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Abstract: Prevalence rates for mild cognitive impairment in Parkinson’s disease (PD-MCI) remain
variable, obscuring the diagnosis’ predictive utility of greater dementia risk. A primary factor of
this variability is inconsistent operationalization of normative cutoffs for cognitive impairment. We
aimed to determine which cutoff was optimal for classifying individuals as PD-MCI by compar-
ing classifications against data-driven PD cognitive phenotypes. Participants with idiopathic PD
(n = 494; mean age 64.7 ± 9) completed comprehensive neuropsychological testing. Cluster analyses
(K-means, Hierarchical) identified cognitive phenotypes using domain-specific composites. PD-MCI
criteria were assessed using separate cutoffs (−1, −1.5, −2 SD) on ≥2 tests in a domain. Cutoffs
were compared using PD-MCI prevalence rates, MCI subtype frequencies (single/multi-domain,
executive function (EF)/non-EF impairment), and validity against the cluster-derived cognitive
phenotypes (using chi-square tests/binary logistic regressions). Cluster analyses resulted in similar
three-cluster solutions: Cognitively Average (n = 154), Low EF (n = 227), and Prominent EF/Memory
Impairment (n = 113). The −1.5 SD cutoff produced the best model of cluster membership (PD-MCI
classification accuracy = 87.9%) and resulted in the best alignment between PD-MCI classification
and the empirical cognitive profile containing impairments associated with greater dementia risk.
Similar to previous Alzheimer’s work, these findings highlight the utility of comparing empirical
and actuarial approaches to establish concurrent validity of cognitive impairment in PD.

Keywords: Parkinson’s disease; mild cognitive impairment; movement disorders; cluster analysis;
prevalence

1. Introduction

The experience of Parkinson’s disease (PD) encompasses not only the prototypical
motor symptoms but also a plethora of non-motor symptoms including cognitive changes.
Past research estimates that approximately 40% of people with PD have mild cognitive
impairment (PD-MCI) at any given time, and up to 80% of individuals with PD will develop
dementia after living with the disease for 15–20 years [1,2]. However, the trajectory of
cognitive changes can differ among individuals with clear diagnoses of idiopathic PD—
with some declining more rapidly than others [3]. Therefore, while the endpoint of the
trajectory is known for many individuals with PD, the question remains who is most at
risk for a more rapid transition to Parkinson’s disease dementia (PDD).

Two lines of research aim to answer this question. Some studies take an empirical ap-
proach by statistically examining neuropsychological data to see what patterns of cognitive
performance arise. This is often done via use of cluster analytic techniques, resulting in
distinct clusters or cognitive phenotypes. Others take an a priori classification approach,
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meaning that mild cognitive impairment (MCI) is designated by specific impairment crite-
ria, which are then used to identify patterns of deficits across cognitive tests or domains.
One way of doing this is via “actuarial classification criteria”, defined as using objective,
pre-established numerical definitions of impairment, rather than a consensus diagnosis
or clinical judgment. Both empirical (cluster analytic) and actuarial/clinical theoretical
classification approaches aim to characterize distinct cognitive profiles in PD-with the hope
of subsequently determining if certain cognitive profiles or subtypes connote greater risk
of developing PDD at faster rates.

Recently, comparison of the predictive utility of these two types of approaches (cluster
analysis vs. a priori classification) has gained traction among researchers in the MCI-
Alzheimer’s disease (AD) literature. Indeed, recent studies have found that cognitive
phenotypes derived from cluster analyses are more strongly correlated with AD biomarkers
and are more strongly linked to dementia progression than traditional a priori classification
methods [4,5]. To date, few studies have compared these two approaches in individuals
with Parkinson disease or addressed some of the psychometric issues inherent when
comparing these approaches to each other [6,7].

Historically, the cognitive sequelae of Parkinson’s disease have been linked to deficits
in executive function (e.g., planning, inhibition, problem solving), processing speed, and
working memory and attributed to dopaminergic depletion in fronto-striatal networks [8,9].
Even so, various studies have found less prevalent, yet still pronounced, deficits in other
cognitive domains such as memory [10,11], visuospatial skills [12,13], and semantic lan-
guage function [14]. These varying cognitive sequelae of PD play out in both data-driven
and classification approaches. Use of data-driven approaches (e.g., cluster analyses) has
resulted in some variability in the patterns of PD cognitive phenotypes across studies.
Some reveal phenotypes that primarily differ in the level and breadth of cognitive impair-
ments [15–17]. Yet, other studies identify clusters that differ in the “types” of cognitive
domains that are impaired [18–20]. For example, Crowley and colleagues [21], in a recent
cluster analytic study, with prospectively recruited individuals with PD, identified three
cognitive phenotypes—those showing low executive function, those with low episodic
memory performance, and those with no deficits relative to age matched controls.

There is also variability in the rules of the road used by various a priori classification
approaches for identifying “mild cognitive impairment” in individuals with PD [22]. Most
MCI classification approaches differ in terms of stringency of psychometric criteria such as
number of cognitive tests used, use of composite scores, and impairment cutoff criteria. In
2012, the Movement Disorders Society (MDS) published consensus criteria for PD-MCI [23].
The Level II “comprehensive” criteria, which requires more extensive neuropsychological
testing beyond a cognitive screener, defined impairment as having two or more tests
falling 1–2 standard deviations (SD) below the normative mean or demonstrating a relative
decline from previous evaluation [23]. While a diagnosis of PD-MCI using the MDS
criteria is associated with greater risk of developing PDD [24], even with unified criteria,
the prevalence rates of PD-MCI continue to range from 25–65% across studies [25,26].
Such disparate estimates of the portion of individuals with PD-MCI limits this diagnosis’
effectiveness at predicting clinical trajectory to dementia.

In part, the variability in prevalence of PD-MCI across studies results from method-
ologic differences (i.e., community vs. clinical sample, sample sizes, which neuropsycho-
logical tests that are used). However, beyond that, the operationalization of impairment
(e.g., use of −1, −1.5 or −2 SDs) is a critical issue. Moreover, variable use of cutoff criteria
relates to the notion of “decline” from a previous level, but this hinges on the assumption
that test “norms” are inadequate to capture change in certain demographic sectors. Cur-
rently, results remain mixed over which cutoff criteria best identifies who is at greatest risk
for impending dementia [8,24,27]. Previous work comparing empirical approaches to a
PD-MCI classification, based on a prespecified impairment cutoff (−1.5 SD), found greater
portions of PD-MCI participants in the more broadly impaired or amnestic phenotypes [6,7].
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The overall goal of the present study was to address the issue of “cutoff” criteria head
on by comparing clinical classification and data-driven approaches in a large clinical sample
of idiopathic PD patients without dementia. We specifically wanted to learn which cutoff
was optimal for classifying individuals as PD-MCI. This is important as it works towards
establishing more consistent prevalence rates of PD-MCI. To achieve this goal, the current
study first examined the influence of using different SD impairment criteria on PD-MCI
prevalence rates and subtypes. Next, we identified data-driven cognitive phenotypes using
cluster analysis in this same clinical sample. Taken together, these two approaches enabled
us to determine how well the PD-MCI classifications mapped onto the cluster-derived
cognitive phenotypes using each of three common SD impairment cutoffs.

Based on previous literature [28–32], we predicted that the following empirically
based phenotypes would emerge from cluster analyses: normatively average cognition,
isolated executive function impairment, and broader cognitive impairment across multiple
domains, particularly executive function, memory, and visuospatial. We predicted that a
greater proportion of the PD-MCI cases would be represented in the cluster with broad
cognitive impairment due to involvement of cortical systems underlying lower memory,
visuospatial, and executive performance. Impairments in these domains have previously
been shown to put individuals with PD at greater risk of developing PDD [33–35]. Finally,
we planned to determine which impairment cutoff jointly maximized the model’s sensitivity
and specificity and produced the highest classification accuracy.

2. Materials and Methods
2.1. Design

We performed a cross-sectional, observation study by conducting a retrospective chart
review of individuals with PD seen at the University of Florida (UF) Health Norman
Fixel Institute for Neurological Diseases. Data encompassed participants’ demographics,
disease-related characteristics, neuropsychological assessment, and mood/motivation
screening measures.

2.2. Participants

Participants included a convenience sample of individuals with idiopathic PD from a
large IRB-approved prospectively acquired clinical-research database (INFORM) of move-
ment disorders patients seen at the UF Norman Fixel Institute. For the current study,
inclusion criteria were: (1) evaluation between 2002 and 2019 and (2) a diagnosis of idio-
pathic PD made by a fellowship-trained movement disorders specialist based on the UK
Parkinson’s Disease Society Brain Bank Diagnostic Criteria. Exclusion criteria entailed (a)
any current major psychiatric disturbance (i.e., unmanaged bipolar disorder, schizophrenia,
current episode; n = 7); (b) a comorbid essential tremor diagnosis (n = 13); (c) previous brain
surgery (e.g., deep brain stimulation, pallidotomy; n = 87); (d) history of epilepsy, stroke,
or brain injury with ongoing cognitive sequela (n = 18); (e) missing neuropsychological
measures utilized in the study (n = 187); (f) evidence of significant cognitive impairment
based on scores below 125 on the Dementia Rating Scale-2 (DRS-2, n = 127) [36], a cutoff
which corresponds to ≤10th percentile [37]. After excluding (n = 439) participants from the
starting sample (n = 933), this resulted in a final N of 494 participants for the current study.

2.3. Neuropsychological Measures

All participants received a comprehensive neuropsychological assessment. The battery
consisted of the DRS-2 (as a general index of cognitive impairment) and standard neu-
rocognitive measures in the domains of (1) executive function, (2) verbal delayed memory,
(3) language, (4) visuospatial skills, and (5) attention/working memory. Specific tests are
shown in Table 1, and cognitive measures are grouped by domain based on theoretical
considerations [38–40]. Norms for each test were derived from test-specific manuals or
previously published norms [41] and then converted to z-scores. Using normative data
allowed us to compare performance to that expected in the population and more closely
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reflected clinical practice. However, this approach did present the limitation that measures
were normed based on different samples and did not all adjust for additional demographics,
such as education.

Table 1. Neuropsychological Tests within Each Cognitive Domain Composite.

Cognitive Domain Tests Raw Score Used

Executive
Functioning

Stroop Test (Interference trial)
TMT Part B

Letter Fluency (FAS)

Total Number of Correct Items
Completion Time

Total Number of Words (all 3 trials)

Verbal Delayed
Memory

HVLT-R
WMS-III Logical Memory

Delayed Total Recall
Delayed Total Recall

Language BNT
Semantic Fluency (Animals) *

Total Correct Spontaneous Responses
Total Number of Words

Visuospatial Skills Benton JOLO
Benton FRT

Total Items Correct
Total Items Correct

Attention/Working
Memory

WAIS-III Digit Span Forward
WAIS-III Digit Span Backward

Total Number of Points
Total Number of Points

Note. * While controversy remains over which cognitive domain should include semantic fluency, inclusion
within the Language domain has precedent within other PD-MCI studies [42,43]. Stroop Test is the Golden
version [44]; TMT Part B = Trails Making Test Part B [45]; Letter Fluency (FAS) [46]; HVLT-R = Hopkin’s Verbal
Learning Test-Revised [47]; WMS-III = Wechsler Memory Scale-Version III [48]; BNT = Boston Naming Test [49];
Semantic Fluency (Animals) [50]; Benton JOLO = Benton Judgment of Line Orientation [51]; Benton FRT = Facial
Recognition Test [52]; WAIS-III = Wechsler Adult Intelligence Scale-Version III [53].

For the majority of cognitive measures, less than 6% of the available sample had
missing data. Only the measures included in the visuospatial composite contained a greater
portion of missing data (Judgment of Line Orientation: 8.08%, Benton Facial Recognition
Test 14.41%). However, when analyzing the pattern of missing values for all cognitive
measures, Little’s Missing Completely at Random (MCAR) assumption was supported
(χ2(304) = 324.61, p = 0.20). Because participants needed at least two measures per domain
for PD-MCI classification, listwise exclusion (if missing any neuropsychological data) was
implemented.

2.4. PD-MCI Classification

We classified participants as cognitively normal or meeting actuarial criteria for PD-
MCI using three commonly used impairment cutoffs: liberal (−1 SD), midpoint (−1.5 SD),
and conservative (−2 SD). For a cognitive domain to be considered impaired, the normative
scores on at least two tests within that domain had to fall below the respective cutoff (i.e., −1,
−1.5, −2.0 SD). Having at least one impaired domain led to a classification of PD-MCI. This
differs from the MDS criteria which allow PD-MCI to be defined by having one impaired
test across two separate domains, with the implication that both of those domains are
considered impaired. We took a more psychometrically rigorous approach by requiring
two or more tests within the same domain to fall below the respective cutoff to assign a
classification of PD-MCI. Indeed, this approach is more predictive of PDD [27], minimizes
the possibility that poor performance on a single task is an anomaly, and aligns more closely
with widespread clinical practice of defining domain impairment based a pattern of deficits
across measures within a domain.

Participants designated as having PD-MCI were then divided into subtypes based on
whether they were impaired on one or multiple cognitive domains and whether executive
function (EF) impairment was present or not. Just as the originally proposed MCI subtypes
(amnestic/non-amnestic) aimed to distinguish the presence of or absence of the hallmark
characteristic of Alzheimer’s disease [54], we focused on the presence or absence of the most
common cognitive impairment (i.e., executive function) in PD. Thus, PD-MCI participants
were characterized as being one of four subtypes: single-EF (only EF domain impaired),
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multi-EF (EF plus at least one other domain impaired), single-non-EF (one domain impaired
but not EF), and multi-non-EF (more than one domain impaired but not EF).

2.5. Cluster Analyses

For each cognitive domain, a composite score was computed by averaging individual
z-scores of tests within a domain. The five domain composite scores were then entered
into the cluster analyses to distinguish cognitive phenotypes (groups of participants with
similar patterns of cognitive performance). For the current manuscript, we refer to these
cluster-derived subtypes as “cognitive phenotypes” to distinguish them from the subtypes
derived from the PD-MCI classification. While we had an a priori prediction of three
clusters, we tried a range of two to four clusters to ensure ideal data fit; several cluster
solutions were generated and contrasted before determining the final cluster structure.

2.6. Other Measures

At the time of the neuropsychological evaluation, participants completed self-report
screening measures to characterize symptoms of depression (Beck Depression Inventory-II
(BDI-II)), apathy (Apathy Scale (AS)), and situational and dispositional anxiety (State-Trait
Anxiety Inventory (STAI)) [55–57]. To gauge motor symptom severity and disease stage
progression, ratings from the Unified Parkinson’s Disease Rating Scale (UPDRS, [58]) Part
III and the Hoehn and Yahr scale (H&Y, [59]) were obtained by movement disorder neurolo-
gists while participants were “on” their dopaminergic medications. These neurologists also
characterized their motor subtype (tremor predominant, akinetic-rigid, or postural instabil-
ity and gait difficulty). On average, motor symptoms were assessed within 61.33 ± 63.24
days of the neuropsychological evaluation (range = 0–365 days).

2.7. Statistics

We used SPSS Version 26 to conduct all the following analyses [60]. We examined
demographic variables, clinical characteristics, and cognitive composites for normality and
outliers, both visually and statistically. Most variables were not normally distributed—as
assessed by histogram inspection, Z-tests of skewness/kurtosis, and Kolmogorov–Smirnov
and Shapiro–Wilk normality tests (p’s < 0.05). Due to the non-normality of most variables,
outliers were defined as scores falling outside 3x the interquartile range. No outliers were
detected except for one participant having more years with PD symptoms (54 years) and
another having severe depression (BDI = 54). As these two variables were supplementary
to our primary aims, all cases were retained within analyses.

Cochran’s Q test compared the PD-MCI prevalence rates using Bonferroni-corrected
pairwise comparisons. We independently conducted K-means and Hierarchical cluster
analyses (using Ward’s method and squared Euclidean distance) to cross-validate the cluster
memberships. To examine the consensus of the two techniques’ cluster memberships, we
used cross-tabulations and Pearson chi-square tests of independence.

Using the optimal K-means cluster solution, we compared the derived clusters on de-
mographics, clinical characteristics, and mood/motivation. Due to the clinical nature of our
data, some measures were missing, so we used pairwise exclusion for these analyses. Be-
cause of the non-normal distribution of these variables, when comparing clusters, we used
Kruskal–Wallis H tests (with Bonferroni-corrected pairwise comparisons) for continuous
variables and Pearson chi-square tests of independence for categorical variables.

Finally, to quantify the relationship between cluster membership and PD-MCI classifi-
cation, we used Pearson chi-square tests of independence and binary logistic regressions.
Because we aimed to examine the overlap between the prominently impaired cluster and
PD-MCI classification, this cluster was used as the reference group in the regression models.
Using the models’ sensitivity and specificity, we calculated Youden’s Index values for each
cutoff [61]. We then calculated positive and negative predictive values assuming base rates
based on the sample’s prevalence rates of PD-MCI and across the range of prevalence rates
from previous studies.
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3. Results
3.1. Sample Characteristics

The database search identified 494 individuals meeting inclusion/exclusion criteria.
Of these, 338 individuals had neuropsychological assessments performed as part of an
evaluation for deep brain stimulation, and 156 individuals had cognitive testing as part of
routine clinical care. These groups were largely similar in terms of cognitive performance
(see Appendix A Table A1) and thus were treated as a single cohort for the analyses.
Participants ranged in age from 38 to 87 years old, with an average age of 64.7 years (Table 2).
Participants were well-educated, predominantly male (72%), and white non-Hispanic
(94.3%), and had an almost 8-year duration of a PD diagnosis on average. Participants were
generally in the early-mid stages of disease severity based the H&Y and the UPDRS Part III.
The majority were characterized as the tremor predominant subtype (76.5%), while the rest
of the sample were characterized as akinetic-rigid (22.5%) or postural instability and gait
difficulty (1.1%). As a group, participants’ DRS-2 total scores were far above the dementia
cutoff [37]. The average performance on indices of depression (BDI-II), apathy (AS), and
anxiety (STAI) was below clinical cutoff, though there was substantial variability across
participants.

Table 2. Sample Descriptive Characteristics.

Measure Overall Sample (n = 494)

Variable Mean/% (SD)
Age 64.73 (9.04)

Education (years) 15.01 (2.79)
% Male 72%

% White, non-Hispanic 94%
Years since diagnosis 7.84 (4.94)

Years since symptom onset 9.61 (5.26)
PD motor subtype

Tremor predominant 77%
Akinetic-rigid 22%

PIGD 1%
UPDRS III, on medication 25.28 (9.80)

Hoehn and Yahr (H-Y) Scale ˆ

0 0.30%
1 1%

1.5 1%
2 58%

2.5 21%
3 15%
4 3%

BDI-II, raw total 10.10 (6.86)
STAI: State anxiety, percentile 61.33 (29.87)
STAI: Trait anxiety, percentile 58.38 (30.73)

Apathy scale, raw total 11.22 (6.31)
Dementia Rating Scale-2, raw total 136.99 (4.49)
Cognitive composites (z-scores) #

Executive function −0.58 (0.90)
Verbal delayed memory −0.36 (1.01)

Language −0.03 (0.96)
Visuospatial abilities 0.01 (0.78)

Attention/working memory 0.18 (0.77)
Note. UPDRS = Unified Parkinson’s Disease Rating Scale; PIGD = Postural Instability–Gait Difficulty; BDI-II =
Beck Depression Inventory-II, STAI = State-Trait Anxiety Inventory; ˆ = H-Y scores available for 78% of the sample
(n = 389); # z-score has a mean of 0 and SD of 1, and z-score composites were computed from performance on
neuropsychological tasks within a domain.
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3.2. Prevalence of PD-MCI and Subtypes

The prevalence of PD-MCI was 40.1% (n = 198) when using −1 SD cutoff, 21.5%
(n = 105) when using the −1.5 cutoff, and 9.1% (n = 45) when using the −2 SD cutoff. There
was a significant difference between the proportions of PD-MCI classified cases based on
cutoff criteria, with a large effect size (χ2(2) = 563.10, p < 0.001, η2 = 0.66) and differences in
the expected direction (p’s < 0.001).

Across all three cutoffs, most PD-MCI cases had single-domain impairments (−1 SD:
64.59%, −1.5 SD: 77.0%, −2 SD: 80.22%) (Figure 1). Single-EF was the most common
PD-MCI subtype. However, a notable portion of cases fell into non-EF subtypes (−1 SD:
19%, −1.5 SD: 19%, −2 SD: 26%). Classification into these other subtypes was primarily
driven by memory and language deficits. Of the PD-MCI cases, when using the −1, −1.5,
and −2 SD cutoffs, 33%, 25%, and 31% had memory deficits, and 17%, 15%, and 11% had
language deficits, respectively.
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Figure 1. PD-MCI subtype breakdown by actuarial criteria cutoffs. (a–c) Depict the percentages of the
sample that fall into each MCI subtype based on the respective SD cutoff. EF = Executive Function.

3.3. Cluster-Derived Cognitive Phenotypes

Results of the K-means cluster analysis supported the existence of three clusters.
Cluster membership was stable after 10 iterations. None of the clusters were unacceptably
small. Visual inspection of the cluster centers (Figure 2) revealed a group with average
cognition across all domains (n = 154), a group with low executive function (Low EF)
(n = 227), and a group with executive function and memory impairments, as well as low
language scores (Prominently Impaired EF/Memory) (n = 113).

The hierarchical cluster analysis supported the use of two or three clusters based
on the changes in agglomeration coefficients. When examining the proportions of cases
assigned to the same cluster by both clustering methods, the three-cluster solution had
highest agreement (84.41%), relative to the two and four cluster solutions (78.34%, 58.70%,
respectively), and far exceeded the 25% greater than chance threshold. Using K-means as
the standard, there was agreement on 89.61% (n = 138) of the Cognitively Average group,
83.36% (n = 189) of the Low EF group, and 79.67% (n = 90) of the Prominently Impaired
EF/Memory group. There was a significant relationship between the likelihood of being
assigned to the equivalent group using both clustering methods (χ2(4) = 598.73, p < 0.001).
Thus, the three K-means clusters were determined to be the optimal cluster solution and
were used in all subsequent analyses.
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Figure 2. K-Means 3 cluster solution based on pattern of cognitive domain performance. Note. Error
bars reflect the standard error of each metric. EF = Executive Function.

Table 3 depicts the demographic, cognitive, mood, and motor scores of the three
cognitive clusters. Results of Kruskal–Wallis H tests indicated that the three clusters
significantly differed across DRS-2 total scores and all cognitive composite scores in the
expected direction. Specifically, participants in the Cognitively Average group performed
better than those in the Low EF group, who performed better than those in the Prominently
Impaired EF/Memory group across all cognitive indices.

As shown in Table 3, the three clusters also differed with respect to motor symptom
severity, self-reported mood symptoms, and racial/ethnic distribution. Namely, partici-
pants in the Prominently Impaired EF/Memory cluster had significantly greater motor
symptoms (UPDRS Part III scores), greater apathy (AS), and greater trait anxiety (STAI:
Trait) than both other clusters and greater depressive symptoms (BDI-II) than the Cogni-
tively Average cluster. Those in the Low EF and Prominently Impaired EF/Memory clusters
had significantly greater state anxiety (STAI: State) than the Cognitively Average cluster.
Moreover, there was a significant difference between the clusters’ proportions of white
non-Hispanic participants, with a fewer represented in the Cognitively Average cluster
relative to both other clusters. In contrast, there were no significant differences among the
clusters across other demographic characteristics (age, education, sex), duration of illness
(years since diagnosis, years since symptom onset), or proportion of participants with each
motor subtype. Overall, the Prominently Impaired EF/Memory cluster had significantly
worse mood, motivation, and motor symptoms than the other two clusters, but the effect
sizes of these differences were small. As a follow-up, we conducted Pearson correlation
analyses between the cognitive composites and mood/motivation measures (See Table A2
for analyses). Overall, the results continued to suggest an exceptionally small but consistent
relationship between greater mood symptoms and worse cognitive performance across
domains. Additionally, we conducted exploratory analyses within the language domain
to determine whether one of the two measures drove the low language performance seen



Brain Sci. 2022, 12, 54 9 of 18

within the Prominently Impaired EF/ Memory cluster. We found that semantic fluency
performance was significantly lower than confrontation naming (see Table A3).

Table 3. Comparing the K-means Clusters’ Descriptive, Clinical, and Cognitive Characteristics.

Characteristic
Measure

Cluster 1
Cognitively

Average
Cluster 2
Low EF

Cluster 3
Prominently

Impaired
EF/Memory

Omnibus
Kruskal–

Wallis
H-Test

Effect Size Post hoc
Differences
(Bonferroni
Corrected)N = 154 N = 227 N = 113

Mean (SD)/ Mean (SD)/ Mean (SD)/ p-value Eta squared
/Cramer’s V #% % %

Age (years) 64.51 (8.75) 65.31 (9.12) 63.85 (9.15) 0.38 0.004 –
Education (years) 15.35 (2.55) 14.91 (2.91) 14.73 (2.83) 0.13 0.01 –

Sex (% Male) 68% 73% 75% 0.33 ˆ 0.07 # –
% Caucasian, Non 99% 93% 91% 0.01 ˆ 0.15 # 1 < [2 = 3] *

Hispanic
% H-Y Stages 2–3 95% 93% 95% 0.57 ˆ 0.06 # -
% Tremor Subtype 73% 76% 82% 0.16 ˆ 0.08 # –

Years Since Symptom 9.45 (5.14) 9.51 (5.20) 10.03 (5.57) 0.58 0.002 –
Onset

Years Since Diagnosis 7.70 (5.06) 7.58 (4.73) 8.56 (5.15) 0.23 0.01 –
UPDRS Part III 22.78 (8.85) 25.18 (9.38) 28.91 (10.81) <0.001 0.05 [1 = 2] < 3 **

BDI-II 9.15 (7.04) 9.81 (6.06) 12.09 (7.79) 0.001 0.03 1 < 3 **
Apathy Scale 10.47 (6.33) 10.89 (6.25) 13.01 (6.14) 0.01 0.02 [1 = 2] < 3 **

STAI: State Pct. 53.20 (31.34) 63.26 (28.51) 68.73 (28.09) <0.001 0.04 1 < [2 = 3] **
STAI: Trait Pct. 50.11 (31.29) 59.21 (30.30) 68.33 (27.73) <0.001 0.04 1 < 2 < 3 **

DRS-2 139.54 (3.10) 136.92 (4.22) 133.65 (4.42) <0.001 0.23 1 > 2 > 3 *
Cognitive Domain
Z-Score Composites
Executive Function 0.20 (0.59) −0.58 (0.58) −1.63 (0.65) <0.001 0.56 1 > 2 > 3 *

Memory 0.51 (0.70) −0.44 (0.75) −1.40 (0.75) <0.001 0.47 1 > 2 > 3 *
Language 0.79 (0.68) −0.08 (0.70) −1.02 (0.72) <0.001 0.48 1 > 2 > 3 *

Visuospatial Skills 0.44 (0.56) 0.01 (0.70) −0.59 (0.82) <0.001 0.21 1 > 2 > 3 *
Attention/WM 0.67 (0.70) 0.03 (0.72) −0.20 (0.63) <0.001 0.20 1 > 2 > 3 **

Note. * Significant difference at p < 0.001 across all group comparisons; ** Significant difference at p < 0.05 across
all group comparisons; ˆ Chi-square test of independence used; # Cramer’s V values; EF = Executive Function;
WM = Working Memory; H-Y = Hoehn and Yahr; UPDRS = Unified Parkinson’s Disease Rating Scale; BDI-II =
Beck Depression Inventory-II, STAI = State-Trait Anxiety Inventory; DRS-2 = Dementia Rating Scale-2.

3.4. Relationship between Cognitive Phenotypes and PD-MCI Classification

Table 4 depicts the distribution of PD-MCI cases within each cluster using the three
PD-MCI impairment cutoffs. Pearson chi-square tests of independence revealed that
PD-MCI classification and cluster membership were significantly related to one another
with a large effect size (Table 4). Across all three cutoffs, the Cognitively Average cluster
contained very few PD-MCI cases. Using the −1 SD cutoff, the Low EF and Prominently
Impaired EF/Memory clusters contained similar portions of the PD-MCI cases. Using
the −1.5 SD cutoff, about three quarters of the PD-MCI cases fell into the Prominently
Impaired EF/Memory cluster while about a quarter fell into the Low EF cluster. Finally,
using the −2 SD cutoff, almost all the PD-MCI cases fell into the Prominently Impaired
EF/Memory cluster. Thus, the more stringent the impairment cutoff, the more sensitive
the Prominently Impaired EF/Memory cluster was to containing greater portions of the
PD-MCI classified cases.

Table 4. Percentage of PD-MCI Cases Falling to Each K-Means Cluster.

Impairment
Cutoff

Cognitively
Average

% (n)

Low EF
% (n)

Prominently
Impaired

EF/Memory
% (n)

Pearson Chi
Square p-Value Cramer’s V

−1 SD 1.01% (2) 46.46% (92) 52.53% (194) 223.47 <0.001 0.67
−1.5 SD 0.95% (1) 23.81% (25) 75.24% (79) 213.13 <0.001 0.66
−2 SD 0% (0) 4.44% (2) 95.56% (43) 148.33 <0.001 0.55

Note. PD-MCI = Parkinson’s Disease-Mild Cognitive Impairment; EF = Executive Function.
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Binary logistic regression analyses examined how well cluster membership predicted
PD-MCI classification. Each impairment cutoff had significant omnibus tests (−1 SD: X2(2)
= 274.61, p < 0.001, Cox and Snell R2 = 0.43, Nagelkerke R2 = 0.58; −1.5 SD: X2(2) = 203.37,
p < 0.001, Cox and Snell R2 = 0.34, Nagelkerke R2 = 0.52; −2 SD: X2(2) = 128.35, p < 0.001,
Cox and Snell R2 = 0.23, Nagelkerke R2 = 0.50). The models all had large effect sizes, ex-
plaining between 50–58% of the variance in PD-MCI classification, and cluster membership
was a significant predictor in all three impairment cutoff models.

Using the −1 SD cutoff, those in the Cognitively Average cluster had 1000× lower
odds of being classified as PD-MCI, relative to the Prominently Impaired EF/Memory
cluster, while those in the Low EF cluster had 16.95× lower odds (p’s < 0.001; Cognitively
Average cluster’s 95% Confidence Interval (CI): 200-perfect model fit; Low EF’s 95% CI:
8.29–35.71). This model correctly classified 79.1% of PD-MCI cases with poor sensitivity
(as only about half of PD-MCI cases were classified as such by the model) and excellent
specificity (as almost all Cognitively Average cluster participants were correctly classified
as cognitively normal by the model; Table 5). Using the −1.5 SD cutoff, those in the
Cognitively Average cluster had 333.33× lower odds of being classified as PD-MCI, relative
to the Prominently Impaired EF/Memory cluster, while those in the Low EF cluster had
18.87× lower odds (p’s < 0.001; Cognitively Average’s 95% CI: 47.62-perfect model fit; Low
EF’s 95% CI: 10.53–33.33). This model correctly classified 87.9% of PD-MCI cases with
stronger sensitivity and slightly lower (but still excellent) specificity than the −1 SD criteria
model. Finally, using the −2 SD cutoff, those in the Low EF cluster had 71.43x lower odds of
being classified as PD-MCI, relative to the Prominently Impaired EF/Memory cluster, while
no cases in the Cognitively Average cluster were classified as PD-MCI (Low EF p < 0.001,
95% CI: 16.39–333.33). This final model correctly classified 90.9% of PD-MCI cases, but the
model predicted that all cases were cognitively normal, leading to a null sensitivity and
perfect specificity.

Table 5. Binary logistic regression models’ sensitivity, specificity, and positive and negative predictive
values based on different PD-MCI prevalence rates.

Impairment Cutoff Sensitivity Specificity C Stat.
Sample 0.25 Base Rate

0.45 0.65

PPV NPV PPV NPV PPV NPV PPV NPV

−1 SD 0.53 0.97 0.86 0.92 0.76 0.85 0.86 0.94 0.72 0.97 0.53
−1.5 SD 0.75 0.91 0.88 0.70 0.93 0.74 0.92 0.87 0.82 0.94 0.66
−2 SD 0.00 1.00 0.91 – 0.91 – 0.75 – 0.55 – 0.35

Note. PD-MCI = Parkinson’s Disease–Mild Cognitive Impairment; C Stat. = C Statistic; PPV = positive predictive
value; NPV = negative predictive value.

When using the models’ predicted PD-MCI group membership to predict actual PD-
MCI classification, all three models produce significant, acceptable C statistics (above
70%, p’s < 0.001; Table 5). The model using the −1.5 SD cutoff had the highest jointly
maximized sensitivity and specificity (−1 SD Youden’s Index (YI): 0.50; −1.5 SD YI: 0.66;
−2 SD YI: 0). Table 5 presents the positive and negative predictive values predicated on a
range of PD-MCI base rate estimates. Using the sample’s prevalence rates for each cutoff,
the −1 SD cutoff maximizes the probability that those classified by the model as PD-MCI
truly meet this actuarial diagnosis while the −1.5 SD cutoff maximizes the probability that
those classified as cognitively normal are truly cognitively intact. Since the true base rate of
PD-MCI is unknown, the low, midpoint, and high end of the range of estimated prevalence
rates were also used to calculate positive and negative predictive values [25,26]. In settings
with lower PD-MCI prevalence rates (e.g., 25%), using −1 SD would jointly maximize the
probability of correct classification, but in settings containing a population with greater
chance of impairment (e.g., 45%), then −1.5 SD would do so. As our patients were all seen
in a specialty clinic, the prevalence of PD-MCI in our sample is presumably closer to this
midpoint of the prevalence rates previously estimated. Taken all together, using the −1.5
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SD cutoff resulted in cluster membership having high model-based classification accuracy,
the largest YI, and jointly maximized PPV/NPV (based on our sample’s clinical setting).

4. Discussion

Our study investigated different techniques of methodologically defining and charac-
terizing cognitive impairment in a large, clinical sample of individuals with idiopathic PD
without dementia. We took two approaches (i.e., actuarial PD-MCI classification, cluster
analytic) and looked at their overlap. In doing so, we hoped to learn which cognitive
phenotypes empirically emerged, the influence of different impairment cutoffs on PD-MCI
prevalence rates, and whether a specific impairment cutoff aligned best with the cognitive
phenotype reflecting greater PDD risk.

The actuarially defined PD-MCI prevalence varied from 40.1% using the liberal end of
impairment criteria (−1 SD), to 21.5% using the midpoint (−1.5 SD), and 9.1% using the
conservative end (−2 SD). Regardless of impairment cutoff, most PD-MCI cases involved
single-domain impairment. This finding aligns with that of Marras and colleagues [62] and
runs counter to that of others who describe PD-MCI as most commonly involving multi-
domain impairment [25,62,63]. This discrepancy likely reflects methodological differences.
For example, if one strictly follows proposed criteria for MCI by the Movement Disorder
Society (MDS) [23], then having a single impaired test across two separate domains leads
to the designation of multi-domain PD-MCI. In contrast, other more psychometrically
rigorous approaches require participants to have at least two impaired measures within
a domain for it to be considered impaired. Marras and colleagues [62] found that when
strictly using MDS criteria, most PD-MCI cases demonstrated multi-domain impairment;
however, when they analyzed the same sample with an altered operationalization of
impairment that required two impaired tests within a domain, the majority of PD-MCI cases
had single domain impairment. Thus, using a similarly more stringent operationalization
of impairment, our results support the commonality of the single-domain impairment in a
larger sample of individuals with PD without dementia.

In the current study, we grouped those classified as PD-MCI into executive vs. nonex-
ecutive subtypes, with presence or absence of other co-occurring cognitive difficulties
(e.g., EF—single domain, EF—multi-domain). This method of subtyping allowed us to
distinguish the variety of cognitive domains impaired beyond executive dysfunction. Using
this approach, we found, across all three cutoffs, the Single-EF subtype was the most preva-
lent, but 19–26% of PD-MCI cases (depending on the cutoff) exhibited impairments only
in other domains-reinforcing the existence of variable patterns in cognitive performance
across individuals with PD. Beyond the most prevalent deficit, executive dysfunction,
participants primarily demonstrated deficits in memory and language domains.

Using a different statistical approach (cluster analysis), we found three distinct cogni-
tive phenotypes in this same sample of individuals with PD. These phenotypes differed
in severity of cognitive deficits: (1) average cognition, (2) low EF, and (3) more prominent
impairments in EF and memory with low language abilities. Though this is a cross-sectional
study, it is possible that these phenotypes may reflect the succession of neuropathological
changes. Namely, individuals with PD develop frontal executive dysfunction based on
dopaminergic changes in frontal-striatal networks and, as the disease progresses, more
cortical system and limbic deficits develop (based on cholinergic changes) [29–31]. With
disease progression, individuals with greater cognitive deficits may have more widespread
involvement of cortical areas which likely increases their risk of transitioning to PDD. This
notion was recently supported by Domellöf and colleagues [64] who found that significantly
lower performance on semantic fluency, memory, and EF measures, identified individuals
with PD-MCI who converted to PDD over a five-year period. Thus, our broadly impaired
cluster contained multiple deficits previously shown to be predictive of progression to PDD.

Participants in the more prominently impaired cluster demonstrated worse motor
symptoms (UPDRS-Part III scores) than the other two clusters. This finding is in alignment
with previous research showing greater cognitive dysfunction (including dementia risk) in
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those with more advanced motor symptoms and disease progression [65–67]. The promi-
nently impaired cluster also had greater mood symptoms relative to the other two clusters.
While the influence of mood is likely a contributing component to their performance, the
cluster differences had small effect sizes, suggesting a minimal impact of mood on cluster
membership. We did not find broad evidence for demographic differences between the
three clusters, a finding that conflicts with prior research that older age, less education, and
longer disease duration are associated with worse cognition [68–70]. Of note, the cognitive
clusters were based on composite scores of “normed” neuropsychological measures, which
controls for certain demographic factors. As such, the norming might obfuscate findings of
age, and potentially education, differences across the cluster phenotypes. We did find that
the cognitively average cluster had a greater proportion of white non-Hispanic participants;
however, the small sample sizes of other races/ethnicities in the overall sample limit our
ability to draw related inferences.

Finally, the outcomes of the data-driven and theoretical approaches were compared.
We found that the midpoint cutoff (−1.5 SD) served as the best predictor of PD-MCI classifi-
cation relative to the other cutoffs in terms of classification accuracy and jointly maximized
sensitivity and specificity of the model. Use of the midpoint (−1.5) cutoff resulted in
three-fourths of the PD-MCI cases falling into the prominently impaired cluster, whereas
use of liberal (−1 SD) cutoff resulted equivalent distribution of PD-MCI cases into the
low EF and prominently impaired clusters. Researchers previously tried to validate the
same three PD-MCI impairment cutoffs by comparing them against clinical diagnosis, but
findings have been inconsistent, supporting cutoffs at either −1.5 SD [71] or −2 SD [8].
Furthermore, these clinical validation methods use a circular logic in that clinical diagnosis
of impairment would still require a preconceived understanding of what performance
counts as impaired relative to a normative expectation. Comparing actuarial and empirical
approaches serves as a validation method that circumvents this circular logic. This method-
ology has precedence within the Alzheimer’s literature which found that data-driven
approaches may enhance sensitivity for detecting both cross-sectional and future clinical,
biomarker, and neuropathological outcomes-a topic that should be explored in future work
with PD participants.

Past longitudinal work evaluating which impairment cutoff best predicts PDD de-
velopment over a multi-year follow-up period also remains mixed-with some studies
supporting an optimal cutoff at −1.5 SD [27] while others support a cutoff of −2 SD [72].
Though cross-sectional, our findings further support the use of a midpoint (−1.5 SD) cutoff
based on its validation against the sample’s cognitive phenotype with deficits that past
studies suggest are predictive of PDD.

This study has limitations. First, our clinical sample may not be representative of a
broader population of individuals with PD as our data were collected at a specialty center
from a combination of patients seeking deep brain stimulation and those referred for a
neuropsychological evaluation due to cognitive concerns. Second, while patients were
clinically diagnosed with PD using established clinical criteria, this patient population did
not have pathologically confirmed PD (to definitively rule out other syndromes that could
mirror PD early on, such as Progressive Supranuclear Palsy-Parkinsonism Predominant
variant). Third, we did not have access to the whole sample’s medication information that
would enable us to characterize the potential relationship of cognitive performance with
medications (e.g., parkinsonian medication’s LEDD values, or rate of anticholinergic use).
A small subset of recently seen patients (n = 20/cluster) had available medication lists,
from which Magellan Anticholinergic Risk Scale scores were calculated [73]. A chi-square
test of independence showed no significant differences in the proportions of Magellan
scores across clusters and weak effect size (p = 0.516, Cramer’s V = 0.20), suggesting that
our predominantly impaired group did not have a significantly disproportionate amount
of participants on anticholinergic medication. Fourth, we used listwise exclusion to meet
the goal that all participants have two or more measures within each domain to classify
them as PD-MCI. There is a possibility that we may have missed more severely impaired
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individuals who did not complete the full battery of tests, though these individuals would
have likely been excluded based on our cognitive screener.

More broadly, there are some issues involving current practices used for formal clinical
diagnosis of MCI. One practice is the requirement that patients have subjective cognitive
complaints in order to receive MCI diagnosis (as in the MDS PD-MCI consensus criteria).
We did not have this information readily available, and not applying this broadly used
MDS criteria limits the comparability of our findings to other studies that use it. Even so,
there is precedence for not including subjective cognitive complaints within an actuarial
version of the PD-MCI criteria [7,74–76], and evidence for the usefulness of this criteria is
mixed [77,78]. Finally, clinicians often make a diagnosis of MCI in situations where there
has been a performance drop from an estimated premorbid baseline (e.g., a, drop from
superior to low average ranges). We were unable to account for impairment based on
decline from premorbid abilities in this sample. However, defining MCI with actuarial
methods has gained traction within the Alzheimer’s literature and been shown to improve
diagnostic rigor for MCI [22,79–81]. Thus, further research examining actuarial methods
to characterize PD-MCI may prove helpful in establishing a “gold standard” and “true”
prevalence rates.

Future work should expand to a more racially/ethnically diverse sample with wider
levels of educational attainment to better generalize the results to a broader patient popula-
tion. It would also be helpful to conduct a longitudinal study to evaluate which impairment
cutoff best predicts PDD development in a larger sample than previous studies.

5. Conclusions

The current findings add to the literature by demonstrating the utility of comparing
empirical and classification definitions of cognitive impairment. Our results reinforce that
variability in prevalence rates of actuarially-defined PD-MCI stems, in part, from use of
different normative definitions of impairment (e.g., −1 to −2 SD). Although this may seem
trivial, it dramatically affects prevalence rates and in turn influences predictive validity of
dementia. Yet, across all cutoffs, PD-MCI classified cases most commonly exhibited single-
domain deficits (primarily in executive function). When empirically defining patterns
of cognitive impairment in a large clinical sample, we found three distinct cognitive
phenotypes with differing levels of cognitive deficit severity. The cognitive phenotype
with broader, more prominent impairments (including features suggestive of greater risk
of impending PDD development) best aligned with operationalizing impairment at the
midpoint cutoff (−1.5 SD). These findings contribute to the widespread efforts to determine
criteria that best establish what level and which patterns of cognitive impairment have the
most utility at predicting who is at greatest risk of upcoming progression to PDD.
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Appendix A. Comparison of Deep Brain Stimulation and General Clinic Patients’
Cognitive Performance

Table A1. Cognitive performance of deep brain stimulation candidates versus general clinic patients.

Measure
DBS General Clinic Significance

(n = 338) (n = 156)

Mean (SD) Means (SD) p-value
Dementia Rating Scale-2, raw total 137.05 (4.28) 136.86 (4.92) 0.69
Cognitive Composites (z-scores) #

Executive Function −0.55 (0.88) −0.64 (0.93) 0.32
Verbal Delayed Memory −0.37 (1.00) −0.36 (1.04) 0.95

Language 0.001 (0.94) −0.09 (1.00) 0.35
Visuospatial Abilities 0.01 (0.78) 0.02 (0.79) 0.85

Attention/Working Memory 0.20 (0.77) 0.11 (0.76) 0.22

Note. # z-score has a mean of 0 and SD of 1, and z-score composites were computed from performance on
neuropsychological tasks within a domain. Bootstrapped independent sample t-tests were performed to assess
group differences.

Appendix B. Relationship between Mood and Cognitive Domains

Table A2. Pearson correlations between mood measures and composite z-scores.

Measure Executive
Function

Verbal
Delayed
Memory

Language Visuospatial
Attention/
Working
Memory

BDI-II −0.10 * −0.13 * −0.09 * −0.10 * −0.16 *
STAI
State −0.18 * −0.10 * −0.18 * −0.10 * −0.08
Trait −0.18 * −0.15 * −0.17 * −0.14 * −0.15 *

Apathy Scale −0.14 * −0.10 −0.09 −0.13 * −0.09
Note. * p < 0.05.

Greater depressive symptoms (BDI-II) and dispositional anxiety (STAI-Trait) were both
significantly associated with poorer performance across all composites, with small effect
sizes. Greater situational anxiety (STAI-State) significantly related to worse performance
on all composites except attention/working memory, with small effect sizes, and greater
apathy symptoms (AS) significantly correlated with poorer performance on executive and
visuospatial composites.

Appendix C. Exploratory Analyses of Language Metrics

Table A3. Z-scores of Language Metrics across Clusters.

Metric Cognitively
Average Low EF Prominently Impaired

EF/Memory

Boston Naming Test 1.05 (0.96) 0.18 (1.01) −0.67 (0.96)
Semantic Fluency

(Animals) 0.52 (0.90) −0.35 (0.96) −1.37 (1.04)

Note. Values are presented as normative z-score mean (standard deviation).
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Table A3 shows mean scores of BNT and semantic fluency (Animals) across the 3
clusters. Results of a between (cluster) x within (language measure) repeated measures
ANOVA revealed a significant main effect of language measures (F(1.00, 491.00) = 95.94,
p < 0.001, np

2 = 0.16) where semantic fluency was significantly lower than confrontation
naming (M = −0.65, p < 0.001). The main effect of cluster was also significant (F(2, 433.61) =
202.84, p < 0.001), with the Cognitively Average cluster performing significantly better than
the Low EF cluster (M difference = 0.87) who in turn scored better than the Prominently
Impaired EF/Memory cluster (M difference = 0.78), with all p values < 0.001. The cluster x
language measure interaction was nonsignificant (F(2.00, 491.00) = 0.50, p > 0.05, np

2 = 0.002).
Thus, all clusters demonstrated similar patterns of worse semantic fluency performance
relative to confrontation naming.
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