carcinoma; and bladder and colon cancers. The diversity of CAF subpopula-
tions was also recently reported to promote the growth of cholangiocarcinoma, wherein
hepatic stellate cells (HSC) are the primary cause of CAF differentiation into myCAFs
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and iCAFs [25]. The hyaluronan synthase 2 myCAFs, but not type I collagen-expressing
myCAFs, promoted tumor progression, while HGF-expressing iCAFs enhanced tumor
growth via tumor-expressed MET, thereby directly linking CAFs to tumor cells. Another
subset of CAFs, FAP+CAFs, were identified by Kieffer et al. in breast cancers that me-
diated immunosuppression and immunotherapy resistance via a positive feedback loop
between specific CAF-S1 clusters and Tregs [26]. In prostate cancer, a differential mode
of activation of iCAFs and myCAFs has been reported [27]. IL-1a/ELF3/YAP pathways
are involved in iCAF differentiation, while TGF-beta1 induces myCAFs. One of the ways
CAFs classically interact with the tumor cell EMT function was reported by Goulet et al. in
bladder cancer, where IL-6 cytokine was found to be highly expressed in iCAFs, and its
receptor IL-6R was found on RT4 bladder cancer cells [28]. Perhaps the most intriguing
functional heterogeneity of CAFs was reported by Pan et al. in PDAC-CAF-exhibited
organ-specific metastatic potential leading to different levels of heterogeneity of CAFs in
different metastatic niches [29]. Several cell signaling pathways have been reported to be
involved in the functioning of iCAFs and myCAFs, including the Hedgehog pathway [30];
Wnt pathway [31]; integrin a11B1 signaling [32]; cMET-HGF pathway [25]; IL-6 signal-
ing [28]; EMT signaling via transcription factors SNAIL1, TWIST1, and ZEB1 [28]; and
IL1B-mediated crosstalk [33]. Recently, Steele et al. reported that the Hedgehog pathway
acts in a paracrine manner in PDAC, with ligands secreted by tumor cells signaling to
stromal CAFs. The Hedgehog pathway activation is higher in PDPN+ alphaSMA+ myCAFs
compared with iCAFs, and its inhibition impairs tumor growth by altering the fibroblast
compartment in PDAC. Hedgehog pathway inhibition resulted in a reduction in myCAF
numbers and a significant expansion of iCAFs, leading to an increase in the iCAF/myCAF
ratio. As iCAFs are a source of inflammatory signals, the authors observed an increase in
iCAFs upon Hedgehog inhibition, which correlated with changes in immune infiltration
(significantly decreased CD8+ T cells and increased CD4+ T cells and CD25+CD4+ T cells;
abundant FOXP3+ regulatory T cells) that are consistent with a more immunosuppres-
sive pancreatic cancer microenvironment. The paracrine activation differentially elevated
myCAFs compared with iCAFs, leading to favorable alterations of cytotoxic T cells and
Tregs, causing increased immunosuppression [30]. Wnt signaling in CAFs represents a
non-cell-autonomous mechanism for colon cancer progression [31]. Mose et al. reported
Sfrp1 epithelial–mesenchymal transition phenotype induction in tumor cells without af-
fecting tumor-intrinsic Wnt signaling, suggesting involvement of non-immune stromal
cells. Low levels of Wnt signals induced the iCAF subtype, which in co-culture with
organoids induced EMT, whereas high levels induced contractile myCAFs to attenuate the
EMT phenotype.

The tumors with (1) an accumulation of stromal CAFs, (2) the presence of fibrotic
stroma, (3) a high expression level of stroma signature genes, or (4) a high tumor/stroma
ratio in the primary tumor are associated with poor prognosis in various cancers, in-
cluding colon, gastric, esophagus, breast, NSCLC (non-small cell lung cancer), and liver
cancers [34–40]. It is understood that chemotherapy’s limited effect (benefit) and the pro-
gression or recurrence of disease through therapy in many solid tumors are attributed to
the development of resistance within tumor cells in support of the stroma. As a dominant
component of tumor stroma, CAFs interact with both a tumor cell and the TME. The
versatility of CAF functions and their several modes of interaction with tumor cells and all
components of stroma (ECM and cells of the TME) indicate that a metastasis or progression
of disease following treatment is aided and abetted by CAFs. Once a therapy-resistive
circuitry is established between tumor cells and the CAFs of the stroma, tumor-centric
therapy alone essentially becomes insufficient. Figure 1 presents the distribution pattern
of the types of resistance to chemotherapy based on specific mediators of CAF functions
in solid tumors. The four types of mediators of action employed by CAFs to orchestrate
the development of resistance to chemotherapy are presented in the cartoon. The most
common mode of interaction is a paracrine, wherein CAFs signal to either tumor cells or
other components of the TME via characteristic secretomes. In addition to the involve-
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ment of characteristic secretomes, exosomal cargos delivering different miRNAs that target
various cell signaling proteins are common mediators of CAFs. The paracrine mode of
action of CAFs is the predominant form of action, represented by six types of organ tumors
(organ tumors are indicated by their respective ribbon colors, as presented in the figure
legends). CAF crosstalk with tumor cells, and the TME occurs via exosomal cargo, impart-
ing resistance to four organ cancers. The extracellular vesicle, secretome, and autocrine or
paracrine modes are much less involved in the modes of action (Figure 1). The sizes of the
boxes indicate the number of studies in each box. Among resistance to different types of
chemotherapies, cisplatin resistance has been found to be very common, which is involved
in both paracrine and exosomal cargo modes of action (the shapes in the inset indicate the
types of resistances in different tumors).
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Figure 1. Distribution pattern of types of resistance to chemotherapy based on specific mediators of
CAF functions in solid tumors: The four mediators employed by CAFs to orchestrate the development
of resistance to chemotherapy are presented in the cartoon. The most common mode of interaction is
paracrine, wherein CAFs signal to either tumor cells or other components of the TME via characteristic
secretome. In addition to the involvement of the characteristic secretome, exosomal cargos delivering
different miRNAs that target various cell signaling proteins are common mediators of CAF actions.
Among different organ cancers, gastric cancers have been reported to be the most common tumors in
which CAFs are involved in the development of resistance to chemotherapy. The sizes of the boxes
indicate the number of studies in each box. The shapes indicate the types of resistance in different
tumors (inset). L-OHP is a new derivative of oxaliplatin; 5-FU is fluorouracil. Organ tumors are
indicated by their respective ribbon colors. Head and neck cancer: white and burgundy; stomach
cancer: periwinkle blue; colon cancer: dark blue; ovarian cancer: teal; lung cancer: white or pearl;
breast cancer: pink; pancreatic cancer: purple; bladder cancer: blue, yellow, and purple.

Among the different types of solid tumors, gastric cancers have been reported to be
the most common tumors exhibiting CAF-mediated resistance to chemotherapy, which
involve paracrine, exosomal cargo, extracellular vesicle, and secretomic modes of action.
Secretion of IL-11 from CAFs activated the IL-11/IL-11R/gp130/JAK/STAT3/Bcl anti-
apoptosis signaling pathway in gastric cancer cells. Thus, CAF-derived IL-11 secretion
caused resistance to chemotherapy regimens in gastric cancers [41]. In another study, CAF-
induced activation of the JAK-STAT signaling has been proposed to confer chemoresistance
in gastric cancer cells, while interleukin-6 (IL-6) was identified as a CAF-specific secretory
protein that protects gastric cancer cells via paracrine signaling. Interestingly, clinical



Cancers 2022, 14, 1519 5 of 31

data have shown that IL-6 was differentially expressed in the stromal portion of cancer
tissues, while IL-6 upregulation was positively correlated with poor responsiveness to
chemotherapy [42]. In line with the above facts, several CAF-targeting agents have been
tested in experimental models, as reviewed elsewhere [43]. Resistance to conventional
chemotherapeutics in gastric cancers has been reported to be mediated by CAF-derived
extracellular vesicles [44]. Annexin A6 initiated network formation and drug resistance
within the ECM via activation of beta1 integrin-FAK-YAP signaling. Annexin A6 within
CAF extracellular vesicles has been shown to stimulate FAK-YAP signaling by stabilizing
beta1 integrin at the cell surface of gastric cancer cells, which subsequently induces drug
resistance. In addition to extracellular vesicles, CAFs also communicate via exosomal
cargos, which carry miRNAs and mediate resistance to specific chemotherapeutic agents,
as presented in the following section.

2.2. CAFs and Specific Resistance to Cisplatin

Reports of CAF-mediated development of cisplatin resistance are more prevalent than
any other chemotherapy agent. In certain solid tumors, the mechanism involved intracellu-
lar pathway signaling such as JNK or NF-κB, adhesion molecules such as annexin A3, or
specific proteins such as plasminogen activator inhibitor-1. In lung cancers, CAFs have been
reported to express a higher level of annexin A3 (ANXA3) than normal fibroblasts. The
crosstalk was demonstrated using CAF-CM (CAF-conditioned media) incubation, which
increased the ANXA3 level in lung cancer cells, which subsequently enhanced cisplatin
resistance by inhibiting cisplatin-induced apoptosis involving ANXA3/JNK signaling [45].
In lung adenocarcinoma, cisplatin resistance was associated with the expression of SMAal-
pha expression [46]. In their study, Masuda et al. demonstrated that the inhibition of
plasminogen activator inhibitor-1 increased the chemotherapeutic effect in lung cancer
through suppressing the myofibroblast characteristics of CAFs. CAF-derived IL-8 pro-
moted chemoresistance to cisplatin in gastric cancer via NF-κB activation and ABCB1
upregulation [47]. In bladder cancers, stromal CAFs enhanced cisplatin resistance via
stimulating IGF-1/ERbeta/Bcl-2 signaling, wherein CAFs regulated ERbeta expression
through IGF-1/AKT/c-Jun signaling following c-Jun phosphorylation and promoted ESR2
gene transcription [48]. In other cancers, exosomal cargo carried miRNA to mediate the
CAFs’ effect. In ovarian cancer, CAF-mediated cisplatin resistance was reported to involve
CAF-derived exosomes, which overexpressed miR-98-5p [49]. In immunocompromised
mice, miR-98-5p targeted CDKN1A to inhibit CDKN1A expression and promoted cisplatin
resistance by virtue of cell cycle progression. In head and neck cancer, cisplatin resistance
is perpetrated by CAF-derived exosomal miR-196a targeting CDKN1B and ING6 [50].
Whether the nature of CAF mediators of cisplatin resistance is organ-specific or not needs
to be concluded with more data in this field. From the current literature, it is evident
that exosomal miRNA predominantly mediates platinum-based chemotherapy resistance
(cisplatin and oxaliplatin), with a few exceptions such as tamoxifen resistance in breast [51]
and radioresistance in colorectal cancers [52,53]. In the context of resistance to radiotherapy,
CAFs are highly radio-resistant, even at high doses of radiation. CAFs resist apoptosis
signals following radiation and become senescent, producing a distinct combination of
immunoregulatory molecules. Hence, acquired radio resistance has been associated with
CAF function [54,55]. A recent minireview summarized findings on the interactions be-
tween CAF, ionizing radiation, and immune cells in the tumor microenvironment [56].
Targeting CAFs, regulatory T cells, and tumor-associated macrophages in combination
radio–immunotherapies has been reported to improve cancer treatment [57]. Future studies
will also need to clarify the functional segregation of the two modes of events and whether
it exists in the development of CAF-mediated resistance in solid tumors.

2.3. CAFs and Specific Resistance to Paclitaxel

CAF-mediated resistance to paclitaxel was reported in ovarian cancers. In ovarian
cancers, the lipoma-preferred partner gene has been reported to mediate CAF–endothelial
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cell crosstalk in signaling chemoresistance [58]. CAFs upregulated the lipoma-preferred
partner gene in microvascular endothelial cells via calcium-dependent signaling, and
lipoma-preferred partner expression levels in intratumoral microvascular endothelial cells
correlated with survival and chemoresistance in patients. Lipoma-preferred partners up-
regulated focal adhesion and stress fiber formation to promote endothelial cell motility and
permeability. Experimental suppression of lipoma-preferred partners improved paclitaxel
delivery to cancer cells by decreasing intratumoral microvessel leakiness.

2.4. CAFs and Specific Resistance to a Combination of Cisplatin and Paclitaxel

Specific resistance to a combination of cisplatin and paclitaxel aided by CAFs is
encountered in gastric cancers. Exosomal miR-522 suppressed ferroptosis and promoted
acquired chemoresistance (decreased chemosensitivity) by targeting ALOX15 and blocking
lipid–ROS accumulation involving the intercellular pathway. Both cisplatin and paclitaxel
treatment promoted miR-522 secretion from CAFs by activating the USP7/hnRNPA1 axis,
leading to ALOX15 suppression and decreased lipid–ROS accumulation in gastric cancer
cells [59].

2.5. CAFs and Specific Resistance to Oxaliplatin

CAFs orchestrate oxaliplatin resistance in colorectal cancers [60]. Colorectal cancer-
associated lncRNA is transferred from CAFs to the cancer cells via exosomes, where it
suppresses colorectal cancer (CRC) cell apoptosis, confers chemoresistance, and activates
the Wnt/beta-catenin pathway. Long-non-coding RNA interacts directly with mRNA
stabilizing protein (human antigen R) to increase beta-catenin mRNA and protein levels.
Specific resistance to 5-FU/L-OHP (oxaliplatin) has been reported in colorectal cancers. In
colorectal cancers, chemotherapy resistance was attributed to CAF-secreted exosomes [61].
A direct transfer of exosomes to colorectal tumor cells led to a significant increase in miR-
92a-3p levels in cancer cells. An increased expression of miR-92a-3p activated the Wnt/beta-
catenin pathway and inhibited mitochondrial apoptosis by directly inhibiting FBXW7 and
MOAP1, contributing to stemness, EMT, metastasis, and 5-FU/L-OHP resistance.

2.6. CAFs and Specific Resistance to Gemcitabine

CAF-mediated resistance to gemcitabine involves CAF-derived SDF-1. SDF-1 stim-
ulated malignant progression and gemcitabine resistance in pancreatic cancer due to
paracrine induction of SATB-1 within tumor cells. SDF-1-mediated upregulation of SATB-1
expression in tumor cells contributed to the maintenance of CAF properties, forming a
reciprocal feedback loop involving the SDF-1/SATB-1 pathway [62]. It is apparent from
the results of the above studies that mediators of CAFs in the development of resistance to
different chemotherapeutics are specific not only to organ cancers but also the particular
drug. In an ideal world, we should be searching for an organ-specific blood-based marker
that can correlate or indicate CAF-mediated development of resistance to chemotherapy.

3. CAFs and Resistance to Targeted Therapy in Solid Tumors

CAF-mediated resistance to targeted therapy in solid tumors can be categorized into (1)
specific resistance to hormone-receptor-targeted anti-cancer drugs and (2) specific resistance
to non-hormonal pathway-targeted anti-cancer drugs (Figure 2). One characteristic feature
of this type of resistance is the lack of mediation via miRNA compared to resistance to
chemotherapy. The only exception to this characteristic is a novel subset of CD63+ CAFs
that mediated resistance to tamoxifen in breast cancers via exosomal miR-22 [51]. CD63+
CAFs have been reported to secrete miR-22-rich exosomes, which act through its targets,
ERalpha and PTEN, to confer tamoxifen resistance in breast cancer cells. The details of the
development of resistance to hormone receptor-targeted anti-cancer drugs mediated by
CAFs in breast cancers have been reviewed elsewhere [63]. CAFs have been involved in
mediating anti-androgen resistance in prostate cancers in a paracrine manner. Zhang et al.
identified neuregulin 1 (NRG1) in the CAF supernatant [64]. CAF-derived NRG1 promoted
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resistance in tumor cells through the activation of HER3 involving the NRG1/HER3 axis,
proving a paracrine mechanism of anti-androgen resistance in prostate cancer. In line with
the above fact, an inadequate response to second-generation anti-androgen therapy was
recorded in castration-resistant patients with NRG1 activity.
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Figure 2. Distribution pattern of types of resistance to targeted therapy based on specific mediators of
CAF functions in solid tumors: The four types of mediators of action employed by CAFs to orchestrate
the development of resistance to targeted therapy are presented in the cartoon. The most common
mode of interaction is paracrine, wherein CAFs signal to either tumor cells or other components of
the TME via characteristic secretome. In addition to the involvement of characteristic secretome,
exosomal cargos delivering different miRNAs that target various cell signaling proteins are common
mediators of CAF action. The sizes of the boxes indicate the number of studies in each box. The
shapes indicate the types of resistance in different tumors (inset). Organ tumors are indicated by their
respective ribbon colors. Lung cancer: white or pearl; skin cancer: black. liver cancer: emerald green;
breast cancer: pink; prostate cancer: light blue.

The role of the activation of EGFR, Wnt/beta-catenin, Hippo, TGF-beta, and JAK/STAT
cascades in CAFs in relation to the chemoresistance and invasive or metastatic behavior
of cancer cells [65] has strengthened the concept that CAFs should be included as a target
for therapy in solid tumors. CAF-mediated resistance to non-hormonal pathway-targeted
anti-cancer drugs has been observed in lung, breast, melanoma, and hepatocellular cancers.
CAF-mediated non-cell-autonomous adaptive resistance to MET- and EGFR-targeted thera-
pies in lung cancers via a metabolic shift involving paracrine crosstalk between tumor cells
under drug exposure and their surrounding CAFs has been reported [66]. Apicella et al.
demonstrated that with prolonged exposure to tyrosine kinase inhibitors (TKIs), EGFR- or
MET-addicted cancer cells undergo a metabolic shift upregulating glycolysis and lactate
production. High secreted levels of lactate stimulate CAFs to produce hepatocyte growth
factor (HGF) in a nuclear factor kappa B (NFkB)-dependent manner. This HGF, in turn,
activates MET-dependent signaling within cancer cells, counteracting the effects of tyrosine
kinase inhibitors (TKIs). In tumor cells of lung adenocarcinoma with EGFR mutations, pri-
mary EGFR-TKI resistance was associated with high hepatocyte growth factor in CAFs [67].
Conditioned media from CAFs increased the resistance of PC-9 cells to EGFR-TKI, indi-
cating that with the secretion of higher amounts of CAF-derived humoral factors, HGF is
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responsible for EGFR-TKI resistance [67]. Understandably, this kind of fail-safe metabolic
reprogramming not only allows cellular resistance to the drug but also re-establishes a
tumor–TME circuitry, which can also merge with the local immune signaling [68–71]. As
with prostate cancers [64] and melanomas [72], CAFs have been involved in developing
resistance to targeted therapies in breast cancers. CAFs participate in the HER2-targeted
therapy resistance in breast cancers via the TAF/FGF5/FGFR2/c-Src/HER2 axis [73]. CAF-
derived NRG1 (an HER3 ligand) causes resistance to trastuzumab [74,75], TKIs [76], and
T-DM1 [77] in HER2-positive breast cancers. In the Neosphere trial, HER2-positive breast
tumors with high NRG1 expression appeared to resist trastuzumab–docetaxel but not
pertuzumab–trastuzumab–docetaxel [78]. Guardia et al. identified CAFs as the primary
source of NRG1 in HER2-positive breast cancers. The study showed their role in mediating
resistance to trastuzumab, which can be overcome by dual anti-HER2 blockade following
pertuzumab–trastuzumab [78]. Recently, a study examined the value of ‘pathological reac-
tive stroma’ (defined as stromal-predominant breast cancer) as a predictor for trastuzumab
resistance in patients with early HER2-positive breast cancer receiving adjuvant therapy in
the FinHER phase III trial, reporting an association between trastuzumab resistance and the
presence of ‘reactive stroma’ [79]. The pathological reactive stroma and the mRNA gene
signatures that reflected reactive stroma were tested in 209 HER2-positive breast cancer
samples and were found to be correlated with distant disease-free survival. Interestingly,
reactive stroma did not correlate with tumor-infiltrating lymphocytes. The study concluded
that the ‘pathological reactive stroma’ in HER2-positive or ER-negative early breast cancer
tumors might predict resistance to adjuvant trastuzumab therapy.

In line with the pro-tumorigenic role of ‘pathological reactive stroma’, CAFs are
known to promote organoid tumor growth in co-culture. The paracrine crosstalk between
CAFs and cancer cells regulated physiological characteristics of CAFs, which in turn
imparted resistance to cancer cells. In metastatic melanomas, CAFs resist the function
of BRAF inhibitors via their crosstalk with tumor cells (vascular mimicry), the ECM,
and endothelial cells (neovascularization). The development of drug resistance to BRAF
inhibitors is mediated via ECM reprogramming action of CAFs [19]. Recently, Liu et al.
reported the activation of nuclear beta-catenin signaling in melanoma CAFs during the
development of resistance to BRAF inhibitor or MEK inhibitors, underscoring the role of
BRAF-inhibitor-induced CAF reprogramming in matrix remodeling and the therapeutic
escape of melanoma cells [80].

CAF populations expressing FAP/ITGA11/COL1A1/CCN2 have been shown to be
negatively correlated with disease-free survival in this cancer. The resistance to BRAF
inhibitors is the result of CAF-mediated reprogramming of the ECM. The stiffness of the
ECM caused by CAFs has been associated with integrin-dependent signaling. Fibroblast-
specific production of CCN2, whose overexpression in melanomas was independent of
BRAF mutational status, signals through integrins and was found to be essential for
neovascularization and vasculogenic mimicry. In hepatocellular carcinomas, tumor cells
resist targeted anti-cancer drugs including sorafenib, regorafenib, and 5-fluorouracil in
the presence of CAFs via a direct cell–cell contact, as tested in a transwell system through
paracrine signaling [81].

CAF signaling in the development of drug resistance is tumor-specific in prostate
cancers and lung adenocarcinomas, as presented above. In prostate cancers, CAF-derived
neuregulin 1 NRG1 promotes resistance in tumor cells by activating HER3 involving the
NRG1/HER3 axis, proving a paracrine mechanism of antiandrogen resistance in a paracrine
manner, as presented above [64]. In lung adenocarcinomas bearing EGFR mutations,
primary EGFR-TKI resistance is mediated via hepatocyte growth factor from CAFs. CM
from CAFs increased the resistance of EGFR mutant lung adenocarcinoma cell line PC-9
cells to EGFR-TKI, indicating that the secretion of higher amounts of HGF is the robust
feature of EGFR-TKI-resistance-promoting CAFs [67]. The mode of action of CAFs and
the nature of their involvement with respect to the tumor cells and the TME are less
studied. The pattern of crosstalk is just beginning to emerge, which can define distinct
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therapeutic paradigms. In a recent study, Engelman’s group reported three subtypes of
lung CAFs that can influence the personalized treatment of non-small cell lung cancer
patients. The 3 subtypes of CAFs identified in their study are (1) subtype I with HGFHigh,
FGF7High/Low, p-SMAD2Low, targeting driver, HGF-MET, and FGF7-FGFR2; (2) subtype II
with HGFHigh, FGF7High, p-SMAD2Low, targeting driver, and FGF7-FGFR2; and (3) subtype
III with HGFLow, FGF7Low, and p-SMAD2High [82]. They reported that specific subtypes are
associated with particular functions and clinical responses. Subtype I and II CAFs function
to protect cancer cells, while subtype III CAFs are involved with a better clinical response
via immune cell migration with additional value in immuno-oncology. In addressing the
heterogeneity of CAFs, the study systematically connected functions of subpopulations of
lung CAFs to specific functions of CAFs in the context of clinical response and resistance
to pathway-targeted drugs. Similar studies in the future will delineate the relationships
of the mode of action of CAFs with drugs in organ-type cancers in solid tumors. Despite
the different mediating actions of CAFs, it will be imperative to know how CAFs support
a tumorigenic pathway in cancer cells in the face of pathway-targeted treatment that
ultimately leads to the ineffectiveness of the therapy. Supplemental targeting of CAF
signals opens an opportunity to improve personalized medicine and bears the promise of a
better outcome.

4. Regulation of CAF Functions and Therapeutic Opportunity
4.1. CAFs as the Target within the TME

The irrefutable involvement of CAFs in the development of resistance to chemo- and
targeted therapy and progression as presented above justifies the recognition of CAFs
as a logical target for treatment. The interest in CAFs as a target of therapy arose from
analyses of data from the conventional tumor-cell-centric view of cancer, targeting only the
tumor component. The limited success of tumor-cell-centric therapies is a direct proof-of-
concept that the TME bears undeniable responsibility for successful disease progression in
solid tumors. From the conceptual aspect, any sequence-based therapy primarily refers
to sequencing of the entire tumor tissue, which constitutes both cancer and the TME
(CAFs along with immune cells and angiogenic components). Hence, the approach does
not provide separate information on the subgroups, tumor cell cluster, CAF cluster, or
immune cluster. Intratumoral heterogeneity contributes to the development of resistance
to anti-cancer therapeutics. Thus, the heterogeneity of CAFs presents opportunities for
CAF-targeted cancer therapies in precision medicine [65,83]. However, the burden of cost
and management needs to be taken into account. CAFs as components of the TME have
been targeted to suppress tumor growth [84]. Based on their specific surface markers and
secreted molecules, Laplagne et al. reviewed the potential of targeting different aspects of
CAFs, including cells inducing depletion, reprogramming, differentiation, or inhibition of
their pro-tumor functions or recruitment. Several approaches involving immunotherapies,
vaccines, small interfering RNA, or small molecules were developed to target components
of the TME, as reviewed elsewhere [84].

CAFs are a coherent target in the TME [85]. The versatility of CAFs means they are
a target for anti-tumor therapy to ‘switch off’ the pro-tumor stroma [20,65,86]. There are
five ways to counter the CAF-mediated patronage of cancer cells, which eventually cause
resistance to treatment and disrupt disease management. The strategic points to control the
function of CAFs are (1) preventing the activation of CAFs by targeting or counteracting
signals from tumor cells, (2) regulating the activation of CAFs by targeting the CAF pop-
ulation directly, (3) regulating the pro-tumorigenic signals from CAFs, (4) regulating the
pro-angiogenic signals from CAFs, and (5) regulating the pro-immune evasion and anti-
immune surveillance signals from CAFs (Figure 3). These potential CAF intervention points
represent ‘action items’ to ’switch off’ the pro-resistance CAFs within the tumor stroma.
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4.2. Stromal Normalization and CAF-Targeted Therapy in Combating Resistance to Chemotherapy
and Targeted Therapy

CAFs co-operate with tumor cells to drive the progression of the disease [65–67]. The
progression of the disease can be attributed to this collaboration of CAFs with tumor cells
based on several factors and events, either individually or collectively, including (1) the
EMT; (2) stemness; (3) response to hypoxia; (4) pro-proliferative and anti-apoptotic signals;
(5) immune, metabolic, and ECM reprogramming; (6) metastasis-associated phenotypes;
and (7) escape and resistance to therapy.

CAFs have been targeted using both conventional and unconventional modes of dis-
ease management in solid tumors, diagnostics, and therapeutics. Although CAFs have
been identified using several markers, FAP and alpha-SMA are among the most versa-
tile markers associated with the identification and function of CAFs [87]. FAP has been
targeted in tumors for imaging and therapy using several approaches, including immuno-
conjugates (an antibody–maytansinoid conjugate (mAb FAP5-DM1)), CAR T cells, tumor
immunotherapy, vaccines, peptide drug complexes, FAP inhibitors, and antibodies [87–89].
The depletion of FAP-positive CAFs enhanced anti-tumor immunity, as reported in several
studies [90–94], proving the validity of the target. In fact, co-targeting FAP in combination
with tumor-centric FAP-targeting strategies was shown to be more effective [95–97]. Anti-
FAP antibody sibrotuzumab labeled with 131Iodine has been reported for the treatment of
patients with metastasized FAP-positive carcinomas in a phase I dose-escalation study [98].
To test the diagnostic and prognostic value of the imaging of activated fibroblasts, Lindner
et al. developed the radiotracers FAPI-01 and FAPI-02 with specific binding to human
and murine FAP with a rapid and almost complete internalization [86]. The DOTA-linked
compound FAPI-02 with better pharmacokinetic and biochemical properties was tested
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for quantitative analysis of tracer uptake in 80 patients with 28 different tumor entities
(54 primary tumors and 229 metastases). Their study indicated that FAP inhibitors have a
promising role as tracers for diagnostic applications in desmoplastic tumors.

CAFs have been targeted using nano or gold particles in a radio-pharmacological
manner. CAFs have been reported to be explicitly targeted by nanocarriers with opti-
mized physicochemical properties in liver cancer. Surface-modified nanocarriers with a
cyclic peptide binding to the PDGFRβ or mannose-6-phosphate binding to the IGFRII
effectively directed the drug to activate CAFs in vivo [99]. Gold nanoparticles measuring
20 nm in diameter inhibited CAF activation by disrupting multicellular communication
between the tumor and microenvironment and altering the levels of multiple fibroblast
activation or inactivation proteins, such as TGF-β1, PDGF, uPA, and TSP1, secreted by
ovarian cancer cells and TME cells [100]. Passive and active strategies for the nanodelivery
systems targeting CAFs for improved anti-tumor effect and tumor drug penetration have
been summarized elsewhere [101,102]. The recent advancements in targeting CAFs with
diagnostic and therapeutic radiopharmaceuticals by applying new radiotheranostic com-
pounds (targeted radionuclide imaging and therapy) using clinically identified biomarkers
to improve clinical outcomes are promising [103,104].

CAF targeting has also been studied in rare solid tumors with highly desmoplastic
stroma in intrahepatic cholangiocarcinomas [105–107]. Mertens et al. reported that navi-
toclax induced apoptosis in CAFs and in myofibroblastic human hepatic stellate cells but
lacked similar effects in quiescent fibroblasts or cholangiocarcinoma cells, arguing for the
use of navitoclax (Bcl2/Mcl inhibitor) for destroying CAFs in the TME [108]. In desmoplas-
tic cholangiocarcinoma, the use of light-activated nanohyperthermia has been described to
modulate the tumor microenvironment [109]. A recent study employed multifunctional
iron oxide nanoflowers decorated with gold nanoparticles (GIONF) as efficient nanoheaters
to achieve complete tumor regression following three sessions of mild hyperthermia. CAFs
were targeted via preferential uptake of GIONF. A photothermal depletion of CAFs resulted
in a significant early reduction in tumor stiffness (normalized tumor stiffness) followed by
tumor regression. Katsube et al. employed near-infrared photoimmunotherapy (NIR-PIT)
as a novel method of cancer treatment using a highly selective monoclonal antibody (mAb)–
photosensitizer conjugate against fibroblast activation protein (FAP)-targeted NIR-PIT, in
which IR700 was conjugated to a FAP-specific antibody to target CAFs (CAF-targeted
NIR-PIT: CAFs-PIT) [110]. The elimination of CAFs by CAFs-PIT demonstrated that the
combination of 5-FU and NIR-PIT caused a 70.9% tumor reduction, while 5-FU alone
achieved only a 13.3% reduction, suggesting the recovery of 5-FU sensitivity in CAF-rich
esophageal tumors in experimental models.

Yet another classic example of stromal resistance mediated through CAFs is repre-
sented by PDAC (pancreatic ductal adenocarcinoma), a disease in which the five-year
overall survival for pancreatic cancer is still less than 10%, despite advances in therapeutic
modalities [111]. Pancreatic tumors present a highly fibrotic stroma containing activated
CAFs, which create an immunosuppressive TME. CAFs secrete immunoregulatory and
chemo-attractive factors, preventing tumor-reactive T-cell responses. Gorchs and Kaipe
summarized different therapy strategies targeting the CAF–T cell axis, focusing on CAF-
derived soluble immunosuppressive factors and chemokines to highlight the strategies
that can be used to target CAFs in the context of the capability of heterogeneous CAFs to
modulate functions of TILs and myeloid cells in desmoplastic pancreatic ductal adenocarci-
nomas (PDACs) [111]. Although the CAF-immune cell dialogue is beyond this review’s
scope, identifying the immunological functions of different CAF subsets (for example,
inflammatory fibroblasts (iCAFs) and myofibroblasts (myCAFs)) that help tumor cells to
(1) evade immune surveillance and (2) potentiate immune exhaustion may be essential for
the development of an effective combinational treatment for desmoplastic solid tumors.
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4.3. CAF-Mediated Immune Reprogramming

Since CAFs induce immunotherapy resistance and influence tumor immunity and
immunotherapy [112,113], CAFs have been targeted using various modes in anti-cancer
immunotherapy [114]. The establishment of mechanisms of CAF-mediated blockade of
CD8+ cytotoxic T-cell accumulation in tumors has provided therapeutic opportunities [115].
CAFs crosstalk and co-evolve with cancer stem cells [116]. Therapeutic targeting of the
manipulation of cancer stem cells [116,117] and immune-reprogramming using CAFs pro-
vides a window of opportunity beyond this review’s scope. In an exceptionally aggressive
and treatment-resistant human cancer, the role of dermal fibroblasts in suppressing the
tumorigenesis has been documented, which are subsequently converted or activated to
CAFs, which are phenotypically and epigenetically different from normal dermal fibrob-
lasts. Flach et al. demonstrated that melanoma cells could stimulate the recruitment of
fibroblasts and activate them, resulting in melanoma cell growth by providing both struc-
tural (extracellular matrix proteins) and chemical support (growth factors). Thus, CAFs
collaborate with melanoma cells and resist drug therapy [118]. Kinugasa et al. demon-
strated that established CAFs enhance tumor growth in vivo in B16 melanoma-bearing
mice. These CAFs strongly express CD44 in the hypovascular and hypoxic areas of the TME
or following treatment with angiogenesis inhibitors. CD44 expression in CAFs maintains
the stemness of cancer stem and initiating cells via direct interaction and is involved in drug
resistance [119]. Bellei et al. reviewed the melanoma–CAF dialogue based on TGF-beta,
MAPK, Wnt/beta-catenin, and Hippo signaling [120]. It makes sense that the activation of
the Wnt/beta-catenin pathway may lead to the expression of CD44 (target gene) in CAFs
and signaling for the stemness-driven drug resistance of the disease.

4.4. CAF-Mediated EMT and ECM Reprogramming

The induction of stemness and EMT are two main phenotypic steps of the multi-step
process of metastasis in solid tumors. It is worth mentioning that stemness and mor-
phological transition between the epithelioid and fibroblastoid features of tumor cells
are closely integrated, especially in the types of solid tumors, wherein cancer cells with
fibroblastoid morphological changes exhibit increased motility and invasiveness due to
decreased cell–cell adhesion, reminiscent of EMT in many solid tumors. In promoting
metastasis, the silencing of DNMT1 is correlated with the enhancement of the induction of
EMT and the CSC (cancer stem cells) phenotype in prostate cancer cells [121]. functional
connection of CAFs in EMT via DNA methylation was presented in the study by Pistore
et al. in advanced prostate cancer. The secreted factors in conditioned media from CAFs
explanted from two unrelated patients were found to stimulate concurrent DNA hypo-
and hypermethylation required for EMT and stemness in PC3 and DU145, indicating that
CAF-released factors induce genome methylation changes required for EMT and stemness
in EMT-prone cancer cells [122]. One such secreted factor from CAFs was reported to be
TGF-beta in several solid tumors [123–126]. Cardenas et al. demonstrated that TGF-beta
stimulated EMT and that metastasis catalyzed the global DNA hypermethylation changes
in the epithelial ovarian cancer cells, while the DNMT inhibitor blocked the hypermethyla-
tion and EMT [127]. In fact, TGF blockade has been reported to improve the distribution
and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma inter-
stitial matrix by decreasing collagen I content to improve the intratumoral penetration of
both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic
Doxil [128]. CAF-induced epigenetic modification of cancer cells leading to drug resistance
could be a potential way to design a CAF-targeted inclusive strategy for therapy in the
future. In line with the association of CD44 expression in CAFs as discussed above, CAFs
have been shown to secrete soluble factors belonging to Wnt family members and the
Wnt/beta-catenin pathway. WNT16B and SFRP2 activated the canonical Wnt pathway in
tumor cells and induced cytotoxic chemotherapy resistance in prostate cancer [129,130]. In
colorectal cancers, chemoresistance in cancer-initiating cells was also increased by CAFs.
Lotti et al. conducted a comparative analysis of matched colorectal cancer specimens
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from patients before and after cytotoxic treatment to demonstrate a significant increase in
CAFs. Chemotherapy-treated human CAFs promoted cancer-initiating cell self-renewal
via IL-17A, and IL-17A was found to be overexpressed in colorectal CAFs in response to
chemotherapy, as validated directly in patient-derived specimens without culture [131].
The study directly proved that CAFs respond to therapy in favor of tumor cells and strongly
supported the unmet need to include a CAF-directed therapy towards the ‘normalization’
of the ‘resistant stroma’.

4.5. CAF-Mediated Metabolic Reprogramming and Hypoxic Response

As cancer cells biochemically reprogram their metabolism as their hallmark, they
generate lactic acid from glucose or glutamine. Cancer cells export lactic acid out, pre-
venting intracellular acidification causing increased lactate levels and an acidic pH level
in the extracellular milieu [71]. Lisanti et al. reviewed metabolic coupling between mito-
chondria in cancer cells and catabolism in stromal fibroblasts [132]. Unlike tumor cells,
CAFs are catabolic by default. CAFs donate L-lactate, ketones, glutamine, other amino
acids, and fatty acids to cancer cells to metabolize via their TCA cycle and oxidative phos-
phorylation. This metabolic coupling explains how metabolic energy and biomass are
supplied by the CAFs to cancer cells. Lisanti et al. demonstrated that catabolic metabolism
and the glycolytic reprogramming in the CAFs (a loss of caveolin-1 and an increase in
MCT4 in CAF) are influenced by oncogenes in epithelial cancer cells, including BRCA1-
deficient breast and ovarian cancer cells, in concert with the TME [133]. Interestingly,
both oncogenic activation (of RAS, NFkB, and TGF-β) and loss of the tumor suppressor
(BRCA1) have comparable effects on CAF. Arguably, such a ‘metabolic symbiosis’ could
provide an explanation for the ‘fibroblast addiction’ or ’metabolic parasites’ in primary
and metastatic tumor cells [134] and could present a target for therapy, wherein CAFs
could be decoupled from tumor cells. The ensuing hypoxic environment adds yet another
layer to the chemoresistance [135] due to the influence of low pH on the cytotoxicity of
paclitaxel, mitoxantrone, and topotecan [136]. Hypoxia is a fact of life for cancer cells in
solid tumors [137–139]. As a critical player in the development of drug resistance, it is
most logical that CAFs will have a direct role in modulating drug sensitivity or action in a
hypoxic environment. CAFs secrete elements of different angiogenic and immunogenic
signaling pathways, including VEGF and T-cell-mediated cytotoxicity, respectively, under
hypoxic conditions [140–142]. Masamune et al. reported hypoxia-induced pro-fibrogenic
and pro-angiogenic responses in pancreatic stellate cells [143]. Pancreatic stellate cells
expressed several angiogenic molecules, including VEGF receptors, angiopoietin-1, and
Tie-2. Studying the effects of hypoxia and conditioned media of hypoxia-treated pancreatic
stellate cells on cell functions and on human umbilical vein endothelial cells, Masamune
et al. demonstrated that hypoxia accelerated migration, type I collagen expression, and
VEGF production in pancreatic stellate cells. Conditioned media of hypoxia-treated pan-
creatic stellate cells induced migration of pancreatic stellate cells, which was inhibited by
the anti-VEGF antibody. Conditioned media of hypoxia-treated pancreatic stellate cells, on
the other hand, induced endothelial cell proliferation, migration, and angiogenesis in vitro
and in vivo. In line with the above study, endothelial cells co-cultured with CAFs under
hypoxia or exposed to the conditioned medium of hypoxic CAFs have been shown to
sprout significantly more than the normoxic counterpart in breast cancers [144]. These
data functionally connect CAF activity with the tumor angiogenesis and resistance or
metastasis progression associated with tumor cell phenotypes under hypoxic conditions,
strengthening the argument in favor of a CAF-inclusive treatment strategy.

4.6. CAF-Based NIH Clinical Trials

The clinical trials targeting CAFs in solid tumors are based on antagonizing CAF
functions. Overall, trials can be divided into (1) reprogramming of CAFs, (2) inhibition
of CAF functions, (3) targeting of CAF-mediated desmoplasia, and (4) CAF-specific im-
munotherapy. The details of these trials are presented elsewhere [145]. FAP proteins are
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some one of the common targets in the clinical trials related to CAFs. Accordingly, anti-
FAP vaccination has been reported in various tumor models [146]. The other aspects of
CAF-related trials involve targeting the interactions between tumor-promoting CAFs and
the surrounding microenvironment and reprogramming CAFs into quiescent fibroblasts
or reprogramming tumor-promoting CAFs into tumor-restraining CAFs, as presented in
detail elsewhere [147].

Reviewing the CAF-associated clinical trials on the ClinicalTrials.gov site, we present
17 trials involving CAFs (Table 1). These studies have used various aspects of markers or
functions of CAFs, the culture or co-culture of CAFs, testing of drug combinations targeting
CAFs, or disease detection using CAF-based radiochemicals, as mentioned before. The
studies ranged from observational to interventional or treatment to open-label. The primary
purposes also varied from diagnostic to treatment to exploratory basic science. Most of the
trials were conducted in disease conditions of advanced or malignant neoplasms of solid
tumors in adults. Table 1 presents the relevant ongoing and completed trials involving
CAFs posted in ClinicalTrials.gov (as of February 2022). The studies were performed in
advanced or malignant neoplasms of solid tumors in adults, including hepatocellular,
lung, breast, and pancreatic cancers. The observational study, NCT01549275, is among
the two completed studies. This ‘case-only’ prospective study enrolled 105 patients with
hepatocellular carcinomas. The prospective study evaluated the success rate of the primary
culture of hepatocellular carcinoma cells and CAFs from the residual specimens in routine
fine-needle aspiration of hepatic tumors and the potential application of this method as an
additional tool for personalized treatment of patients. The primary outcome measure was
to find the correlation between the growth speeds of the cultured cells and the AJCC TNM
stage (7th Eds) at entering the study within a time frame of 28 days after plating of cells.
The other completed study, NCT02161523, tested the impact of lung CAFs on mast cell
activation in lung cancers. This prospective observational study involved fewer patients
than the first, with non-small cell lung carcinomas. This study evaluated the paracrine
function of CAFs and directly measured the factors in the lung TME (which includes
other cells such as fibroblasts that are attributed to mast cell activation). The trial was
conducted to determine whether CAF cells derived from lung tumors, together with the
lung cancer cells or microvesicles derived from these cells, are able to stimulate mast cells
to degranulate or release various cytokines and chemokines. CAFs were co-cultured with
both lung cancer cell lines (A-549) or microvesicles derived from these cells and the human
mast cell line (LAD2). The collected supernatants were used to determine degranulation
and cytokine release from these mast cells as the primary outcome by measuring the levels
of b-hexosaminidase (a marker for mast cells degranulation) and the cytokines levels within
a time frame of 1–2 weeks.

In addition to the studies covering the functions of CAFs, studies have also been
undertaken to utilize CAFs in developing resistance to chemotherapy in solid tumors in
combination with tumor-centric therapy. The role of CAFs in the reprogramming of the
ECM by altering the state of hyaluronic acid and the consequences for the tumor ECM and
tumor vasculature have been presented in several reviews [148–150]. Hyaluronan synthase
2 has been reported to be expressed in CAFs to promote invasion in oral cancers [151]. An
in vitro evaluation of simultaneous targeting of tumor cells and CAFs with a paclitaxel–
hyaluronan bioconjugate was carried out in non-melanoma skin cancers by Bellei et al. [152].
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Table 1. Trials involving CAFs in cancers as posted in ClinicalTrials.gov (Updated on February 2022) are represented. The 17 trials include various organ cancers in
solid tumors, including breast, colorectal, prostate, lung, pancreatic, hepatocellular, ovarian, and oral carcinomas.

Clinical
Trials.gov Identifier

and Sponsor
Title

Recruitment Status: Study Start Date
and Study Completion Date

Condition or
Disease

Study Design

Study Type Enrollment Observational/
Intervention Model:

Time
Perspective and
Primary Purpose

NCT
01549275;

Kaohsiung Medical
University Chung-Ho
Memorial Hospital,
Taiwan

Primary Cell Culture of
Hepatic Tumorous Cells
From Routine
Fine-Needle Aspiration

Completed: Study Start Date;
April 2010;
Study Completion Date: July 2013

Hepatocellular
Carcinoma Observational 105 participants Case-Only Prospective

NCT
02161523;

Meir Medical Center,
Kfar Saba, Israel

The Impact of Lung
Cancer-Derived
Fibroblasts on Mast Cell
Activation

Completed: Study Start Date;
1 July 2014;
Study Completion Date: 1 June 2015

Lung Cancer Observational 20 participants Other Prospective

NCT
03481920;

PH Research, S.L.
Madrid, Spain

A Pilot Trial of PEGPH20
(Pegylated
Hyaluronidase) in
Combination With
Avelumab (Anti-PD-L1
MSB
0010718C) in
Chemotherapy Resistant
Pancreatic Cancer

Terminated: Study Start Date;
10 January 2018;
Study Completion Date: 10 June 2019

Pancreatic Ductal Ade-
nocarcinomaPancreatic
Cancer; Drug:
PEGylated
Recombinant Human
Hyaluronidase
(PEGPH20)
Drug: Avelumab; Early
Phase 1

Intervention
/treatment
(Open Label)

7 participants Single Group
Assignment Not Mentioned

NCT
03777943;

University Ghent,
GIHeelkunde,
University Hospital,
Ghent, Belgium

Role of the Peritoneal
Microenvironment in the
Pathogenesis and Spread
of Colorectal
Carcinomatosis (MMT)

Recruiting: Study Start Date;
1 November 2017;
Estimated Study Completion Date:
December 2020

Peritoneal
Carcinomatosis

Observational: Inter-
vention/treatment;
Procedure: Sampling
peritoneal tissue

50 participants Other Prospective

NCT
04554719;

Wuhan Union Hospital,
China

Clinical Application of
Fibroblast Activation
Protein PET/MRI for
Diagnosis and Staging in
Malignant Tumors

Recruiting: Study Start Date;
22 May 2020;
Estimated Study Completion Date:
21 December 2022

Malignant Neoplasm Interventional
(Clinical Trial) 100 participants

Single Group
Assignment:
Intervention
/treatment Drug:
68Ga-DOTA-FAPI
Device: PET/MR
Device: PET/CT

Primary Purpose:
Diagnostic



Cancers 2022, 14, 1519 16 of 31

Table 1. Cont.

Clinical
Trials.gov Identifier

and Sponsor
Title

Recruitment Status: Study Start Date
and Study Completion Date

Condition or
Disease

Study Design

Study Type Enrollment Observational/
Intervention Model:

Time
Perspective and
Primary Purpose

NCT
04939610;

Clovis Oncology, Inc.
USA

LuMIERE: A Phase 1/2,
Multicenter, Open-Label,
Non-Randomized Study
to Investigate Safety and
Tolerability,
Pharmacokinetics,
Dosimetry, and
Preliminary Activity of
177Lu-FAP-2286 in
Patients With an
Advanced Solid Tumor: A
Study of 177Lu-FAP-2286
in Advanced Solid
Tumors (LuMIERE)

Recruiting: Study Start Date;
14 June 2021;
Estimated Study Completion Date:
1 June 2026

Solid Tumor

Intervention/treatment;
Interventional
(Clinical Trial); Drug:
68Ga-FAP-2286
Drug:
177Lu-FAP-2286;
Phase 1
Phase 2

170 participants
Sequential
Assignment
/Non-Randomized

Primary Purpose:
Treatment

NCT
04621435;

Thomas Hope,
University of California,
San Francisco, Clovis
Oncology, Inc.
USA

Imaging of Solid Tumors
Using 68Ga-FAP-2286

Recruiting: Study Start Date;
14 December 2020;
Estimated Study Completion Date:
31 December 2023

Solid Tumors, Adult
Metastatic Cancer

Intervention/treatment:
Interventional
(Clinical Trial) Drug:
Gallium-68 labelled
(68Ga-)
FAP-2286Procedure:
Positron Emission
Tomography (PET)
imaging: Phase 1

65 participants
Parallel Assignment;
Allocation:
Non-Randomized

Primary Purpose:
Diagnostic
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Table 1. Cont.

Clinical
Trials.gov Identifier

and Sponsor
Title

Recruitment Status: Study Start Date
and Study Completion Date

Condition or
Disease

Study Design

Study Type Enrollment Observational/
Intervention Model:

Time
Perspective and
Primary Purpose

NCT
04459273;

UCLA Jonsson
Comprehensive Cancer
Center, Cancer Center at
the University of
California Los Angeles,
USA

Prospective Exploratory
Study of FAPi PET/CT
With Histopathology
Validation in Patients
With Various Cancers
(FAPI PET RDRC): PET
Biodistribution Study of
68Ga-FAPI-46 in Patients
With Different
Malignancies: An
Exploratory
Biodistribution Study
With Histopathology
Validation

Recruiting: Study Start Date;
27 August 2020;
Estimated Study Completion Date:
1 July 2024

Bladder Carcinoma,
Cervical Carcinoma,
Cholangiocarcinoma,
Hematopoietic and
Lymphoid Cell
Neoplasm,
Hepatocellular
Carcinoma, Malignant
Adrenal Gland
Neoplasm, Malignant
Brain Neoplasm,
Malignant Pleural
Neoplasm, Malignant
Skin Neoplasm,
Malignant Solid
Neoplasm, Malignant
Testicular Neoplasm,
Malignant Thymus
Neoplasm,
Neuroendocrine
Neoplasm, Thyroid
Gland Carcinoma,
Urothelial Carcinoma

Interventional
(Clinical Trial);
Procedure:
Computed
Tomography
Drug: Gallium Ga 68
FAPi-46
Procedure: Positron
Emission
Tomography;

30 participants

Intervention
Model: Single Group
Assignment;
(Open Label)

Prospective
Exploratory Study
Primary Purpose:
Basic Science

NCT
01878695;

Sidney Kimmel Cancer
Center at Thomas
Jefferson University,
USA

Pilot Study of
Anti-Oxidant
Supplementation With
N-Acetyl Cysteine in
Stage 0/I Breast Cancer
(NAC)

Completed: Actual Study Start Date:
26 July 2012;
Actual Study Completion Date:
14 May 2015

Stage 0/1 Breast
CancerPost
BiopsyPre-surgery;
Drug: IV/oral
N-acetyl-cysteine;
Phase 1

Interventional
(Clinical Trial) 13 participants

Single Group
Assignment;
(Open Label)

Primary Purpose:
Treatment
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Table 1. Cont.

Clinical
Trials.gov Identifier

and Sponsor
Title

Recruitment Status: Study Start Date
and Study Completion Date

Condition or
Disease

Study Design

Study Type Enrollment Observational/
Intervention Model:

Time
Perspective and
Primary Purpose

NCT
05196334;

Herlev Hospital, Herlev,
Copenhagen,
Denmark

Pharmacotyping of
Patient-derived Pancreatic
Cancer Organoids From
Endoscopic
Ultrasound-Guided
Biopsy as a Tool for
Predicting Oncological
Response

1 July 2021
and
31 December 2024

Pancreatic Cancer Observational 40 participants Cohort Prospective

NCT
05034146;

Zhongnan Hospital of
Wuhan University,
Wuhan, Hubei, China

The Diagnostic Efficiency
of 68Ga-FAPI PET/CT in
Malignant Tumors

23 February 2021
and
28 February 2023

Fibroblast Activation
Protein Inhibitor
PET/CT
Malignant Neoplasm

Interventional
(Clinical Trial); 100 participants

Intervention Model:
Single Group
Assignment

Primary Purpose:
Diagnostic

NCT
04504110;

Peking Union Medical
College Hospital;
Beijing, China

A Prospective Study to
Evaluate 68Ga-FAPI-04
and 18F-FDG PET/CT in
Patients With Epithelial
Ovarian Cancer:
Compared With
Histological Findings

5 August 2020
and
August 2021

Epithelial Ovarian
Cancer

Interventional
(Clinical Trial);
Phase 2

30 participants
Intervention Model:
Single Group
Assignment

Diagnostic

NCT
05030597:

Zhongnan Hospital of
Wuhan University,
Wuhan, Hubei, China

Exploring the Application
Value of PET Molecular
Imaging Targeting FAP in
Oral Squamous Cell
Carcinoma

15 September 2021
and
31 December 2023

PET/CT
FAPI
Oral Cancer

Interventional
(Clinical Trial) 100 participants

Intervention Model:
Single Group
Assignment

Diagnostic

NCT
05209750;

The Netherlands Cancer
Institute

Pilot Study of FAPI
PET/CT for Locoregional
(Re)Staging of Lymph
Nodes in Colorectal
Carcinoma

February 2022
and
August 2024

Colorectal Cancer Interventional
(Clinical Trial) 30 participants

Intervention Model:
Single Group
Assignment

Diagnostic
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Table 1. Cont.

Clinical
Trials.gov Identifier

and Sponsor
Title

Recruitment Status: Study Start Date
and Study Completion Date

Condition or
Disease

Study Design

Study Type Enrollment Observational/
Intervention Model:

Time
Perspective and
Primary Purpose

NCT
02587793;

Kaohsiung Medical
University Chung-Ho
Memorial Hospital;
Taiwan

Primary Culture of
Residual Specimens
Obtained From
Aspiration of Hepatic
Tumor to Predict the
Prognosis of the Patients

October 2014
and
31 July 2018

Hepatocellular
Carcinoma Observational 208 participants

Observational
Model:
Case-Only

Prospective

NCT
05064618;

Nagoya University
Hospital, Nagoya, Aich,
Japan

Phase I/II
Investigator-initiated
Clinical Trial of MIKE-1
With Gemcitabine and
Nab-Paclitaxel
Combination Therapy for
Unresectable Pancreatic
Cancer

23 August 2021
and
30 April 2025

Pancreatic Cancer

Interventional
(Clinical Trial)
Phase 1
Phase 2

55 participants

Intervention Model:
Sequential
Assignment;
Non-Randomized

Treatment

NCT
02307058;

University of Miami,
Florida,
USA

A Phase II Randomized
Trial of MRI-Guided
Prostate Boosts Via Initial
Lattice Stereotactic vs.
Daily Moderately
Hypofractionated
Radiotherapy—The
Miami BLaStM Trial

5 February 2015
and
June 2028

Prostate Cancer Interventional
(Clinical Trial) 164 participants

Intervention Model:
Parallel Assignment;
Randomized

Treatment
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CAFs can provide a physical and vascular barrier, depriving the tumor of TILs and
protecting against chemotherapy. Hence, the ‘normalization of the TME’ has been proposed
as a viable target of treatment, especially in solid tumors with high desmoplastic reactions
such as chemotherapy-resistant advanced PDAC. The NCT03481920 study was a pilot
trial of PEGPH20 (pegylated hyaluronidase) in combination with avelumab (anti-PD-L1
MSB0010718C) in chemotherapy-resistant pancreatic cancers. The purpose of this multi-
center, open-label, non-randomized early phase 1 trial (intervention–treatment) was to
evaluate the pharmacodynamics, safety, and efficacy of PEGPH20 in combination with
avelumab in adult patients with chemotherapy-resistant advanced or locally advanced
PDAC. The study tested the hypothesis that elimination of HA (hyaluronic acid) in the
pancreatic TME mediated by PEG PH20 would result in increased tumor vascularization
and vessel patency, as well as stromal remodeling with increased immune infiltration. The
activity of immune checkpoint inhibitors such as avelumab was facilitated by at least two
mechanisms, including an increase in drug delivery and increasing immune infiltration.

Another function of CAFs within the TME is associated with EMT and mesothelial–
mesenchymal transition in the context of peritoneal dissemination. Peritoneal dissemi-
nation is a frequent metastatic route for cancers of the ovary and gastrointestinal tract.
Solid tumors in the abdomen, such as gastric, colorectal, and ovarian cancers, commonly
disseminate via a transcoelomic route, an event associated with a poor prognosis [153].
Metastases are influenced by CAFs, a cell population that derives from different sources.
CAFs are known to derive from mesothelial cells via mesothelial–mesenchymal transition
during a peritoneal metastasis [154]. A type II EMT, known as mesothelial–mesenchymal
transition (MMT), occurs after peritoneal damage. Myofibroblast conversion of mesothelial
cells contributes to peritoneal fibrosis associated with peritoneal dialysis and post-surgical
peritoneal adhesion. In a recent report, Gordillo et al. reported that MMT contributes
to the generation of CAFs in locally advanced primary colorectal carcinomas [155]. In a
prospective recruiting study, NCT03777943, the role of the peritoneal microenvironment in
the pathogenesis and spread of colorectal carcinomatosis (MMT) was evaluated. The study
investigated the extent and role of MMT and CAFs in the pathogenesis of colorectal peri-
toneal carcinomatosis. The primary outcome of the study was the analysis and sampling of
peritoneal tissue via immunohistochemistry of CD44, integrins, ICAM-1, hyaluronate, and
VCAM-1 (adhesion molecules); calretinin, mesothelin, WT1, cytokeratins, and E-cadherin
(mesothelial markers); α-SMA, FAP, and podoplanin (CAF specific markers); and PDGF,
VEGF, and other angiogenesis-related markers within 6 months after the collection of the
samples from patients presenting with colorectal peritoneal carcinomatosis.

Normal residential fibroblasts become activated by tumor cells and are sources of
CAFs. Fibroblast activation protein (FAP) is one of the emerging reliable markers of
CAFs [1,156,157]. FAP is a transmembrane protein expressed on CAFs and has been shown
to be differentially present on a number of solid tumors as a marker of CAFs. FAPs have
been exploited for certain diagnostic and treatment purposes in clinical trials. Radionuclide-
labeled fibroblast activation protein inhibitors (FAPI) targeting FAP as a tracer for PET
imaging have been tested for targeted diagnosis and treatment of cancer. Although the
function of FAP is yet to be established, imaging studies have shown that FAP could be
detected with FAPI PET/CT.

The interventional open-label clinical Trial, NCT04554719, with a primary diagnostic
purpose, studied the clinical application of FAP PET/MRI for diagnosis and staging. This
prospective trial, in which 100 patients with malignant neoplasm participated, was based
on the background that FAP is overexpressed in CAFs, which is closely related to tumor
growth, invasion, metastasis, immunosuppression, and prognosis, while the expression
level of FAP in normal tissues and organs is very low. The trial used integrated PET/MR
and PET/CT with the agent 68Ga-FAPI ((gallium-68 (68Ga)–FAPI) as a new novel positron
tracer and the conventional imaging agent F-18 (fluorodeoxyglucose 18F-FDG) to diagnose
and stage various cancers with the aim of making up for the deficiency in FDG–PET
imaging in the diagnosis and staging of certain cancers. Another clinical trial was named
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NCT04621435, with a primary purpose of diagnosis based on FAP-2286, a peptidomimetic
molecule that binds to FAP. The study was a single-arm prospective trial that evaluated the
ability of a novel imaging agent gallium-68-labeled (68Ga-) FAP-2286 (68Ga-FAP-2286) to
detect metastatic cancer in adults with solid tumors using 68Ga-FAP-2286 tracer. In contrast
to the above studies, the phase 1/2 recruiting trial NCT04939610 (LuMIERE) tested 68Ga-
FAP-2286 and 177Lu-FAP-2286 for the primary purpose of treatment. This multicenter,
open-label, non-randomized study investigated the safety, tolerability, pharmacokinetics,
dosimetry, and preliminary activity of 177Lu-FAP-2286 in 170 participating patients with
advanced solid tumors. Phase 1 of the study evaluated the safety and tolerability of
177Lu-FAP-2286 and determined the recommended phase 2 dose (RP2D) in patients with
advanced solid tumors. Phase 2 of the study evaluated the objective response rate (ORR) in
patients with specific solid tumors. NCT04459273, a prospective exploratory trial, studied
the PET biodistribution of 68Ga-FAPI-46 (FAPi PET/CT) in patients with a wide range
of solid tumors. The study investigated how an imaging technique called 68Ga-FAPi-
46 PET/CT can determine where and to which degree the FAPi (fibroblast activation
protein inhibitor) tracer (68Ga-FAPi-46) accumulated in normal and cancer tissues in
patients. The trial sought to define the biodistribution of gallium Ga 68 fibroblast activation
protein inhibitor (FAPi)-46 (68Ga-FAPi-46) in normal and cancer tissues of patients with
various malignancies.

CAFs are responsible for metabolic reprogramming in the TME, involving ROS in
certain solid tumors [123,158]. The NCT01878695 trial, sponsored by the Sidney Kimmel
Cancer Center at Thomas Jefferson University, on the contrary, plans to assess the feasibility
of evaluating the effects of n-acetylcysteine on tumor cell metabolism by determining the
changes in expression of caveolin -1 and MCT4 in CAFs in pre- and post-therapy breast
tissue samples treated with NAC (N-acetyl derivative of the naturally occurring amino
acid, L-cysteine). This interventional open-label clinical trial with a primary purpose of
treatment is a pilot study of anti-oxidant supplementation with N-acetyl cysteine in stage
0/I breast cancers.

From the detailed overview of the clinical trials presented above, it is apparent that
CAFs offer a reasonable target that is complementary to the tumor-centric management
of the disease. CAFs and their markers offer a basic scientific, diagnostic, and comple-
mentary (companion) treatment opportunity, more so in advanced solid tumors of breast,
pancreas, peritoneal, and lung carcinomatosis. One remarkable fact emerging from the
current literature is the conspicuous lack of basic and translational data regarding gyneco-
logical malignancies such as ovarian and endometrial cancers. The role of the endometrial
stroma in pathogenesis is known, and human endometrial stromal cells have been found to
express CD90, CD10, and CD140b [159]. In situ staining of the human myometrium and
endometrium demonstrated heterogeneous staining for Thy 1. Freshly derived fibroblast
strains from the myometrium and endometrium showed heterogeneous Thy 1 expres-
sion [160]. In fact, the prognostic significance of the tumor/stromal ratio (TSR), which is
established in several solid tumors, has also been reported in endometrial carcinoma [161].
In their first attempt to characterize the fibromyxoid stromal reaction (desmoplasia) and
a lymphocytic infiltrate, Espinosa et al. sought to find out the relationship between the
desmoid-type fibromatosis stromal signature and the presence of desmoplasia [162]. Al-
though a study by Micke et al. failed to find a significant difference in the Kaplan–Meier
plots of the overall survival between stroma-rich and stroma-poor groups of endometrial
patients [163], Espinosa et al. demonstrated that desmoplasia correlated positively with the
desmoid-type fibromatosis expression signature, and stromal signatures have significant
clinicopathological associations. Considering the (1) presence of fibroblasts in the uterine
stroma, (2) the role of CAFs in the neoplastic transformation and progression of the disease,
and (3) the significance of the stromal signature in endometrial cancers, the inadequacy
of data and lack of trials in endometrial cancers remain puzzling. The conspicuous lack
of information on the role of CAFs in the development of drug resistance in endometrial
tumors can be explained by (1) the absence of relevant data regarding the characterization
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of CAFs based on a drug resistance condition in the context of different pathological pa-
rameters, genomic alterations, and outcome data and (2) the absence of a correct model
system. It is understood that a bulk of endometrial cancers are detected early, whereby
patients undergo surgical resection. Drug resistance conditions in the advanced or late
stages in endometrial cancers are rarely presented where the tumor tissue can be accessed
surgically. The characterization of endometrial CAFs and their presentation in the context
of pathological parameters, genomic alterations, and outcome data in the future will pave
the pathway for developing a model to test the functions of endometrial CAFs in a drug
resistance scenario. However, it should be emphasized that we are only beginning to
understand the complexity of the functions of CAFs and their function-specific markers in
solid tumors. The future will unveil the clinical utility of the knowledge.

5. Forward Thinking

Resistance to therapy is a pro-tumorigenic event. CAFs are employed by tumor
cells to create a pro-tumorigenic microenvironment following treatment. Resistance to
treatment is the outcome of a highly efficient adaptive strategy orchestrated by cancer cells
via reprogramming of their default signals, which co-occurs with the reprogramming of
every component of the TME in their favor, including CAFs. Such an opportunistic event
allows the tumor cells to gain contextual survival and progressive metastatic advantages.
Tumor–stroma co-evolution can lead to the development of drug resistance. The liaison
between CAFs and tumor cells can be viewed as a bête noire of therapy. Thus, CAFs as
the critical or indispensable components of stromal resistance to treatment are the most
logical targets within a tumor that has eventually progressed despite therapy. As the roles
of CAFs in several aspects of tumor progression and the development of drug resistance are
unfolding, the notion of CAFs being friend or foe [164] is evolving. CAFs are neither heroes
nor villains [165]. CAFs are less cause for panic but demand more urgent action, especially
in scenarios involving a therapy-resistant progressing tumor. We need to know more
about how CAFs form multi-faceted support systems for drug-resisting progressing tumors
to exercise that knowledge in empowering the management of the disease by including
CAF-directed stromal-targeting agents [166] in the arsenal of targeted therapy options.

The roles of CAFs in several common and rare tumors, as presented above, give us an
idea about their role in (1) tumor progression and (2) modes of development of resistance to
treatment. It has to be recognized that the heterogeneity of CAFs could be associated with
better outcomes or response to therapy as opposed to their pro-tumor actions. Bhattacharjee
et al. demonstrated direct CAF–tumor interactions as a tumor-promoting mechanism,
mediated by myCAF-secreted hyaluronan and inflammatory-iCAF-secreted HGF [167].
The pro-tumorigenic effects seen in their study were opposed by myCAF-expressed type I
collagen, which suppressed tumor growth by mechanically restraining the tumor spread.
Their study directly indicated that there is a scope for the therapeutic maneuvering of
CAF function in favor of the patient outcome by targeting specific signals for the tumor-
promoting function of CAFs, while promoting the myCAF-expressed type I collagen. This
report, similar to other articles [25], indicated the possibility of establishing therapeutically
targetable CAF-subtype-specific mediators for future treatment directed towards stromal
normalization of desmoplastic tumors.

The study of CAFs and their origins, markers, and functions in the development of
drug resistance can be conducted in tumors of the pancreas, breasts, stomach, esophagus,
colorectal, prostate, and lungs, as well as melanoma, head and neck squamous cell car-
cinoma, renal cell carcinoma, and cholangiocarcinomas. Understandably, CAF-inclusive
clinical trials are instituted in these organ cancers via various modes of intervention [145].
In a recent review, Koustoulidou et al. presented an overview of several modes of interven-
tion using (a) anti-FAP mAbs (b)-engineered T-cells expressing an FAP-recognizing mAb
(e.g., CAR-T cells) to target FAP+ CAFs, which resulted in their immune-cell-mediated
destruction and removal, (c) enzymatic breakdown of hyaluronic acid to remodel the ECM
for better accessibility of drugs to immune cells with tumor parenchyma, (d) blocking
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of CAF activity by interleukin-6, (e) transformation of CAFs into the quiescent state by
vitamin D, and (f) blocking of CAF-induced metabolic reprogramming of tumor cells [104].
Recently, organ-specific subtypes of CAFs have been identified and associated with dif-
ferent functions in aiding and abetting tumor cells, as reported by Engelman’s group [82].
Their study will encourage others to study the organ-specific roles of subtypes of CAFs
and their particular modes of action in the progression of tumors.

As we evaluate the participatory role of CAFs in the development of drug resistance
in solid tumors, we will have to design a workable model to test our hypotheses; ideally
on a patient-to-patient basis in the context of each patient’s unique genomic alteration(s).
The possibility of co-targeting CAFs and testing whether they will have a clinical benefit
towards managing the burden of resistance in the future will rely on such a model system,
which will accommodate tailored testing of the roles of patient-derived CAFs in the context
of both tumors cells and other components of the TME. Although much effort is still needed
to translate CAF-directed anti-cancer strategies from the bench to the clinic, the future will
establish the specific modes of action of CAFs in particular organ-type solid tumors, paving
the way for CAF-inclusive personalized therapy in solid tumors.

In summary, we will require actionable insights into the functions of CAF subtype(s)
to incorporate CAF-directed therapy in clinics. Actionable information on the CAF sub-
types in the context of their functions will be needed regarding (1) specific clusters asso-
ciated with immunosuppression and immunotherapy resistance [26], (2) therapeutically
targetable CAF-subtype-specific mediators [25], (3) the Hedgehog pathway inhibition by
a smoothened antagonist, LDE225-mediated differential activation of myCAFs or iCAFs
leading to alterations of cytotoxic T cells and Tregs [30], (4) IL1B blocking agents to coun-
teract the iCAF-mediated pro-tumorigenic actions associated with tolerance to cytotoxic
drugs [33], and (5) differential targeting of tumor-promoting CAF mediators while preserv-
ing the specific anti-tumor functions, for example in the way type I collagen may ‘normalize’
stroma from tumor-promoting to tumor-restricting phenotypes [167].

6. Take-Home Message

The undeniable subpopulation-specific functions of CAFs in tumor growth, progres-
sion, and drug or immunotherapy resistance directly provide evidence for the therapeu-
tically targetable role of CAFs. The aim of normalization of the TME by targeting CAFs
remains unmet. CAFs are heterogeneous and organ-type-specific in origin, markers, and
function. Hence, the best way to develop a ‘workable hypothesis’ for the functions of CAFs
would be to generate strictly organ-specific experimental evidence. It is imperative to know
the functions of specific signals from different CAF subtypes within the TME of organ-type
cancer(s). We can exploit the information for (1) targeting of the pro-normalization signals
from CAFs while attenuating the pro-growth progression and immunosuppressive CAF
signals and (2) identifying potential CAF markers to investigate the mechanisms underlying
the roles of CAFs in the TME.

7. Conclusions

In the era of precision medicine, which offers clinicians to treat patients with genomics-
guided matched drug combination(s), the cure still remains an exception and not the
rule. CAF-mediated development of resistance is the bête noire of chemotherapy and
targeted therapy as CAF directly supports the development of resistance. The state-of-art
management of today’s disease does not necessarily include a CAF-inclusive therapy. We
are just beginning to appreciate that the knowledge about the CAF functions and inhibition
is critical in managing the disease towards developing a CAF-inclusive therapy.
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