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Introduction
Almost all the eukaryotes possess mitochondria in their cells. 
Although the origin of mitochondria is still debatable, it is 
widely accepted that a bacterium that was closely related to 
extant alpha-proteobacteria1 had been engulfed by an ancestral 
eukaryotic host and it gave rise to mitochondria. The endos-
ymbiotic event had a notable influence on eukaryotic cellular 
evolution. Because mitochondria perform functions such as 
energy metabolism, amino acid metabolism, lipid metabolism, 
Fe-S cluster biogenesis, apoptosis, and oxidation stress reaction 
that are essential for eukaryotic cells, elucidation of the diver-
sity and evolution of mitochondrial functions is a crucial 
research subject in eukaryotic evolutionary biology.

Mitochondria are separated from other cellular components 
by a double membrane, resulting in the concentration of mito-
chondrial proteins inside the membrane. In general, the func-
tions of an organelle are determined by the protein repertory of 
the organelle. Therefore, the estimation of the function of 
mitochondria needs to determine the repertory of mitochon-
drial proteins, most of which are nuclear encoded, expressed in 
cytosol, and finally transported into mitochondria.2

To determine a repertory of mitochondrial proteins, the 
proteomic analysis of mitochondria is essential. For model 
organisms in mammals, yeasts, and plants, experimental 

methods for the proteomic analysis of mitochondria have 
already been established during their long research histories3–7; 
however, for nonmodel organisms, there are no general strate-
gies for the proteomic analysis of mitochondria. Even in non-
model organisms, information on the amino acid sequences of 
proteins is indirectly obtained from the nucleotide sequences 
of the genome or transcriptome analysis, and these are useful 
tools for studying the cellular and molecular biological research 
subjects of nonmodel organisms of which proteins are difficult 
to treat directly during experiments. Recently, high-through-
put sequencing, the so-called next-generation sequencing 
(NGS), has allowed us to easily obtain the entire genome or 
transcriptome data even from nonmodel organisms at a low 
cost and in a short time. Therefore, transcriptome analysis is 
performed for the entire cell extracts of nonmodel organisms 
including mitochondria and the other cellular components, 
and the mitochondrial proteins are predicted using an amino 
acid sequence–based computational method instead of purify-
ing mitochondria and determining the repertory of mitochon-
drial proteins directly. Such a bioinformatics approach needs to 
discriminate mitochondrial proteins from all the proteins that 
are deduced from the entire cell transcriptome data.

A machine learning approach has been often used to classify 
mitochondrial/nonmitochondrial proteins. Various software 
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programs based on machine learning are available; these pro-
grams predict whether an input protein sequence is a mito-
chondrial protein. For example, TPpred38 and MitoFates9 are 
prediction software programs based on support vector 
machines, whereas TargetP10 is a software program based on 
neural network techniques.

Most of the current prediction software programs, including 
TPpred3, MitoFates, and TargetP, are trained only with the 
data derived from model organisms, which belong, in particu-
lar, to the taxonomic groups—metazoa (animals), embryophyta 
(land plants), and fungi—and these programs are designed for 
application to the proteins of model organisms and their rela-
tives. Model organisms have been studied experimentally at an 
enormous cost because of their basic biological, medical, or 
industrial importance. This has resulted in the accumulation of 
vast biochemical experimental data of protein localization to 
cellular compartments including mitochondria.

However, in the case of nonmodel organisms, except for 
those that are closely related to the known model organisms in 
metazoa, embryophyta, and fungi, very few experimental data 
are available because of the shortage of basic experimental pro-
cedures, although they exhibit most parts of the eukaryotic 
diversities.11 Hereafter, we refer to such nonmodel organisms 
that do not belong to metazoa, embryophyta, and fungi as non-
model organisms. Therefore, for the study of the mitochondrial 
proteins derived from nonmodel organisms, the sequence data 
of genome or transcriptome that are produced using the NGS 
approach are mainly used to predict the proteins that would be 
mitochondrially localized. In general, the prediction tools 
designed for model organisms are usually applied for these 
analyses; however, these tools do not necessarily guarantee 
accuracy of prediction because the N-terminal sequence fea-
tures important for the prediction of the mitochondrial pro-
teins could be far divergent in nonmodel organisms compared 
with those of the model organisms. In particular, in the case of 
highly reduced mitochondria, the so-called mitochondrion-
related organelles (MRO), in anaerobic or microaerophilic 
organisms, the prediction of the mitochondrial protein using 
the prediction tools that are currently available is highly inac-
curate.12 Therefore, in general, for predicting mitochondrial/
MRO proteins in nonmodel organisms, the consensus of the 
results from multiple predictors is considered to avoid false 
predictions. However, this cannot be validated.

To resolve this problem, here, we propose a software pro-
gram, NommPred (nonmodel organismal mitochondrial/MRO 
protein predictor), which predicts the mitochondrial/MRO 
proteins derived from nonmodel organisms. To develop this 
software, we prepared a data set including the mitochondrial 
or MRO proteins derived widely from nonmodel organisms 
and adopted a gradient boosting machine (GBM)13–15 as a 
classifier. GBM, which is one of the ensemble classifiers, was 
used instead of the support vector machine,16 which was 
adopted in the previous predictors MitoFates9 and TPpred3.8 

NommPred could resolve the problem due to the inconsist-
ency between the origins of the training and input data when 
predicting the mitochondrial/MRO proteins of nonmodel 
organisms. The performance of NommPred is superior to 
MitoFates, which was demonstrated to be the best among the 
alternative methods,9 in predicting the mitochondrial/MRO 
proteins derived from nonmodel organisms. Therefore, 
NommPred is the best predictor for the mitochondrial/MRO 
proteins of nonmodel organisms.

Materials and Methods
Scheme of NommPred

A flow chart and a message sequence chart of the newly devel-
oped software, NommPred, are illustrated in Figures 1 and 2, 
respectively. The software takes as input both the protein 
sequence in FASTA format (definition is available from www.
ncbi.nlm.nih.gov/books/NBK53702/) and organismal infor-
mation from which the protein sequence is derived. The fea-
ture of each protein was extracted based on MitoFates9 to 
create a 920-dimensional feature vector (Figure 1 and 
Supplementary Table 1). The vector is subjected to the GBM 
predictor (Mit Predictor for mitochondrial proteins or MRO 
Predictor for MRO proteins as described below), and the pre-
dictor outputs the prediction results.

Data sets

The data set used for the training and test is shown in Table 1. The 
mitochondrial or MRO proteins are treated as positive samples 
and the others as negative samples. The sequence data were 
obtained from UniProt Consortium17 (www.uniprot.org/), 
GiardiaDB18,19 (giardiadb.org/giardiadb/), TrichDB18 (trichdb.
org/trichdb/), and ApiLoc20 (apiloc.biochem.unimelb.edu.au/api-
loc/apiloc). Although these databases sometimes annotate mito-
chondrial or MRO proteins based on computational prediction, 
we used only those proteins whose localization was confirmed 
experimentally (eg, Western blotting, immunoblotting, or fluores-
cence microscope analysis) to mitochondria or MROs by investi-
gating the literature. Then, we applied protein sequence 
redundancy reduction using the BLASTClust program from the 
NCBI BLAST packages.21 We adopted the criteria of being 
redundant at >95% sequence identity. Finally, we prepared 392 
positive mitochondrial or MRO protein sequences and 3739 neg-
ative sequences. We classified the entire data set into mitochon-
drial and MRO data sets, Mit and MRO. Then, we created a 
predictor for each data set; one is the predictor for the mitochon-
drial protein trained with the mitochondrial proteins of 7 non-
model organismal taxonomic groups (Mit Predictor), whereas the 
other is the predictor for the MRO protein trained with the MRO 
proteins of 3 nonmodel organismal taxonomic groups that possess 
MRO (groups marked with asterisks in Table 1) (MRO Predictor) 
because these 2 data sets were expected to be apparently different 
in the N-terminal sequence features of the mitochondrial/MRO 

www.ncbi.nlm.nih.gov/books/NBK53702/
www.ncbi.nlm.nih.gov/books/NBK53702/
www.uniprot.org/
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protein sequences. The N-terminal sequence features of the MRO 
proteins are generally considered to be extremely divergent from 
those of the mitochondrial proteins.12

Training and prediction method

We adopted GBM, one of the ensemble learning algorithms, 
and created predictors using XGBoost22 package in R Core 
Team23 for the Mit and MRO data sets (Mit Predictor and 
MRO predictor). We searched for optimal values of logical 
variables employed in the XGBoost algorithm. Parameters for 
tree boosting, learning rate (eta), maximum depth of a tree 
(max_depth), minimum sum of instance weight (min_child_
weight), maximum delta step (max_delta_step), and gamma 
were tuned with grid search, and finally we determined to set 
the default values for these variables. In addition, we optimized 
the parameter of the number of trees to the model by cross-
validation. For other parameters, we used the default value. For 
the extraction of features in MitoFates, we used the method 
described in the work by Fukasawa et al.9

Performance measures

To evaluate the performances of both the NommPred predic-
tors—Mit Predictor and MRO Predictor—a receiver operat-
ing characteristic (ROC) curve and an ROC area under the 
curve24 (AUC) were used. In the R system, the ROC curve was 
drawn by plotting the true-positive rate (y-axis) against the 
false-positive rate (x-axis) for different cutoff values, and the 
ROC AUC was drawn based on the ROC curve.

To evaluate the robustness of the ROC AUC measures, we 
randomly divided the Mit or MRO data set into 3 subsets 
(3-fold cross-validation), and we used 2 of them for the train-
ing data, and the other for the test data. This process was 
repeated 100 times.

To compare NommPred with a previous predictor, 
MitoFates, we used the same test data as that of NommPred 
for MitoFates to evaluate its performance. In this performance 
comparison, we performed the paired t test and Wilcoxon 
signed rank test to evaluate the difference between the means 
of these 100 paired ROC AUC scores.

A 920-dimensional vector

Figure 1. Flow chart of NommPred. The closed circle represents the starting point of the program, and the closed circle surrounded by a larger open 

circle represents the end point. The user input data (input data) include the protein sequence in FASTA format and information of the protein sequence 

origin (taxonomic group). The input data are classified into (the first black bar in User action step) protein sequence, which is used for feature extraction, 

and organismal information, which is used for the selection of an appropriate GBM Predictor: Mit Predictor, MRO Predictor, or others. In the feature 

extraction step, the 920 calculated features (Supplementary Table 1) are integrated, and a 920-dimensional feature vector is obtained as the output. In the 

figure, only 6 feature categories are depicted with the number of individual features. This vector is subjected to a selected GBM Predictor as the input 

data, and then the prediction result is shown (output results).
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Search for best prediction models

In the prediction of the mitochondrial proteins, if we know the 
taxonomic group from which the sequence data are derived, we 
may be able to use a preferable predictor instead of the general 
Mit Predictor.

To search for a combination of taxonomic groups for the 
best prediction of the mitochondrial proteins of a given taxo-
nomic group, we prepared the predictors trained with the data 
from all possible combinations of taxonomic groups at least 
including the given taxonomic group. There are 7 taxonomic 
groups possessing mitochondria, and we created 26 predictors 
(Figure 3, step 2) for each taxonomic group. For the prepara-
tion of each predictor, we performed 3-fold cross-validation 
100 times with random repeats. These predictors were evalu-
ated by means of the ROC AUC scores in R. We processed the 
following steps (see also Figure 3).

To compare these taxonomic group–specific predictors with a 
previous predictor, we also computed 100 ROC AUC scores of 
MitoFates for the prediction of mitochondrial proteins on each 
taxonomic group. Each test data set was randomly generated by 
the same procedure (Figure 3, steps 4.2-4.5) from a given taxo-
nomic group. In this performance comparison, we performed the 
t test and Wilcoxon-Mann-Whitney test to evaluate the differ-
ence of mean scores between the taxonomic group–specific 

Figure 2. Message sequence chart of NommPred. The software for NommPred is console user interface (CUI) and it runs on the terminal. The software 

accepts a protein sequence file in multi-FASTA format and a text file with information of the origins of the sequences and outputs the prediction results at 

last.

Table 1. Entire data set used for training and test.

TAxONOMIC 
GROUPa

POSITIVE 
SAMPLESb

NEGATIVE 
SAMPLESc

Chlorophyta 60 81

Dictyostelium 52 622

Piroplasma 7 387

Plasmodium 42 435

Stramenopiles 44 1029

Toxoplasma 30 125

Trypanosomatida 48 587

*Entamoeba 7 94

*Giardia 20 271

*Trichomonas 82 108

Total 392 3739

aIf the taxonomic group corresponds exactly to the genus, the name of the genus 
is represented in italic form. “Stramenopiles” is not a formal taxonomic rank but is 
generally used for the name of the group.
bThe “positive samples” column lists the number of sequences of the 
mitochondrial or MRO proteins.
cThe “negative samples” column lists the number of sequences of the 
nonmitochondrial or non-MRO proteins. The groups that possess MRO are 
represented with asterisks.
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predictor which achieved the best score and MitoFates. We also 
performed these tests for the difference of mean scores between 
best scoring predictor and second best scoring predictor:

1. Select one taxonomic group from the 7 groups (eg, 
Piroplasma in Figure 3) as the given group.

2. Create all possible 26 combinations of the other taxo-
nomic groups (eg, 6 taxonomic groups except Piroplasma).

3. For each of the 26 combinations, add the given group  
(eg, Piroplasma) as each combination contains the  
given group (eg, [Chlorophyta] + Piroplasma, 
[Dictyostelium] + Piroplasma, . . ., [Chlorophyta + Plasmo

dium] + Piroplasma, . . ., [Chlorophyta + Plasmodium + 
Toxoplasma + Trypanosomatida] + Piroplasma, . . . in 
Figure 3).

4. Repeat 100 times steps 4.1 to 4.5.
4.1.  For each combination, combine the data sets of the 

taxonomic groups other than the given group (eg, 
Piroplasma).

4.2.  For the data set of the given group (eg, Piroplasma) 
and the combined data set, divide each data set ran-
domly into 3 subsets.

4.3.  Randomly select 1 of the 3 subsets of the data set of 
the given group (eg, Piroplasma) and use it as a test 

Figure 3. Procedure for searching the best predictor of mitochondrial protein for each taxonomic group. Colored square boxes represent sequence data 

sets of the taxonomic groups. The area covered with slanted lines indicates that it contains mitochondrial protein sequences. For details, see text.
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data set. Randomly select 2 subsets from the 3 subsets 
of the combined data set, merge these subsets with 
the other 2 subsets of the data set of the given group 
(eg, Piroplasma), and use it as a training data set.

4.4. Train the predictor using the above training data set.
4.5.  Calculate the ROC AUC score using the test data 

set.
5. Calculate the mean of 100 ROC AUC scores for each of 

the 26 predictors and plot the 26 mean values.
6. Repeat steps 1 to 5 until the 7th taxonomic group (eg, 

Trypanosomatida in Figure 3) is selected in step 1.

Evaluation of the influence of a taxonomic group on 
the others

To evaluate the degree of influence of a taxonomic group on 
the others, we performed the following analyses in R (see also 
Supplementary Figure 1).

1. Select one taxonomic group from the 7 groups (eg, 
Chlorophyta in Supplementary Figure 1) as the factor 
group and select another group as the target group 
(eg, Piroplasma in Supplementary Figure 1) on which 
the degree of influence of the factor group is 
evaluated.

2. To prepare the control data sets, create all 25 combina-
tions from the 5 taxonomic groups except for the above 
target and factor groups and add the data set of a target 
group to a combined data set for 1 of the combinations 
of the 5 taxonomic groups to make a control data set 
(then, 25 control data sets each of which excludes the fac-
tor group are generated).

3. Add the data set of the factor group to each control data 
set to generate an experimental data set (then, 25 experi-
mental data sets each of which includes the factor group 
are generated).

4. Repeat 100 times steps 4.1 to 4.4 on the control and 
experimental data sets.
4.1.  For each of the 25 combinations, combine the data of 

the taxonomic groups other than the target group 
(eg, Piroplasma).

4.2.  For the data set of the target group and the com-
bined data set, divide each data set randomly into 3 
subsets.

4.3.  Randomly select 1 of the 3 subsets of the data set of 
the target group and use it as a test data set. Randomly 
select 2 subsets from 3 subsets of the combined data 
set, merge these subsets with the other 2 subsets of 
the data set of the target group, and use it as a train-
ing data set.

4.4.  Develop a predictor trained with the above training 
data set in 3-fold cross-validation and then using the 
above test data set, calculate the ROC AUC score 
for the predictor.

5. Calculate the mean of 100 ROC AUC scores for each of 
the 25 + 25 predictors from the control and experimental 
data sets.

6. Perform the Wilcoxon signed rank test to evaluate the 
difference between the mean scores of the above 25 
paired predictors from the control and experimental data 
sets.

7. Tabulate the results (P value and difference of scores 
[“Score Influence”]; Supplementary Table 2).

8. Repeat steps 1 to 7 until all combinations of the factor 
and target groups have been selected in step 1.

Principal component analysis of the features

To investigate the multidimensional trends of the features in 
Mit data set, we performed a principal component analysis 
(PCA) in the R system. We used a 283 (mitochondrial protein 
sequences) × 920 (extracted features) matrix as the input data.

Cluster analysis of the features

To cluster the 7 taxonomic groups based on the features in the 
Mit data set, we used the k-means++ method25 (k = 2) for a 
283 × 141 (principal component [PC] scores) matrix in the R 
system because the components 1 through 141 in the PCA 
could account for 80% of the total variance of the data matrix 
as shown in the “Results” section.

Results
Performance comparison analysis

Prediction of mitochondrial proteins. We performed the perfor-
mance comparison analysis between NommPred and a previ-
ous method, MitoFates. A data set including the mitochondrial 
and nonmitochondrial proteins of 7 nonmodel organismal 
taxonomic groups was used for the preparation of the training 
and test data sets (as described in the “Materials and Methods” 
section), resulting in the creation of Mit Predictor. Performance 
measure scores are listed in Table 2 (also see Supplementary 
Figure 2).

For the mean ROC AUC scores (sample size n = 100), 
MitoFates achieved 0.9080, whereas the performance of Mit 
Predictor of NommPred was superior with a value of 0.9463 
(Table 2). Moreover, the difference between the 2 mean ROC 
AUC scores was significant (paired t test: P = 1.618 × 10−42, 
Wilcoxon signed rank test: P = ~0).

Generally, the ROC AUC score ranging between 0.5 and 
0.7 is regarded as less accurate, between 0.7 and 0.9 as moder-
ately accurate, and more than 0.9 as highly accurate.26 Based on 
these criteria, MitoFates still showed sufficient accuracy in the 
prediction of the mitochondrial proteins derived from non-
model organisms. However, for the prediction of those pro-
teins, Mit Predictor with a higher ROC AUC score was 
preferred.
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Prediction of MRO proteins. As described in the “Materials and 
Methods” section, we classified the entire data set into 2—Mit 
and MRO (Table 1). The MRO data set including the MRO 
and non-MRO proteins of 3 nonmodel organismal groups was 
used for the preparation of the training and test data sets 
(described in the “Materials and Methods” section), resulting 
in the creation of MRO Predictor. We performed a similar 
comparison analysis between the performance of MRO Pre-
dictor and that of MitoFates for the prediction of the MRO 
proteins. The performance measure scores are listed in Table 2.

MitoFates achieved a mean ROC AUC score (sample size 
n = 100) of 0.8021, whereas the performance of the MRO pre-
dictor of NommPred was far better with a mean value of 0.9041 
(paired t test: P = 6.855 × 10−40, Wilcoxon signed rank test: 
P = ~0; Table 2). Based on these results, MRO Predictor of 
NommPred is suitable for the MRO proteins.

Searching for best prediction model

To search for the best combination of taxonomic groups for the 
best prediction of the mitochondrial proteins of a given taxo-
nomic group, we prepared all possible 26 predictors for each 
taxonomic group, and then we calculated the ROC AUC scores 
of each predictor (Figure 3) and plotted it using the boxplot 
(Figure 4). The best scoring predictor for each of the 7 taxo-
nomic groups is indicated in Supplementary Table 3 (also see 
Supplementary Figure 3).

The predictor trained using all the data from the 7 taxo-
nomic groups corresponds to Mit Predictor. In the prediction 
of the proteins derived from each taxonomic group, the perfor-
mance of Mit Predictor was average or superior to the other 
predictors. The scores of these predictions are represented by 
triangles in Figure 4. Based on the results, if the taxonomic 
origin of proteins were unknown, the predictor trained using all 
the data from the 7 taxonomic groups, that is, Mit Predictor, 
would be practically the best choice.

The predictors that were trained using only the data from 
the corresponding taxonomic group clearly showed poor per-
formance in each prediction (represented by the cross symbols 
in Figure 4), whereas the predictors represented by the star 
symbols in Figure 4 are the best scoring predictors for predict-
ing the mitochondrial proteins of each taxonomic group.

On each of the 7 taxonomic group–specific predictions, the 
difference of the mean ROC AUC score between the best 
scoring predictor and the second best scoring predictor was not 
statistically significant (Supplementary Table 4), whereas the 
difference between the best scoring predictor and MitoFates 
(represented by the diamond symbol in Figure 4) was signifi-
cant (Table 3). Therefore, if the taxonomic origin of the protein 
to be predicted was known in advance, NommPred could pro-
vide the best scoring predictor as most appropriate predictor.

Evaluation of the influence of a taxonomic group on 
the others

We performed an experiment to evaluate the influence of a 
taxonomic group on the others, as described in the “Materials 
and Methods” section. Significant relationships were identi-
fied for 28 pairs of the taxonomic groups (Supplementary 
Table 2, P < .05: Wilcoxon signed rank test) out of the 49 
pairs examined. Hereafter in this text, when the data from a 
taxonomic group A (Factor group in Supplementary Table 2) 
significantly increased or decreased with respect to the per-
formance of prediction of another taxonomic group B (Target 
group in Supplementary Table 2), we represent the relation-
ship as A → +B or A → −B, respectively. Concerning the 
group Piroplasma, significant relationships (P < .01) were 
identified as Trypanosomatida → +Piroplasma, strameno-
piles → +Piroplasma, Plasmodium → +Piroplasma, and 
Chlorophyta → +Piroplasma. The difference between the 
scores corresponding to these relationships was clearly higher 
than the others in Supplementary Table 2. Piroplasma seems 
to be most sensitive to the influence of the other taxonomic 
groups. Toxoplasma is likely to have a negative influence on 
other groups significantly (P < .01) such as 
Toxoplasma → −stramenopiles, Toxoplasma → −Piroplasma, 
and Toxoplasma → −Dictyostelium. Chlorophyta and 
Toxoplasma seem to have a significant positive influence on 
each other (P < .01), whereas Dictyostelium and Plasmodium 
seem to have a highly significant positive influence on each 
other (P < 10−5). Based on these results, some taxonomic 
groups were suggested to form clusters, and thus we analyzed 
the clustering of the groups using the mitochondrial sequence 
data from the 7 taxonomic groups.

Table 2. Comparison of the mean ROC AUC scores between NommPred and MitoFates. In NommPred, mitochondrial proteins were predicted by 
Mit Predictor, whereas MRO proteins were by MRO Predictor.

PREdICTION 
TARGET

ROC AUC P VALUE

NOMMPREd MITOFATES PAIREd T TEST WILCOxON SIGNEd RANK TEST

Mitochondrial protein 0.9463 0.9080 1.618e−42 0.00e+00

MRO protein 0.9041 0.8021 6.855e−40 0.00e+00

The 100 randomly generated data sets (n = 100) of mitochondrial or MRO proteins were used for cross-validation (see “Materials and Methods” section).
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PCA of features

The PCA was performed on the vectors of the 920-dimen-
sional features extracted from the 283 mitochondrial protein 
sequences that are derived from the 7 taxonomic groups. The 
cumulative contribution ratio was 80% after the 141st PC was 
included. We scattered PC 1, PC 2, and PC 3 on a 3-dimen-
sional plot (Figure 5). Two clusters were observed in the  
plot: one is the Dictyostelium and Plasmodium cluster, whereas 
the other cluster includes the other taxonomic groups 
Chlorophyta, Piroplasma, stramenopiles, Toxoplasma, and 
Trypanosomatida.

Cluster analysis of the features

To evaluate the clustering by PCs 1 to 3 in higher dimensions, 
we performed cluster analysis using the k++ method (k = 2) 
and observed that for any PC dimension ranging from 2 to 
141, the clusters formed by clustering PCs 1 to 3 still remained 
(Figure 6, the case using up to 141st dimensions of PC): one 
includes the Dictyostelium and Plasmodium mitochondrial pro-
teins, whereas the other includes those from Chlorophyta, stra-
menopiles, Toxoplasma, and Trypanosomatida. The number of 
mitochondrial proteins of Piroplasma was less, and these were 
not clearly clustered into either of the 2 groups.

Figure 4. Boxplot showing the performance of all possible predictors of the mitochondrial proteins for each taxonomic group. The ROC AUC scores 

(y-axis) of the 7 taxonomic groups possessing mitochondria (x-axis) are plotted. Each closed circle represents the ROC AUC score (y-axis) of each 

predictor for predicting the mitochondrial proteins of each taxonomic group. Lines within the boxplot indicate the median, the lower/higher quartile (Q1/

Q3), and lower/higher whiskers. The star symbols correspond to the scores of the best scoring predictor for each taxonomic group (see Supplementary 

Table 3). The triangle symbols represent the scores of the predictor trained with the data of all the 7 taxonomic groups. The cross symbols represent the 

scores of the predictor trained only with the data of the corresponding taxonomic group. The diamond symbols represent the scores of MitoFates.

Table 3. Comparison of the mean ROC AUC scores between the best scoring predictor of mitochondrial proteins for each taxonomic group in 
NommPred and MitoFates.

PREdICTION TARGET: 
MITOCHONdRIAL PROTEINS OF

ROC AUC P VALUE

NOMMPREd (BEST SCORING PREdICTOR) MITOFATES WELCH T TEST WMW TEST

Piroplasma 0.9729 0.9335 2.597e−11 1.725e−11

Chlorophyta 0.9631 0.9444 3.067e−06 8.982e−06

Dictyostelium 0.9506 0.9381 0.003263 0.006537

Plasmodium 0.9436 0.9022 2.347e−12 1.479e−11

Stramenopiles 0.9809 0.9311 0.00e+00 0.00e+00

Toxoplasma 0.8899 0.8255 1.599e−10 2.682e−09

Trypanosomatida 0.9490 0.9036 2.822e−15 1.468e−13

The 100 randomly generated data sets (n = 100) of mitochondrial proteins were used for cross-validation (see “Materials and Methods” section).
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Discussion
We succeeded in developing NommPred, the predictors for the 
mitochondrial and MRO proteins derived from diverse non-
model organisms, except for those belonging to metazoa, 
embryophyta, and fungi. Previously, the protein sequence data 
derived from nonmodel organisms were subjected to the pre-
dictor trained only using the data from model organisms. 
NommPred could resolve the problem resulted from such 
inconsistency between the origins of the training data (model 
organisms) and the input data (nonmodel organisms).

Performance comparison analysis

The results of the statistical analysis (Tables 2 and 3) clearly 
supported the superiority of NommPred in the performance of 
predicting the mitochondrial proteins of nonmodel organisms 
when compared with the existing best method, MitoFates. In 
particular, NommPred is the first software that is expected to 
be used for predicting the MRO proteins. NommPred would 
be useful for the prediction of metabolic pathways relating to 
the mitochondria/MROs from nonmodel organisms, the NGS 
data of which can be available.

Searching for best prediction model

The predictor for the mitochondrial proteins trained using the 
data from all the 7 taxonomic groups in Figure 4 does not 
exhibit the best score when compared with various alternative 
predictors examined in Figure 4 and Supplementary Table 3 in 

predicting the proteins of a given taxonomic group. However, 
the performance of the predictor is not poor for any taxonomic 
groups. Thus, Mit Predictor, which corresponds to the predic-
tor trained using the data from all the 7 taxonomic groups, can 
be applied for general usage. The performance of the predictor 
that was trained using the data derived only from a given taxo-
nomic group was inferior to several predictors that were trained 
using the data from the various combinations of the taxonomic 
groups (Figure 4). When a taxonomic group of the protein to 
be predicted is known in advance, NommPred can provide 
taxonomic group–specific predictors of the mitochondrial pro-
teins with the best performance (Supplementary Table 3) in 
addition to Mit Predictor.

In the mitochondrial proteins of model organisms of which 
the mitochondrial targeting signals were experimentally inves-
tigated, the N-terminal signal sequences are generally diver-
gent27,28; however, the previous predictors can accurately 
distinguish between the mitochondrial and nonmitochondrial 
proteins based on the N-terminal sequence features.9,28 In our 
present analyses for nonmodel organisms, the performance of 
the predictors of each taxonomic group was unexceptionally 
improved by the addition of protein sequences from some 
other taxonomic groups (Figure 4). This improvement in the 
performance indicates that the N-terminal sequence features 
of the mitochondrial proteins still share some common features 
even in nonmodel organisms. However, depending on the case, 
adding the protein sequences of some taxonomic groups nega-
tively influenced the performance of prediction. The inclusion 

Figure 5. Three-dimensional plot of PCA. PC 1, PC 2, and PC 3 scores were derived from the PCA on the 920-dimensional features of the mitochondrial 

protein sequences derived from the 7 taxonomic groups possessing mitochondria. Each taxonomic group is distinguished by the color shown in the 

legend.
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of Toxoplasma or Plasmodium was shown to have a negative 
influence on some of the other taxonomic groups in the perfor-
mance of prediction (Supplementary Table 2). It might be 
because of the divergent nature of their protein sequences 
including the N-terminal portion because of the high evolu-
tionary rate resulted probably from their parasitic lifestyle.29 
However, the inclusion of the other parasitic group, Piroplasma 
or Trypanosomatida, did not have any negative influence on 
the other taxonomic groups. The N-terminal sequence features 
of these groups might be less divergent than those of Toxoplasma 
or Plasmodium.

PCA and cluster analysis of the features

Interestingly, the result of the PCA (Figure 5) and cluster anal-
ysis (Figure 6) showed the presence of 2 clusters of taxonomic 

groups, one including Trypanosomatida, Toxoplasma, stra-
menopiles, and Chlorophyta and the other including 
Dictyostelium and Plasmodium. We tried to investigate the 
kinds of N-terminal sequence features that are significant for 
the classification of the mitochondrial protein sequences into 2 
clusters by referring to the contribution-weighted loading val-
ues of PCs 1 through 141, the cumulative contribution ratio of 
which amounted to 80%. However, we could not interpret bio-
logically because we could not narrow the repertory of the fea-
ture variables with extremely high absolute loading values 
compared with the other variables (data not shown).

Taxonomic groups that influence each other positively are 
(Supplementary Table 2) likely to belong to 1 of the 2 clusters 
obtained from the above cluster analysis, suggesting that the 
taxonomic groups in the same cluster share the trends of the 
N-terminal sequence features that are used for training.

Piroplasma was influenced significantly by all the other 
taxonomic groups with a large difference in the mean ROC 
AUC scores (“Score Influence” in Supplementary Table 2), 
indicating that the training of the predictor of Piroplasma 
could be sensitive to the data from the other taxonomic groups. 
The sensitivity corresponds to the high variability of its ROC 
AUC scores (Figure 4). Such instability of the predictor of 
Piroplasma could be the result of the shortage of the mito-
chondrial protein sequence data used in the present analyses. 
The inclusion of more data from Piroplasma in the future will 
improve the stability of the predictor.

The inclusion of Plasmodium was shown to have a positive 
influence on the prediction of Dictyostelium mitochondrial pro-
teins and vice versa (Supplementary Table 2). Dictyostelium is 
not a parasitic organismal group; however, it is a highly diver-
gent free-living amoeba in the higher order group, 
Amoebozoa,30 and thus is phylogenetically far distant from 
Plasmodium that belongs to the other higher order group, 
Alveolata. In these 2 taxonomic groups, Dictyostelium and 
Plasmodium, the convergence of the substitution patterns might 
occur by chance, leading to a situation in which similar 
N-terminal sequence features in their mitochondrial or non-
mitochondrial proteins are shared.

The N-terminal sequence features of the MRO proteins of 
the parasitic groups Trichomonas, Giardia, and Entamoeba are 
extremely divergent and reduced.31–33 We segregated in 
advance these groups with MROs from the other taxonomic 
groups with mitochondria because the inclusion of these 
groups might have a negative influence on other taxonomic 
groups in their performance of prediction. Owing to the sepa-
ration of the MRO proteins from the mitochondrial ones, we 
could develop an independent predictor (MRO Predictor) and 
achieve high performance in predicting the MRO proteins. 
Because the import machinery of proteins of these MROs 
could be significantly different from that of mitochondria,34-36 
the development of a predictor specific to the MRO proteins 
is reasonable.

Figure 6. Balloon plot showing the clustering of the mitochondrial protein 

sequences. The balloon plot suggests the presence of 2 clusters of 

mitochondrial protein sequences derived from 7 taxonomic groups. Each 

balloon represents the relative magnitude of the value. The value inside 

the cell represents the number of sequences. Each value outside the cell 

represents the sum of each column or row. Gray bars on the column or 

row headers represent the proportions of the categories for the column or 

row against the total.



Kume et al 11

Conclusions and Future Plan
We developed a software program, NommPred, which includes 
Mit Predictor and MRO Predictor for the predictions of mito-
chondrial and MRO proteins derived from diverse nonmodel 
organisms. Both predictors were shown to significantly exceed 
in performance, compared with the previously best method, 
MitoFates, in the prediction of mitochondrial/MRO proteins 
from nonmodel organisms. Because there is no other predictor 
suitable for the prediction of MRO proteins, MRO predictor in 
NommPred is useful tool to search for putative MRO proteins.

In this study, we retrieved almost all protein sequence data 
whose cellular localization was experimentally verified to mito-
chondria/MROs from various sequence databases. However, 
the origins of the sequence data of mitochondrial/MRO pro-
teins in the entire data set (Table 1) are biased for those of the 
parasitic organisms. Therefore, taxon sampling of our data set 
is still very sparse. The accumulation of more data of the mito-
chondrial/MRO proteins of nonmodel organisms, especially 
from the free-living ones whose localization was confirmed 
experimentally, is essential to further improve the predictors 
presented in this work. We should continuously make efforts 
toward updating the data set to provide more accurate predic-
tors. Although NommPred may still have some problems that 
need to be improved in the future, we hope it will be helpful for 
the prediction of the mitochondrial/MRO proteins of non-
model organisms.

Software Distribution
NommPred, the software developed in this study, is distributed 
in GitLab (https://gitlab.com/kkei/NommPred.git). The val-
ues of the default parameters are shown here. This software 
requires 2 inputs. One is the sequence information: Mit 
Predictor and MRO Predictor of NommPred accept a multi 
FASTA format file as the input data. The other is taxonomic 
information of the input sequences: NommPred would select 
the best predictor automatically based on this information (the 
user can manually select a predictor trained specifically with 
the proteins of a given taxonomic group or a general predictor, 
Mit Predictor, trained using the proteins of all the 7 taxonomic 
groups). Finally, NommPred outputs the estimated probabili-
ties that the input sequences are mitochondrial/MRO proteins. 
The schemes of this software are illustrated in Figure 1 (flow 
chart) and Figure 2 (message sequence chart). More details or 
usage instructions are available in the documents at the GitLab 
page.
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