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ABSTRACT

Interactions between proteins bound to distant sites
along a DNA molecule require bending and twist-
ing deformations in the intervening DNA. In certain
systems, the sterically allowed protein–DNA and
protein–protein interactions are hypothesized to pro-
duce loops with distinct geometries that may also be
thermodynamically and biologically distinct. For
example, theoretical models of Gal repressor/HU-
mediated DNA-looping suggest that the antiparallel
DNA loops, A1 and A2, are thermodynamically quite
different. They are also biologically different, since in
experiments using DNA molecules engineered to
form only one of the two loops, the A2 loop failed to
repress in vitro transcription. Surprisingly, single
molecule measurements show that both loop trajec-
tories form and that they appear to be quite similar
energetically and kinetically.

INTRODUCTION

The activity of promoters is often regulated by the inter-
action between proteins that are simultaneously bound to
distant DNA segments to form a loop. Such complexes
may be called enhanceosomes (1–3) or repressosomes
(1,4–6), depending on their effect on transcription. The
loop of DNA might, in principle, follow either a parallel
or an antiparallel trajectory (7), and the particular trajec-
tory can be influenced by requirements of the protein–
DNA and protein–protein interactions, flexibility of
protein–protein interfaces, binding of architectural pro-
teins and length of the intervening DNA. In some systems,
the scheme of protein–DNA and protein–protein interac-
tions would allow more than one parallel or antiparallel
geometry (7–9).
The Gal repressosome is a ternary nucleoprotein com-

plex that represses transcription of the gal operon in
Escherichia coli. Assembly of the Gal repressosome

requires direct interaction of GalR dimers bound to two
operator sites (OE and OI) separated by 113 bp. This long-
range interaction is mediated by the transcriptional cofac-
tor HU and negative DNA supercoiling (10). GalR dimers
form a V-shaped, stacked tetramer in the repressosome
(6,11,12). Binding of the symmetric GalR dimers to the
operators could lead to four different DNA trajectories
with respect to the DNA sequence, two of which are par-
allel (P1 and P2), while two are antiparallel (A1 and A2)
(4,7). The relative stacking arrangements of the two
operator-bound GalR dimers are different within each
trajectory, and elastic energy calculations suggest that
the A1 antiparallel GalR/HU-DNA loop (Figure 2a) is
more stable than either of the parallel loops or the A2
antiparallel loop (4,8). The major difference between the
two antiparallel trajectories results from the stacking of
the operator-bound dimers. As a consequence of the 608
angle between the two dimers in the GalR tetramer, the
DNA was calculated to be under-twisted (by slightly dif-
ferent amounts) in both antiparallel trajectories (8).

The HU protein stabilizes the GalR-mediated DNA
loop by bending the DNA near the apex of the loop
(1,10). Both single-molecule manipulations using magnetic
tweezers (10) and AFM visualization of DNA loops (13)
predicted an antiparallel DNA trajectory in the represso-
some, suggesting that HU binding does not assist forma-
tion of repressosomes containing a parallel DNA loop.
These measurements, however, were unable to distinguish
between the two alternative antiparallel configurations.
Recently instead, only one (A1) of the two alternative anti-
parallel loops was found to repress gal transcription (4).
Two explanations were proposed for this observation:
(i) the A2 loop is thermodynamically unfavored such that
it either does not form or forms with such thermodynamics
and/or kinetics that it fails to repress transcription, or
(ii) the A2 and A1 loops are geometrically/topologically
different. Here, we test these hypotheses using magnetic
tweezers to detect and characterize loop formation in
DNA molecules in which engineered operator sequences
and Gal repressor proteins formed either the A1 or A2
antiparallel loop.
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MATERIALS AND METHODS

Preparation of DNA

Linear DNA fragments of plasmid pSA580, �3.6 kb in
length, were used as tethers. The original plasmid had
been modified to contain properly arranged hybrid opera-
tor sites for oriented binding of the GalRA16T/
GalRV15T,T322R heterodimers (6). The arrangement of
the hybrid operator sites determined the mutual orien-
tation of the active tetramerization interfaces of the
operator-bound GalR heterodimers, allowing only either
A1- or A2-type loop formation. The resulting plasmids
were linearized by digestion with KpnI and SacI. Two
‘tails’ were synthesized with biotin or digoxigenin-labeled
nucleotides by PCR of the multiple cloning site of a pBS
plasmid comprising the restriction sites for KpnI and SacI.
After restriction of these labeled tails, they were ligated to
the complementary ends of the linear fragment of interest.

Stretching and twisting single DNAmolecules

All looping experiments were performed in the presence of
25 nM GalR and 50 nM HU. One end of a single molecule
of DNA was attached to the glass surface of a microscope
flow-chamber (previously coated with antidigoxigenin)
and a paramagnetic bead 2.4mm in diameter (DYNAL
MyOne beads coated with streptavidin) was attached to
the other end. A pair of permanent magnets, above the
microscope stage were used to gently attract the tethered,
magnetic bead and effectively stretch the DNA with
molecular-scale forces (14). Furthermore, rotation of the
magnets causes synchronous rotation of the bead to
enable twisting of the DNA tether, which does not
swivel at either the glass or bead surfaces due to multiple
attachments. The extension, l=<z>, of the molecule of
the DNA was monitored with an error of �10 nm with 1 s
averaging using 3D, video-rate tracking of the bead (15).
The horizontal motion of the bead <ix2> allowed the
determination of the tension in the molecule via the equi-
partition theorem: F=kBT l/<ix2> with 10% accuracy.
Mechanical drift in the data was eliminated using differ-
ential tracking of a second bead stuck on the surface.

Loop detection in length versus time data

Data were analyzed as described previously (10). In brief:
traces with transitions between longer (unlooped) and
shorter (looped) lengths were best fitted to the raw data
l(t) (filtered using a 1 s window) using a sliding Heaviside
(step) function: lstep(t)=s�(t�t1)+l1 defined over a time
window of size Tav. In other words, for every data point, t,
of the data set, the parameters of the step function, s, t1
and l1, were fitted such as to minimize the error
(l(t)� lstep(t))

2 in the time window t0< t< t0+Tav,
where only one transition is expected. Finally, the para-
meters, that consistently scored best (x2-test), were
selected as steps. The time intervals between successive
looped and unlooped steps were included in histograms
of �unlooped (or �looped) corresponding to the time spent
in the longer (or shorter) state.

RESULTS

In order to characterize differences and similarities
between the two antiparallel loops, A1 and A2 illustrated
in Figure 1a, we used previously engineered A1 and A2
DNA molecules (4; see also Materials and methods sec-
tion). These sequences contain hybrid GalR operators
formed of half-sites, which determine the orientation of
binding by a GalR hybrid (GalRA16T/GalRV15T,T322R

mutant; GalR heterodimer, for brevity). Since this hetero-
dimer also contains only one active surface for tetramer-
ization, the operator-bound GalR heterodimers can only
form either A1- or A2-type loops (Figure 1a). This
oriented heterodimer loop formation strategy was a
modification of the principle of Zhou et al. (16–18).
Measurements were then performed using magnetic twee-
zers to stretch and twist a single DNA molecule between a
paramagnetic microsphere and the glass surface of a
microscope flow-chamber. In this pendulum-like system,
fluctuations of the x or y positions of the microsphere
allowed determination of the tension in the DNA (19).
In addition, time-resolved records of the position of the
microsphere along the tension axis revealed a telegraphic-
like signal with alternating looped (short) and unlooped
(long) configurations and their lifetimes (Figure 1d). The
GalR or HU protein alone did not induce loop formation
(Figure 1c).
We monitored looping mediated by GalR heterodimer

or wt GalR and HU proteins in DNA molecules maintai-
ned at a constant negative supercoiling of 3% (�=�0.03)
(10) and constant tension. We repeated these assays in the
range of forces between 0.7 and 1.2 pN. Loop formation
was undetectable at lower forces due to low signal-to-noise
ratios and was prevented by higher tension. Wt GalR can
interact with both A1 and A2 DNA with no orientation
specificity; in this case, loops with either trajectory can in
principle form. The distribution of the dwell times in the
looped or the unlooped state was fit with an exponential
decay function to determine the average lifetimes, �loop and
�unloop, at a particular force (Figure 1d). In all cases, the
dependence was exponential, and the lifetimes obtained
from measurements carried out on A1 and A2 DNA in
the presence of HU and heterodimer or wild-type GalR
are reported in Table 1. For each protein/DNA combina-
tion, increased tension diminished the loop lifetime and
increased the unloop lifetime (Table 1 and Figure 2). This
was true both for heterodimeric or wild-type Gal repressor,
and lifetimes were similar for loops formed in A1 DNA
molecules by heterodimeric or wild-type protein
(Figure 2). However, we found that the average lifetime
of the unlooped configuration in the presence of heterodi-
meric Gal repressor was shorter for A2 DNA with respect
to that measured for A1 DNA molecules (Figure 2a). In
addition, the lifetime of loops formed by heterodimeric Gal
repressor in A2 andA1DNAwere commensurate at 0.7 pN
of tension, but A2 loops endure half as long as A1 loops
with 0.9 or higher tension. Extrapolation from the data in
Figure 2b indicates that at tensions below 0.7 pN the A2
loopsmay last longer than the A1 loops. Unfortunately, the
small loop was undetectable at tensions lower than 0.7 pN
due to the lower signal-to-noise ratio.
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Thermodynamic theory can be used to relate the aver-
age lifetime of each DNA configuration to the free-energy
change involved in the looping reaction at given forces,
iGl,F, according to:

�u Fð Þ

�lðFÞ
¼ e�Gl,F=kBT;

where �l(F) and �u(F) are the average lifetimes for the
looped and unlooped configurations at a particular
force, iGl,F is the free-energy difference between the
looped and unlooped states (column 6 in Table 1), kB is
Boltzman’s constant and T is the temperature. A plot of
iGl,F as a function of force is shown in Figure 3a. The
related probability of loop formation Ploop= tl/(tl+ tu),

(a)

(e)

(b)

OE OI

hbs−60.5bp

+6.5bp

+53.5bp

P1

P2

+1bp

−5bp

OE

OI

hbs

hbs

OE

OI

A1
A2

GalR
Heterodimer

∆l∆

magnetic field

time (s)

τloop 

250 7550 125 150100

5

2

5

2

100

10−1

10−2

250 7550 125 150100

τunloop 
5

2

5

5

2

100

10−1

10−2P
un

lo
op

 (
t>

τ u
nl

oo
p)

P
lo

op
 (

t>
τ l

oo
p)

(c) (d)

D
N

A
 e

xt
en

si
on

 (
µm

)

D
N

A
 e

xt
en

si
on

 

τloop 

τunloop 

time (s)

1

0.9

0.8

0.7

0.8

0.7

200 6040 10080
time (s)

200 6040 10080

∆l

A1

control

A2

1

0.8

0.6

10
0n

m

w GalR

w HU

Figure 1. Loop formation by the GalR and HU proteins on supercoiled DNA. (a, top) Graphic representation of the gal regulatory region. Top, the two
promoters,P1 andP2, are flanked by the gal operators,OE andOI. Using the transcriptional start site of theP1 promoter as a reference for numbering, the
HU-Binding Site (hbs) is located downstream of the promoters, at position +6.5 (42) in A1. For the A1 and A2 constructs, functional GalR tetrameriza-
tion interfaces are marked in green; the inactivated ones are marked red. Arrowheads indicate directions of transcription. (a, bottom) GalR hetero-
dimer-mediated A1 and A2DNA loops. The major difference between the two trajectories results from the interaction of the operator-bound dimers. As a
consequence of the 608 angle between the two dimers in the GalR tetramer, the DNA is thought to be unwound with respect to relaxed DNA in both
antiparallel conformations (8). The site for HU binding in the A1 construct is colored pink. The putative site for HU binding ‘‘hbs’’ in the A2 construct is
colored blue (see Discussion section). (b) Scheme of the experimental set-up. A single DNA molecule containing the GalR and HU-binding sites is
anchored at one end to the glass surface and at the other end to a paramagnetic bead. In response to small magnets placed above the sample, the bead can be
used to stretch and twist the DNA. Loop formation by GalR (red ovals) and HU (blue oval) reduces the extension by an amount, �l. (c) Control
experiments performed in the presence of only GalR or only HU. (d, top) Typical signal from an A1 DNA molecule in the absence of proteins. This is
indistinguishable from that of an A2 DNA molecule. (d, center and bottom) Typical telegraph-like signal observed for A1 or A2 DNA molecules,
respectively, at 0.9 pN in the presence of proteins. The green dots are raw data and the red line is the averaged signal (1 s). In all experiments, molecules
were unwound by 3% (�=�0.03). From the trace, it is possible tomeasure the transition time (�loop and �unloop) between the looped and unlooped state, as
well the loop size. (e) Cumulative probability distribution of �loop and �unloop for all the transitions observed at 0.9 pN in the A1 DNA (error bars are
statistical errors). The distributions are fitted by a single exponential giving a mean lifetime: <�loop>=17.3� 1.3 s and <�unloop>=16.7� 0.9 s.
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which was calculated from the aggregate time spent in the
looped state as a fraction of the total observation, was
practically indistinguishable across the range of forces
employed as shown in Figure 3b.
The DNA shortening due to loop formation (il, in

Figure 1c) was observed to change with the applied
force (Figure 4). This force dependence can be explained
as follows. At lower forces, the additional DNA unwind-
ing introduced by loop formation generates extra compen-
satory plectonemes outside the loop (20); as a consequence
il is large (14,19,21). At high forces, such plectonemes do
not form and instead negatively supercoiled DNA dena-
tures locally. This local, torque-induced melting absorbs
any change in twist (22), due to loop formation, via a
change in the amount of denaturation, thereby the overall
change in extension, il, is closer to the effective loop size.

DISCUSSION

DNA loop formation

Interactions between proteins bound to well-separated sites
on a DNAmolecule require bending and twisting deforma-
tions in the intervening DNA. Double-stranded DNA is a
semi-flexible polymer, with a persistence length of �50 nm
(�150 bp) (23–25). DNA segments shorter than the persis-
tence length do not easily bend. However, many DNA
‘transactions’ require formation of short DNA loops
(150 bp or less).The feasibility of loop formation over dis-
tances shorter than its persistence length depends on the
intrinsic shape and flexibility of the DNA sequence, the
phasing of the binding sites being juxtaposed, supercoiling
of the DNA, in concert with the effect of architectural
proteins.
In many systems, protein–DNA and protein–protein

interactions can produce loops with different geometries.
However, not all these geometries are energetically equiva-
lent and loops with a specific DNA trajectory may be

Table 1. Kinetic and thermodynamic values (mean�SD) measured and calculated respectively from magnetic tweezers assays

Force (pN) Event number �loop (S) �unloop (S) �unloop/�loop �Gl,F (kBT) �l (nm)

A1 DNA heterodimer
0.7 100 41.1� 2.9 4.7� 0.3 0.1� 0.01 �2.3� 0.1 79.9� 2.5
0.8 152 24.6� 1.4 8.3� 0.5 0.3� 0.03 �1.2� 0.1 78.9� 2.3
0.9 215 17.3� 1.3 16.7� 0.9 1.0� 0.1 0� 0.1 75.0� 1.8
1.0 196 10.2� 0.9 30.1� 1.8 3.0� 0.3 1.1� 0.1 57.9� 1.9
1.2 136 7.8� 0.7 67.5� 6.1 8.6� 1.1 2.2� 0.1 60.1� 2.9
A2 DNA heterodimer
0.7 165 38.0� 2.8 2.5� 0.1 0.1� 0.01 �2.3� 0.1 72.4� 1.3
0.8 152 15.7� 0.5 5.4� 0.2 0.3� 0.02 �1.2� 0.1 69.3� 1.5
0.9 103 7.0� 0.3 10.8� 0.3 1.5� 0.1 0.4� 0.1 66.6� 1.9
1.0 280 4.7� 0.2 15.4� 0.7 3.3� 0.2 1.2� 0.1 66.1� 1.8
1.2 100 2.4� 0.2 38.4� 3.2 16.0� 1.9 2.8� 0.1 56.2� 2.0
A1 DNA wt
0.7 183 41.5� 2.5 6.3� 0.6 0.2� 0.02 �1.6� 0.1 81.5� 1.4
0.8 277 30.1� 2.0 13.7� 0.5 0.5� 0.04 �0.7� 0.1 82.0� 1.4
0.9 208 18.9� 0.8 20.8� 1.9 1.1� 0.1 0.1� 0.1 57.4� 0.7
1.0 251 11.5� 0.5 23.7� 2.0 2.1� 0.2 0.7� 0.2 53.8� 1.2
1.1 135 7.1� 0.6 57.7� 16.2 8.1� 2.4 2.1� 0.3 51.0� 1.5

�loop and �unloop are the average lifetimes for the looped and unlooped configurations, respectively, calculated from the dwell time distributions in
each case. From the data, it is possible to directly extract the free energy for the looping reaction at a given force, A Gl,F, using the following
equation: Gl,F= kBT ln(�unloop/�loop). �l is the average change in the DNA length associated with looping.

T
im

e 
(s

)

(b)

τloop

A1 DNA + Heterodimer

A2 DNA + Heterodimer

A1 DNA + wt

2

3

4

5
6
7
8
9

10

2

3

4

5
6
7
8

1.1 1.21.00.90.80.7

(a)

τunloop

T
im

e 
(s

)

1

2

3

4
5
6
7
8
9

10

2

3

4
5
6
7

A1 DNA + Heterodimer

A2 DNA + Heterodimer

A1 DNA + wt

Force (pN)

1.1 1.21.00.90.80.7

Force (pN)

Figure 2. Dependence of the mean lifetime on the externally applied
force for the (a) unlooped and (b) looped configuration.

Nucleic Acids Research, 2008, Vol. 36, No. 12 4207



preferred (1,8,26–28). For example, in the case of the Gal
repressosome, which contains a 113-bp long DNA loop
mediated by two Gal repressor dimers and the HU pro-
tein, there are four possible DNA trajectories. Two of
these trajectories have antiparallel DNA at the entry/exit
points (A1 and A2), while two other trajectories have par-
allel DNA (P1 and P2) (6,8). The DNA exiting an anti-
parallel loop must curve under tension and therefore
formation of this kind of loop would be expected to
cause a larger change in the overall end-to-end distance
of the molecule (larger il) than formation of a parallel
loop where the exiting DNA is straight. However, parallel
loops are generally more strained than antiparallel ones
(9). Stereochemical models of GalR/HU-DNA loops

confirm this and also predict that the A1 loop is much
more stable than the A2 loop. In addition, they also pre-
dicted that, as a consequence of the 608 angle between the
two dimers in the GalR tetramer, the DNA is similarly
under-twisted in both conformations (8). These structural
predictions might be relevant to in vitro transcription
assays, in which the heterodimer and the HU protein
repressed transcription from DNA engineered to form
A1 but not A2 configurations. Note, however, that these
twist calculations were performed on relaxed DNA.

Instead, the magnetic tweezing assays reported here indi-
cate that the A1 and A2 loops formed with similar energies
in DNA, which was unwound by an amount similar to
that found in the plasmids used in in vitro transcription
assays and in vivo (Table 1 and Figure 3a). The two loops
had nearly equivalent probabilities of formation, Ploop

(Figure 3b), which in all cases studied was about 50% at
F �0.9 pN (force at which �loop� �unloop). As expected, the
change in free energy for loop formation, iGl,F, rose with
increasing force (i.e. tension destabilizes the loop in the
DNA). Therefore, there is no thermodynamic reason to
expect a functional difference in transcriptional repression
betweenA1 andA2 loops. In fact, the only significant differ-
ence is that the A2 loop forms and breaks down more fre-
quently than the A1 loop having shorter loop and unloop
lifetimes, at least for tensions above 0.7 pN (Figure 2).With
the current understanding of repression, it is difficult to
relate this observation to RNA polymerase activity.

Of course, in vitro transcription assays utilize supercoiled
plasmids that are not under so much tension. However, it
would not be rigorous to extrapolate the experimental life-
time data to zero force given the necessarily small range of
forces investigated, the distance from the zero point, and
the logarithmic scale of the y-axis of Figure 2. In addition,
loop lifetimes in the absence of force may not be relevant.
Evidence is accumulating in the literature (29) that DNA is
under tension in vivo and several motor enzymes, such as
RNA polymerase have been reported to exert large forces
on the topologically constrained DNA (30). Furthermore,
DNAmolecules negatively supercoiled by 6% have a built-
in entropic tension of about 0.5 pN (31).
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Alternative DNA trajectories in transcriptional regulation

Thermodynamic stability plays a key role in the function of
DNA loops that regulate transcription. Formation of a
transient DNA loop may accompany transcriptional acti-
vation when a distant, DNA-bound transcription factor
directly interacts with RNA polymerase to close the
DNA loop. For transient loops, different DNA trajectories
might support similar levels of transcriptional activation
(32). Instead, DNA loops that repress transcription are
generally quite stable. Repressors involved in DNA loop
closure can inhibit RNA polymerase action directly (33,34)
[e.g. sterically hindering RNA polymerase binding (35–37)
or contacting the promoter-bound RNA polymerase to
inhibit transcription initiation (38)] or indirectly by redu-
cing the effective torsional flexibility of DNA (39,40) as in
the case of loop formation. Loop formation by repressors
may be enhanced by accessory DNA-binding proteins
that bend the DNA at a critical segment or contribute
stabilizing protein–protein interactions. Especially for the
transcriptionally repressive cases, thermodynamic charac-
terization of the macromolecular complex permits quanti-
tative prediction of the probability of DNA loop formation
(40,41), which might therefore also predict transcription
efficiency.

However, we found that galDNA loops with A1 and A2
trajectories form with similar energies and probabilities in
the range of forces investigated, when DNA is untwisted to
the level found in vivo and in in vitro transcriptional assays.
Therefore, the failure of the A2 loop to repress transcrip-
tion cannot be explained on the basis of thermodynamics
alone. Previously it has been proposed that, failure of the
A2 trajectory to repress in vitro transcription of naturally
supercoiled DNA may result from destabilization of the
DNA loop by RNA polymerase (6). Calculations per-
formed on relaxed DNA show that, despite the fact that
the A1 and A2 loops have similar overall structure, the
direction of local DNA bending is different; the DNA
surface that is inside the A1 loop apex is turned halfway
outside in the A2 loop. One consequence is that the
HU-binding site, which is experimentally observed at posi-
tion +6.5 in the A1 loop, shifts to �14.5, a structurally
equivalent position with respect to the loop apex in the
A2 loop [Figure 1a and Figure 6 in (4)]. A structural-
instead of a sequence-dependent binding site is consistent
with the very high nonspecific binding affinity of HU for
DNA. Thus, these calculations suggest that in the A2 tra-
jectory, RNA polymerase may easily transition from closed
to open complex, facilitating transcription (40), or evict
HU from the �13.5/�14.5 site, which overlaps the �10
promoter element. Our data support this idea. In our
experimental conditions, DNA may be already unwound
by an amount sufficient to abrogate the energetic difference
between the A1 and A2 loop and yet maintain the struc-
tural difference between A1 and A2 loops found in (4).

Furthermore, we speculate that, given the similarity
between the lifetime andil data relative to the interaction
between heterodimer and wt GalR and A1, the A1 trajec-
tory is preferred in the wild-type case. This is also to be
expected given the similar transcriptional repression by A1
and wt loops but not by A2 loops.

In summary, our data show unequivocally that thermo-
dynamic probabilities of Gal repressor/HU-induced alter-
nate DNA loops failed to quantitatively predict their
physiological effect. Therefore, in order to predict tran-
scription modulations due to different DNA loop trajec-
tories, one must carefully consider not only looping
probabilities but also how DNA supercoiling affects the
double helix topology and how this may impact the inter-
actions of proteins associated with a given trajectory.
Single molecule experiments such as those described here
are very useful for the characterization of this effect.
Furthermore, they emphasize how local tension in the
DNA may alter the formation of repressive loops. A
better understanding of this and the effect of supercoiling
on macromolecular complex formation is emerging from
such work.
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