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Cardiovascular Disease (CVD) is a leading cause of mortality within the United States.

Current treatments being administered to patients who suffered a myocardial infarction

(MI) have increased patient survival, but do not facilitate the replacement of damaged

myocardium. Recent studies demonstrate that stem cell-based therapies promote

myocardial repair; however, the poor engraftment of the transferred stem cell populations

within the infarcted myocardium is a major limitation, regardless of the cell type. One

explanation for poor cell retention is attributed to the harsh inflammatory response

mounted following MI. The inflammatory response coupled to cardiac repair processes

is divided into two distinct phases. The first phase is initiated during ischemic injury

when necrosed myocardium releases Danger Associated Molecular Patterns (DAMPs)

and chemokines/cytokines to induce the activation and recruitment of neutrophils

and pro-inflammatory M1 macrophages (M8s); in turn, facilitating necrotic tissue

clearance. During the second phase, a shift from the M1 inflammatory functional

phenotype to the M2 anti-inflammatory and pro-reparative functional phenotype, permits

the resolution of inflammation and the establishment of tissue repair. T-regulatory

cells (Tregs) are also influential in mediating the establishment of the pro-reparative

phase by directly regulating M1 to M2 M8 differentiation. Current studies suggest

CD4+ T-lymphocyte populations become activated when presented with autoantigens

released from the injured myocardium. The identity of the cardiac autoantigens or

paracrine signaling molecules released from the ischemic tissue that directly mediate the

phenotypic plasticity of T-lymphocyte populations in the post-MI heart are just beginning

to be elucidated. Stem cells are enriched centers that contain a diverse paracrine

secretome that can directly regulate responses within neighboring cell populations.

Previous studies identify that stem cell mediated paracrine signaling can influence

the phenotype and function of immune cell populations in vitro, but how stem cells

directly mediate the inflammatory microenvironment of the ischemic heart is poorly

characterized and is a topic of extensive investigation. In this review, we summarize
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the complex literature that details the inflammatory microenvironment of the ischemic

heart and provide novel insights regarding how paracrine mediated signaling produced

by stem cell-based therapies can regulate immune cell subsets to facilitate pro-reparative

myocardial wound healing.

Keywords: myocardial infarction, stem cell therapy, wound healing, immune response, immunomodulation

INTRODUCTION

Cardiovascular disease (CVD) is a leading cause of mortality
and health care expenditures within the United States (1).
The total health care expenditure to treat patients with CVD
within the United States alone is expected to exceed 1 trillion
dollars by the year 2035 (2). Currently, one of the leading
contributors of CVD are ramifications from sudden cardiac
events, i.e., acute myocardial infarction (AMI). Current therapies
being administered within the clinic, such as beta-blockers,
diuretics, vasodilators, angiotensin converting enzyme (ACE)
inhibitors, left ventricular assisted devices (LVADs), pacemakers,
defibrillators, and/or stents (3, 4), have significantly increased
patient survival outcome and can slow heart failure progression
(3, 5). Unfortunately, these therapies do not prevent or reverse
the activation of a deleterious cycle that perpetuates adverse
cardiac remodeling resulting in depressed cardiac function and
heart failure progression (3, 6–9). Consequently, there are an
increasing number of patients who are now faced with long-term
health burdens associated with AMI and heart failure pathology.
Therefore, the ability to identify novel therapies that can jump
start regenerative processes to replace damaged myocardium
following a myocardial infarction (MI) is of tremendous urgency.

Recently, cell-based therapies targeting the differentiation
of resident cardiac stem cell populations or the transplantation
of multiple allogenic stem cell types to give rise to new
cardiomyocytes that can replace the damaged myocardium
following an MI has been extensively studied (7, 10–17).
However, the efficacy of cell delivery, engraftment, and
differentiation of these populations within the infarcted

Abbreviations: CVD, Cardiovascular disease; AMI, acute myocardial infarction;
DAMPs, Danger Associated Molecular Patterns; M8s, macrophages; Tregs,
T-regulatory cells; ACE, angiotensin converting enzyme; LVADs, left
ventricular assist devices; TNFα, tumor necrosis factor α; IL, interleukin;
MPO, myeloperoxidase; MMP9, matrix metalloproteinase 9; CCR, Chemokine
receptor; MCP-1, monocyte chemoattractant protein-1; NO, nitric oxide;
Ly6c, lymphocyte antigen 6 complex; TGF-β, transforming growth factor β;
VEGF, vascular-endothelial growth factor; IGF-1, insulin-like growth factor 1;
PDGFα, platelet-derived growth factor α; I/R, ischemia/reperfusion; RAG1 KO,
recombination activating 1 knock out; MHC, major histocompatibility complexes;
HGF, hepatocyte growth factor; FoxP3, Forkhead box P3; TCR, T-cell receptor
repertoire; LAD, left anterior descending artery; MSCs, mesenchymal stem
cells; CDCs/CPCs, Cardiosphere Derived Cells; ESCs, Embryonic Stem Cells;
CBSCs, Cortical Bone Derived Stem Cells; CDCs, cardiac derived progenitor
cells; CXCL, CXC chemokine ligand; PGE2, prostaglandin E2; Edu+, 5-Ethynyl-
2-deoxyuridine; FGF, fibroblast growth factor; Ang-1, Angiopoietin-1; FasL, Fas
ligand; TRAIL, TNF-related apoptosis-inducing ligand; iNOS, inducible NO
synthase; IDO, indoleamine-pyrrole 2,3-dioxygenase; PD-1, programmed cell
death 1 receptor, TLRs, Toll-Like Receptors; hCPCs, Human cardiac progenitor
cells populations.

myocardium has proven to be challenging and a major limitation
of cell-based therapy (3, 18–22). Despite these limitations, cell
therapy has demonstrated the efficacy to elicit improved cardiac
function and limit the adverse cardiac remodeling processes
that occur following an AMI event (7, 23, 24). Current theory
suggests stem cell populations are enriched epicenters that
secrete a vast majority of factors such as: cytokines, chemokines,
exosomes, and miRNAs enriched within exosomes. These
signaling factors retain the ability to directly mediate the injured
microenvironment of the infarcted heart without direct cell-to-
cell contact; this theory is commonly referred to as the paracrine
hypothesis (25). The direct effects of stem cell secretome on other
cell types within the infarcted heart is under intense investigation
(3, 7, 26, 27).

A MI results in the formation of a sterile wound that
encompasses the ischemic tissue. During ischemic injury, a
massive inflammatory response is mounted within hours of
injury onset (28). This diverse inflammatory response proves
essential in mediating the homeostasis of the cardiac tissue
following injury onset by aiding in the clearance of necrotic
tissue and the establishment of the reparative phase that
prevents cardiac rupture. Although the inflammatory response
is essential for cardiac repair, the chronic activation of such
processes can contribute to the activation of a deleterious
inflammatory cycle that can contribute to further heart
failure pathology (21, 29), suggesting the suppression of the
inflammatory microenvironment of the post-MI heart could
be therapeutic. However, preliminary studies highlight that the
broad immunosuppression of the immune system post-MI does
not provide therapeutic potential (30), but rather the specific
targeting of different immune cell subsets are more efficacious at
promoting cardiac wound healing post-MI (30–34).

Due to the complexity and interplay of the innate and adaptive
immune responses following tissue injury, finding a therapy that
can properly orchestrate the direct targeting of different immune
cell subsets has proven to be of great challenge. Most therapies
to date have targeted the structural and functional adverse
cardiac remodeling processes rather than the immunological
response that regulates sterile wound healing. This allows for
the development of a new and exciting field of research that
can incorporate novel immune based therapeutics to mediate
cardiac wound healing following AMI. Given transplanted
stem cell populations have to endure the harsh inflammatory
microenvironment of the infarcted heart (35–39), understanding
the interplay between the adoptively transferred stem cell
populations and the immune response could identify novel
mechanistic and therapeutic targets that can regulate cardiac
wound healing following ischemic injury. In this review, we will
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outline the individual role of immune cell subset populations
in mediating cardiac repair following sterile, ischemic injury.
We will further provide novel mechanistic insights highlighting
how cell-based therapies can be used as a therapeutic target to
regulate the inflammatory microenvironment of the infarcted
heart, ultimately leading to improved myocardial wound healing.

IMMUNE SYSTEM RESPONSE TO
MYOCARDIAL INFARCTION

During a MI, a coronary artery becomes occluded which
compromises blood flow to the myocardium downstream of
the occlusion site resulting in the deprivation of oxygen and
nutrients, ultimately contributing to cardiomyocyte death
via necrosis. Myocardium necrosis causes the activation of a
triphasic inflammatory response. During the first phase, the
alarmin phase (30), Damage Associated Molecular Patterns
(DAMPs), such as heat shock proteins, extracellular RNA,
TNFα, IL-1α, IL-1β, CXCL8, IL-18, IL-6, CCL2, and CCL7
are released from the injured myocardium (40–48). In
approximately 12–24 h post-infarction, the DAMPs released
from the necrosing myocardium reach and initiate the migration
and extravasation of leukocyte populations (neutrophils,
monocytes, and macrophages) into the infarcted tissue, marking
the second phase of the post-MI inflammatory response. The
immune cell response and specifically the cytokine inflammatory
response evoked within the recruited immune cell subset
populations is highly dependent on DAMP binding to Toll
Like Receptors (TLRs) (49, 50). During the second wave,
additional pro-inflammatory signals are secreted from the
recruited leukocyte populations as these populations, specifically
neutrophils and M8s, facilitate the phagocytosis and clearance
of the necrosed cardiomyocytes (30, 51, 52). During the third
phase, anti-inflammatory M2 M8s (52–57) and Tregs infiltrate
into the infarcted myocardium and promote the removal of
the initial pro-inflammatory leukocyte infiltrate to establish the
pro-reparative phase that permits scar formation, myofibroblast
proliferation, and neovascularization of the injured myocardium
(53, 58). Each innate immune cell subset recruited during
the second phase of the inflammatory response facilitates a
distinct and essential role in preparing the injured tissue for
the pro-reparative phase. If the temporal regulation of the
pro-inflammatory and anti-inflammatory, pro-reparative phases
are shortened or prolonged, cardiac wound healing is greatly
affected (59, 60). Previous reports have identified that TLR
signaling, specifically through TLR2 and TLR4 bolster further
tissue injury following ischemic injury by perpetuating continued
pro-inflammatory signaling and preventing the establishment of
the pro-reparative phase (61, 62). The distinct role of immune
cell subsets that have been shown to regulate cardiac wound
healing are more clearly defined in the subsequent sections of
this review.

Innate Immune Response
As outlined above, a massive immune response that incorporates
multiple immune cell subsets from both the innate and adaptive

immune systems are activated and migrate into the infarcted
myocardium to orchestrate the clearance of necrotic tissue and
facilitate tissue repair. Some of the first immune cells to arrive
within the tissue are encompassed within the innate immune
response. The modulatory role of innate immune cell subsets
in cardiac wound healing are well-characterized and outlined
below. Although each immune cell subset is reviewed as a
homologous, single step process, it is essential to remember
the immune response during cardiac repair is an extensive,
heterogenic response.

Neutrophils
Within hours of ischemic injury onset, the DAMPs, cytokines,
and chemokines released from the damaged myocardium trigger
the activation and recruitment of neutrophils, making them the
first immune cell subset to respond to cardiac injury (1, 7, 58,
63–66). Neutrophils respond to DAMPs and CXC chemokine
gradients that contain the glutamic acid-leucine-arginine motif,
which encompasses the following factors: TNFα, interleukin
1β (IL-1 β), IL-6, and IL-18 (67–69). Upon arrival to the
infarcted tissue, neutrophils will release granules (70) or undergo
a process referred to as respiratory burst (1, 71). During these
processes, degradative proteins, i.e., myeloperoxidase (MPO),
lactoferrin, matrix metalloproteinase 9 (MMP9), and reactive
oxygen species, are released into the infarcted myocardium
and begin to facilitate the degradation and removal of necrotic
tissue (72). Although the extracellular molecules released during
degranulation and respiratory burst can directly interact with the
viable myocardium and can cause additional myocardial damage,
these pro-inflammatory processes are necessary for proper and
efficient removal of the necrosed myocardium. This allows for
the preparation of the tissue for the pro-reparative phase, which
permits extracellular matrix maturation and scar formation to
prevent cardiac rupture (1, 73–75).

In addition to releasing degradative enzymes and causing
additional pro-inflammatory stimuli, neutrophils have also been
reported to remove necrotic tissue through mechanisms of
phagocytosis (73, 74). Neutrophils that are recruited toward
the end of the pro-inflammatory phase have been reported to
play an essential role in tempering the initial pro-inflammatory
immune response (28). These late stage neutrophils will release
signals such as lipoxins, resolvins, annexin A1, and lactoferrin
to stop the migration of neutrophils to the infarction site and
promote neutrophil clearance via apoptosis (76–78). During
apoptotic processes, neutrophils increase their expression of
decoy/scavenger receptors to deplete the infarcted tissue of
pro-inflammatory chemoattractants (76, 78). Lastly “eat-me
signals” will be expressed on apoptotic neutrophils to signal
their clearance from the infarcted tissue via M8 mediated
phagocytosis (76, 78).

Macrophages and Monocytes
Macrophages are a heterogenous population that either
take residence within the myocardium during embryonic
development or influx into the myocardium following ischemic
injury (7, 79). Cardiac tissue resident M8s are believed to either
arise from non-hematopoietic precursor cells within the yolk sac
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or from hematopoietic stem cells occupying the fetal liver/bone
marrow (79). Currently, the exact origin of these populations are
under extensive investigation. Chemokine receptor 2 (CCR2)
negative populations are considered resident M8s and do not
rely on a signaling axis to mediate their recruitment into the
injury site, whereas M8s derived from circulating monocytes
positively express the CCR2 receptor and rely on the monocyte
chemoattractant protein-1 (MCP-1)/CCR2 signaling axis to
regulate their recruitment into the infarcted tissue immediately
following injury onset (46).

The macrophage response to myocardial infarction is
classified into two categories: 1) pro-inflammatory, classically
activated M1 M8s, or 2) anti-inflammatory, alternatively
activated M2 M8s. Pro-inflammatory, classically activated M1
M8s contain high expression of lymphocyte antigen 6 complex
(Ly6c) and is the most prominent M8 population occupying
the infarcted tissue about 3–4 days post ischemic injury onset
(47, 53–56). These M1 populations contain proteolytic enzymes
(cathepsins and MMPs) and a pro-inflammatory secretome
enriched in IL-1β, TNFα, nitric oxide (NO), and IL-6 (32,
47, 55, 80, 81). Ultimately, M1 M8s work in parallel with
neutrophils to maintain a harsh inflammatory state to induce
the degradation and clearance of necrotic tissue. M1 M8s
help facilitate the removal of necrotic tissue and apoptotic
neutrophils by phagocytic processes (1, 46, 56). The phagocytosis
of neutrophils is believed to help induce the transition of the
pro-inflammatory, phagocytic M1 M8s into anti-inflammatory,
pro-reparative M2 M8s (1, 82). Other cellular compartments,
specifically Tregs, are also believed to help facilitate theM1 toM2
M8 conversion (1). In humans, the phenotype of monocytes and
their pro- verse ant-inflammatory properties are defined based
on the expression of two cell surface markers: CD14 and CD16
(83, 84). Approximately 80–90% of human monocytes retain
CD14++(high) and CD16- expression, analogous to the Ly6Chi

populations observed within murine species. CD14++, CD16-
monocytes retain the pro-inflammatory M1 M8 signature (85–
87). Infarct size and left ventricular function is negatively
correlated with the amount of CD14++, CD16- monocytes
present within the myocardium post-AMI (88–90). Unlike the
M1 and M2 M8 dichotomy described in murine models of
cardiac injury, a third subset of monocytes are defined as
having CD14++ (high) and CD16+ expression (86, 91). The
direct inflammatory role of this monocyte population is of great
discrepancy (87, 92). Some groups have identified these M8

populations as retaining a pro-inflammatory signature marked
by TNFα secretion when stimulated with LPS, while other groups
believe this population is a pre-mature M2 M8 cell type (87, 92).

M2 M8s express low levels of Ly6C and are the most
prominent M8 population occupying the infarcted tissue at 5–
7 days post ischemic injury onset (47, 93–95). The M2 M8

population contains an anti-inflammatory secretome that is
enriched in IL-10 (28, 55, 57, 58, 96), transforming growth
factor β (TGF-β) (97), vascular-endothelial growth factor (VEGF)
(55, 57, 98), insulin-like growth factor 1 (IGF-1), platelet-derived
growth factor α (PDGFα), and fibronectin. This secretome
helps establish the anti-inflammatory, pro-reparative stage which
allows for the initiation of pro-angiogenic and pro-reparative

processes (57, 99). Depletion of M2 M8s greatly hinders
cardiac repair, resulting in an increased incidence of cardiac
rupture (1, 57). In humans, M2 monocytes possess CD16+ and
CD14+ (low) expression and have been shown to facilitate pro-
reparative processes similar to ther murine Ly6clo expressing
counterparts (83).

Numerous reports have elucidated that M8s can be directly
coupled to cardiac regeneration. The ability of the neonatal
heart to regenerate following cardiac injury is closely coupled
with resident M8 populations occupying the injured tissue.
The ablation of M8 populations within the neonatal heart
hinders its ability to regenerate following cardiac injury (1).
Ideally, identifying novel therapeutic targets that repress pro-
inflammatory M8 populations, but expand tissue resident M8s
derived from embryonic progenitors could help increase cardiac
repair following ischemic injury (7).

Toll Like Receptors Mediate Immune Cell Response

to Injury
Toll like receptors directly mediate the cytokine signaling
mounted by immune cell subsets of both the innate and
adaptive immune responses. Previous studies have shown DAMP
signaling through TLR2 (61), TLR3 (100), TLR4 (61), and TLR9
(61) can further perpetuate cardiac injury by provoking an
enhanced pro-inflammatory response. Identifying the distinct
role of these individual signaling modalities and therapies that
can directly modulate signaling through these receptors during
cardiac injury is under extensive investigation and can have
immense impact in mediating immune cell phenotype, response,
and function in the context of ischemic cardiac injury (101).

Adaptive Immune Response
The post-MI innate inflammatory response has been
characterized extensively; but to date, little is known regarding
the adaptive immune response (32, 102–104). Preliminary studies
have identified a chronic activation of inflammatory pathways
in heart failure patients, suggesting that chronic inflammation
can be directly coupled with heart failure pathology (7, 32, 105).
Understanding the mechanisms that regulate the adaptive
immune response, specifically the T-lymphocyte response,
can lead to the discovery of novel therapeutic targets that can
improve the long-term clinical outcomes for patients post-MI.

T-Lymphocytes
T-lymphocyte populations are classified as either a cytotoxic
(CD8+) or T-helper (CD4+) cell population (1, 106, 107).
Regardless of cell type, CD8 and CD4T cell populations have
been shown to influx into the injured myocardium during the
reparative phase of the cardiac repair cycle (32, 64, 97, 102,
108, 109). Yang et al. was the first group to identify that T cells
contribute to reperfusion injury (I/R) post-MI (1, 110). Yang’s
group reported that mice deficient in producing viable T-cell
populations (RAG1 KO mice) possess a smaller lesion size post-
MI and the subsequent introduction of T-lymphocytes from wild
type mouse donors results in increased injury severity (110).
This seminal report indicates that T cell populations can greatly
hinder cardiac repair. However, there is great heterogeneity
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within T-lymphocyte subset populations in regard to T cell
function, antigen recognition, and response to cardiac injury.
Identifying the individual roles of T cell populations in response
to cardiac injury proves specific to the subset type and the
environmental context in which the subset resides. For example,
the T-regulatory cell (Treg), a specific CD4+ T cell subset, has
shown to exhibit cardioprotective properties post-MI, as the
depletion of this population greatly compromises cardiac repair
(111, 112). Contrary to these therapeutic reports, other studies
have reported Treg specific depletion can reduce infarct size
(113). The controversial literature surrounding Treg phenotype
and its function in the context of cardiac repair is explored more
in the “T-regulatory Cells” section of this manuscript.

The mode of T cell activation and the paracrine
microenvironment surrounding T cell populations resident
within the injured cardiac muscle or draining lymph node can
greatly modulate the activation state and phenotype of T cell
populations. T cells can only recognized antigen peptide when
presented in a major histocompatibility complex (MHC), which
are commonly expressed on professional antigen presenting
cells (i.e., dendritic cells and macrophages). CD4T cells can
only recognize peptides presented in a MHCII complexes,
while CD8T cells can only recognize peptides presented in
a MHCI complex (106, 107, 114). The presentation of these
antigens through these complexes will cause T cells to become
activated and mount an immune response against the presented
antigen/peptide. During cardiac injury, such as an MI, tissue
proteins from the myocardium are released into the systemic
circulation which can then enter the draining lymph nodes.
These proteins are then processed by antigen presenting cells and
presented to T cell populations residing within the lymph nodes
via MHC complexes. Since these antigens are not present in the
thymus during development, tolerance to the antigen cannot be
achieved and will result in the activation of T cell populations,
which causes a chronic autoimmune response against the
myocardium (1). Current reports have identified several cardiac
autoantigens that are released from cardiomyocytes during
ischemic injury. Several of these antigens have been linked
to proteins associated with the cardiomyocyte, specifically
cardiac troponin I and myosin heavy chain (102, 115). Oral
administration of these antigens to induce immunological
tolerance have proven to help reduce myocardial injury in
various cardiovascular disease models, including myocardial
infarction (116–120).

The priming of T cell populations with different paracrine
stimuli has also been shown to regulate the phenotypic signature
and migratory response of T cell populations. For example,
priming T-cell populations with hepatocyte growth factor (HGF)
can induce cardiotropism, by upregulating homing receptors that
can induce T cell migration to the cardiac muscle. Identifying
therapeutic interventions that can mediate T cell phenotype
by regulating antigen presentation or paracrine signaling could
substantially impact the adaptive immune response to cardiac
injury and repair (1, 121).

B-Lymphocytes
Another lymphocyte population that is encompassed within the
adaptive immune system and has been poorly investigated in

mediating cardiac repair processes are B-lymphocytes. Upon
myocardial injury, B cells have been reported to influx into
the myocardium during the reparative phase, but the exact
mechanisms/factors that mediate their activation and response
to cardiac injury are poorly characterized and not well-
understood (64). Preliminary studies that have depleted B
cell populations during ischemic injury have reported marked
improvements in myocardial recovery post-MI (48). Seminal
reports have proposed that the infiltrating B cells into the injured
myocardium release autoantibodies that cause further injury to
the ischemic myocardium (122, 123). Specific autoantibodies
that are produced against the cardiac muscle following ischemic
injury include antibodies that are reactive to contractile proteins
retained within cardiomyocytes during the homeostatic state, but
are released into the periphery uponmyocardial injury (i.e., actin,
myosin heavy chain, and cardiac troponin I) (122, 124, 125).
Autoantibody generation has been reported in the following
cardiac diseases: ischemia IR/MI (126, 127), chronic heart failure
(123) Chagas disease (128), and autoimmune myocarditis (129).
Identifying the mechanisms that mediate B cell activation and
their response to myocardial injury can lead to the identification
of new immunomodulatory therapies that can promote cardiac
repair processes.

T-Regulatory Cells
T-regulatory cells, commonly referred to as Tregs, are notorious
for their immunosuppressive properties and in establishing
T cell tolerance to foreign antigen presentation outside of
the initial developmental and selection processes that occur
within the thymus (130–133). Tregs are best characterized by
their expression of the Forkhead box P3 (FoxP3) transcription
factor. Current literature surrounding the inflammatory role
and other physiological processes of Tregs during cardiac
injury is inconsistent and warrants further investigation. Initial
studies identified that Tregs facilitate a cardioprotective role
during ischemic injury, as Treg cell depletion during MI
greatly hinders cardiac repair processes (24, 33, 111, 134–
136) and contributes to a reduced survival rate, increased
adverse cardiac remodeling/function, and larger infarct sizes
(32, 135). Subsequent studies that targeted the expansion of
Tregs via CD28 superagonist antibody or through the adoptive
transfer of Treg populations following a myocardial infarction
have demonstrated the ability to increase cardiac repair and
function (134–138).

In recent studies, Tregs have also been shown to mediate
processes that are extrinsic to their immunosuppressive
role in the peripheral immune system. Several groups have
identified tissue specific resident Tregs that directly mediate
the homeostatic processes of the specific tissues they populate
(139), which is extensively reviewed in Panduro et al. Skeletal
muscle Tregs contain a distinct T-cell receptor repertoire
(TCR) that is only expressed on Tregs that influx into the
injured skeletal muscle, not on systemic, peripheral Tregs
occupying the systemic lymph nodes or spleen (140). Further
investigation into the therapeutic role of the muscle Treg
in mediating skeletal muscle repair has identified that the
muscle Treg is necessary for facilitating the polarization of
the Ly6cHi, M1 M8 populations to Ly6Clo, M2 expressing
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M8 populations during skeletal muscle wound healing. The
depletion of the muscle Tregs during skeletal muscle injury
prevents the establishment of a pro-reparative phase and hinders
skeletal muscle repair (140). In addition, skeletal muscle Treg
mediated production of amphiregulin has been shown to
directly induce the expansion and differentiation of satellite
progenitor cells to form new myotube structures and increase
skeletal muscle regeneration/ healing processes (140). Whether a
distinct tissue Treg population occupies the heart and specifically
mediates myocardial repair following ischemic injury has not yet
been classified.

Contrary, to the reports outlined above, other groups have
reported that Treg cells can also contribute to pathological
remodeling of the tissues they populate. One specific study
demonstrates Treg specific depletion can reduced infarct size
in an I/R injury model (112). These claims can be further
confirmed by Bansal et al. which have identified that Tregs have
phenotypic plasticity and can revert to a pathological, TNFα+
producing phenotype during chronic ischemic injury (141).
TNFα, Foxp3+ Tregs at 8 weeks post permanent ligation of the
left anterior descending artery (LAD) contribute to compromised
immunosuppressive properties, an increase in infarct size, and
decreases in cardiac function. However, temporary depletion
of these Tregs and the adoptive transfer of Tregs from non-
infarcted animals can revert this pathogenic phenotype and
provide therapeutic effects allowing for increased cardiac repair
(141). These seminal reports identify the presence of molecular
triggers that can cause Treg cell plasticity and can greatly affect
cardiac repair processes. Identifying these molecular triggers
and therapies that support an anti-inflammatory, pro-reparative
phenotype can yield therapeutic targets that can greatly enhance
cardiac repair.

CELL-BASED THERAPIES MEDIATE
CARDIAC REPAIR VIA
IMMUNOMODULATORY PROCESSES

Given the cardiac repair process is tightly coupled to the
inflammatory microenvironment of the injured tissue, the ability
to mediate the transition between the pro-inflammatory state,
and the anti-inflammatory, pro-reparative state has been the
center of prevailing investigation (105). Numerous clinical
studies have incorporated the usage of broad immunosuppressive
agents to reduce the inflammatory response followingmyocardial
infarction and other cardiac diseases in hopes to reduce
myocardial injury and increase cardiac repair. Unfortunately,
results from these clinical approaches using a variety of different
drugs, have led to the conclusion that the broad suppression
of the inflammatory response during cardiac repair does not
improve cardiac wound healing (18, 19, 142–145). A review
of the immunosuppressive agents tested within the clinic and
their clinical outcomes are further reviewed in Huang et al.
These studies emphasize that the broad immunosuppression of
an interconnected, multilayered immune response is not the
appropriate approach to mediate the cardiac repair process, but
rather distinct regulatory mechanisms that can target specific

immune cell populations is more efficacious in promoting
cardiac repair.

Cell-based therapies were originally tested in large animal
models and clinical studies with the hope that the allogenic
transfer of stem cell populations into the injured myocardium
would give rise to new cardiomyocyte formation to replace the
cardiac tissue lost during ischemic injury (7, 146). The most
common cell therapies that have been tested within the clinic
incorporate the introduction of autologous stem cell populations
derived from the bonemarrow or cardiac tissue and reintroduced
into the infarcted heart, a process commonly referred to as
the adoptive transfer of autologous stem cell populations (7,
14, 147). Most recent clinical evidence have indicated that the
adoptive transfer of stem cell populations into the ischemic
heart provides modest functional improvement (7). Original
hypothesizes purposed that the adoptively transferred stem cell
populations would engraft within the injured myocardium and
differentiate into new cardiomyocytes (11, 12, 14, 147). However,
recent reports have identified that the transdifferentiation
of stem cells into new cardiomyocytes from the adoptively
transferred stem cell populations is a rare occurrence and not
the main reparative mechanism of cell based therapies within
the infarcted myocardium regardless of the cell type used (7,
27, 148). Stem cells have shown to produce many different
types and quantities of “growth factors, cytokines, microRNAs,
and exosomes to modify their surrounding microenvironment”,
a theory commonly referred to as the paracrine hypothesis
(25, 149–153). Given that the injected stem cell populations
lies in close proximity to recruited immune cells within
the injured myocardium, it is reasonable to propose that
stem cell populations can directly signal to and modify the
recruitment, activation, phenotype, and function of distinct
immune cell subsets (35–39). Factors released from stem cells
have been shown to directly interact with neutrophils, M8s, T-
cells, and B-cells (Figure 1) (149, 150, 154–156). Given stem
cells can directly orchestrate different immune cell processes
without providing broad immunosuppression of all immune cell
populations, cell-based therapy could be the ideal therapeutic
that provides the appropriate level of immunosuppression
of pro-inflammatory inducing immune cells, while expanding
immune cell populations that contribute to the establishment and
maintenance of the pro-reparative state.

Several cell types have been introduced to the
injured myocardium and have reported varying levels of
myocardial repair; therefore, it is reasonable to propose the
immunomodulatory effects of cell-based therapy is highly
dependent on cell type (3, 7, 19, 157–161). In the subsequent
sections of this reviewwewill summarize the status of cell therapy
in modulating the immune response after myocardial injury.

Immunomodulatory Properties of Stem
Cells
Numerous stem cell types have been introduced into the infarcted
heart to help reduce ischemic injury, however which cell type has
superior therapeutic effects regarding myocardial wound healing
is not clearly identified. Since the discovery that Mesenchymal
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FIGURE 1 | The immunomodulatory effects of stem cell therapy post myocardial infarction. The paracrine secretome produced by cell based therapy can directly

mediate the inflammatory microenvironment of the infarcted heart by acting on multiple immune cell subsets to promote myocardial wound healing, specifically

neutrophils, M8s, T-Cells, and B-Cells.

Stem Cells (MSCs) contain immunosuppressive properties, the
mechanisms that mediate their immunomodulatory ability have
been thoroughly studied and has helped identify essential
mechanistic studies that must be tested within other cell lines
to asses their immunomodulatory capacity, specifically Cardiac
Derived Cells (CDC’s) (162–165), Embryonic Stem Cells (ESCs)
(163), and Cortical Bone Derived Stem Cells (CBSCs) (166–
168). In general, stem cells have demonstrated the ability to
mediate the inflammatory microenvironment of the infarcted
heart via an enriched paracrine secretome and cell membrane
receptors that can directly and indirectly mediate the chemotaxis,
apoptosis, immunosuppression, and phenotype polarization of
immune cell subsets elicited during cardiac repair. In sections
“Stem Cells and Neutrophils” to “Stem Cells and B Cells,”
we will identify how stem cell mediated paracrine signaling

can directly modulate immune cell response following ischemic
cardiac injury.

Stem Cells and Neutrophils
One of the first immune cells recruited to the injured
myocardium is the neutrophil (58, 63–66, 169, 170). Several
reports have demonstrated that MSC secretome is enriched in
chemotactic signaling molecules, specifically CXC Chemokine
Ligand 1 (CXCL1), CXCL2, CXCL5, and CXCL8, which directly
mediate the recruitment and retention of neutrophils within the
infarcted heart (171–177). In addition, when neutrophils are
co-cultured with MSCs, neutrophil viability is increased (178–
180). The therapeutic effect of MSCs in promoting neutrophil
survival is believed to be provided by MSC mediated secretion
of IL-6, for the neutralization of IL-6 in MSC/neutrophil
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co-cultures abolishes neutrophil viability (178). Given MSCs
support neutrophil recruitment and survival, this raises a concern
that MSCs may not be an optimal cell type to mediate cardiac
repair, as this cell type supports a sustained pro-inflammatory
state by increasing the recruitment and retention of neutrophils
within the infarcted myocardium.

Stem Cells and M8s
Several studies have demonstrated the effects of stem cells
on macrophage populations after cardiac injury. The MSC
secretome has demonstrated the ability to directly mediate
the M1 to M2 M8 polarization within the infarcted heart by
inhibiting the pro-inflammatory effects of the M1 M8s and
supporting the formation of M2 M8s (181). When M8s are co-
cultured withMSCs, the medium contains less pro-inflammatory
induction signals expressed by M1 M8s, specifically TNFα, IL-
1β, IL-6, IFNγ, and IL-12; but increases the anti-inflammatory,
pro-reparative cytokine expression: TGFβ and IL-10 (175, 182,
183). The MSC secretome also contains enriched expression of
Prostaglandin E2 (PGE2), IL-1Rα, and TGF-β (175, 181, 184),
which have been shown to facilitate M1 to M2 M8 polarization.
In addition to mediating M8 polarization processes, MSCs
are also believed to mediate M8 recruitment to the injured
myocardium via the secretion of the following M8 chemotaxis
signaling molecules: CCL-2, CCL-7, and CCL-12 (185–187).

Studies have also reported that cardiac derived cells (CDCs)
can directly mediate cardiac wound healing processes via
paracrine and exosome dependent signaling mechanisms (188–
190). CDC derived exosomes have been shown to mediate
M1 to M2 M8 polarization (32, 54, 191, 192). Intracoronary
injection of CDC derived exosomes results in an increase
in M2 M8 expression and decreased pro-inflammatory gene
expression (193). Recent studies surrounding ESCs identify that
these populations are not considered to be immune privileged
as the adoptive transfer of primitive ESC populations elicits a
massive inflammatory response and can consequently result in
the rejection of the administered cell therapy (133, 194–201).
ESCs have been shown to increase MHCI and MHCII expression
within the heart, whether these cells were recruited to the heart
or underwent de novo generation from ESCs has not been clearly
defined (194). Given the primitive nature of ESCs and their
superior differential abilities, most of the immunomodulatory
work using ESCs is via the manipulation of central tolerance
by ESC-derived hemopoietic stem cell establishment (202–205).
Myeloid cells are a key therapeutic target given their ability
to regulate the initial and prolonged inflammatory responses.
Initial studies suggested ESCs can differentiate into either M1
or M2 M8 populations and subsequently alter the inflammatory
response (206). In a study by Kudo et al. an ESC derived
suppressor cell line that contains an M1/M2 M8 phenotype
hybrid was generated and demonstrated the ability to mediate T
cell response and permit cardiomyocyte engraftment in a nitric
oxide (NO) dependent manner (194). Immune suppression is
essential for ESC engraftment, however the heterogeneity that
can occur from ESC derived immune cell populations could
prove problematic and needs to be better optimized.

Direct intramyocardial injection of Cortical Bone Derived
Stem Cells (CBSCs) into infarcted myocardium immediately
following ischemia reperfusion results in the marked increase
in (5-Ethynyl-2-deoxyuridine) Edu+ cells that predominantly
express CD45 and von Willebrand factor, suggesting that
CBSCs mediate wound healing processes by directly modulating
the leukocyte inflammatory response to MI, rather than the
regeneration of new cardiomyocytes (7, 167). CBSCs contain a
paracrine secretome that is enriched in growth factors that have
been reported to be cardioprotective (7, 207, 208). CBSCs express
low levels of factors that elicit pro-inflammatory responses, which
explains the increased prevalence of M2M8 expression in CBSC
treated animals post-IR (168).

Stem Cells and T Cells
MSCs can directly regulate the activation and proliferative state
of T Cell populations by direct cell to cell contact via the
expression of co-inhibitory signaling molecules. Reports have
identified that MSCs express co-inhibitory signaling ligands
on their surface, specifically Fas ligand (FasL) and TNF-
Related Apoptosis-Inducing Ligand (TRAIL). Once FasL and
TRAIL expressed on the cell surface of MSCs encounters
their complementary receptors on the surface of the T cell,
apoptotic processes are induced (209, 210). This regulatory
mechanism directly prevents T cell expansion within the
infarctedmyocardium and can directly downregulate the amount
of pro-inflammatory T cell subset populations resident within the
infarctedmyocardium, which in turn promotes the establishment
of the pro-reparative state. MSCs also contain an enriched
secretome that can mediate the phenotype, proliferation, and
activation state of T cell populations without requiring direct
cell to cell contact. The MSC secretome is enriched in inducible
NO synthase (iNOS), Indoleamine-Pyrrole 2,3-Dioxygenase
(IDO), TGF-β, and PGE-2. All of these paracrine factors have
demonstrated the ability to directly prevent T cell proliferation
(171, 211–213); in turn this would explain why T cell populations
arrest in G0 when co-cultured with MSCs (214, 215). As
previously outlined above, halting the proliferative capacity of
pro-inflammatory T-cell subsets limits the impact of a chronic
pro-inflammatory microenvironment within the infarcted heart.

MSCs have also been shown to regulate the proliferation of
T-conventional (Tconv) cell populations indirectly by enhancing
the immunosuppressive capabilities of T-regulatory cell
populations. As previously outlined in the “T-regulatory Cells”
section of the present manuscript, the main immunosuppressive
cell within the adaptive immune system is the Treg cell. The
overall Treg signature, specifically the immunosuppressive
properties of the Treg are considered to be plastic and can
be significantly influenced by external paracrine signals.
The exact signals that mediate the immunosuppressive and
functional plasticity of Treg populations is elusive and under
intense investigation. The co-culturing of MSCs with pan
T-lymphocyte populations can induce the expansion of FoxP3+

Treg populations (197, 216, 217). This induction is believed
to be mediated by TGF-β and PGE2 paracrine signals which
are retained within the MSC secretome. Exposing Treg
cells to the MSC secretome has also shown to enhance the
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immunosuppressive capabilities of Treg cells as marked by
increased IL-10 production and the increased expression of the
programmed cell death 1 (PD-1) receptor (218).

Human cardiac progenitor cells populations (hCPCs) have
also been reported to repress Th1/2+ cell expression and promote
Treg cell proliferation, expansion, and immunosuppressive
function via PD-1 dependent expression (219). ESCs have also
demonstrated the ability to increase the recruitment of CD3+ T
cell populations into the injured myocardium and subsequently
induce Treg cell formation, however there is great plasticity
within the Treg cell populations when exposed to ESCs, resulting
in a heterogenic response (220–222).

Further investigation into the increased CD45 compartment
of CBSC treated hearts, previous described above, identify that
CD4+ T cellular compartments are significantly increased within
the hearts of animals treated with CBSCs post-IR (7, 168). As
previously mentioned above, CBSC secretome is enriched in
IL-2, IL-4, IL-10, and TGF-β, all of which are cytokines that
can directly mediate Treg cell formation and function. Whether
CBSCs’ can directly induce Treg cell formation or regulate the
immunosuppressive abilities and formation of such populations
has not yet been reported.

Stem Cells and B Cells
The ability of the MSC secretome to mediate B cell populations
and their function in the context of cardiac repair is poorly
documented compared to the previously outlined immune cell
subsets (154). Like T Cells, the co-culturing of MSCs with
B Cell populations abolishes B cell proliferation with B cells
arresting in the G0/G1phase (223). In addition, a seminal report
concluded that the MSC secretome can halt B cell maturation,
marked by decreased expression of CD138, IgG, IgA, and
IgM (223, 224). To date, no studies have fully elucidated the
direct effect ESCs have on B-cell maturation or function in the
context of MI. However, ESCs were incorporated to directly
modulate central tolerance to injury via the establishment of
ESC-derived hematopoietic stem cells (202–205). Initial studies
have identified ways to promote and mediate the differentiation
of ESCs into M1 or M2 M8 lineages (206). These ESC
derived M8 lineages can then interact with other immune cell
subsets to mediate the post-MI inflammatory response (206).
Whether ESCs can directly regulate humoral immunity within
the infarcted heart by deriving specific B lymphocyte lineages or
indirectly via ESC derived hematopoietic stem cells/macrophages
is poorly understood and warrants further investigation (220,
221). The regulatory effect of ESC derived hematopoietic stem
cells on lymphocyte populations, specifically on t-lymphocyte
populations, has previously been outlined in the “Stem Cells and
T Cells” section of the present manuscript (194).

CONCLUSIONS AND FUTURE
DIRECTIONS

The cardiac repair process of the ischemic heart is closely
coupled to a complex and interconnected inflammatory response
that facilitates the clearance of necrotic tissue during early

stages of cardiac repair and the establishment of an anti-
inflammatory microenvironment that is supportive of pro-
reparative processes. There is a delicate balance between
these two inflammatory states, if either is prolonged or
shortened cardiac wound healing can be greatly compromised.
Understanding how individual immune cell populations can
mediate cardiac repair will help identify novel therapeutics
that can be used to orchestrate more effective cardiac wound
healing following ischemic injury. Cell-based therapies were
originally introduced to facilitate the replacement of damaged
tissue via the transdifferentiation of autologous stem cells
into viable myocardium. However, the transdifferentiation of
autologous stem cells into new cardiomyocytes is considered
a rare event, despite the therapeutic effects exhibited by cell-
based therapies. Stem cells are enriched epicenters that contain
a diverse paracrine secretome that can directly orchestrate
cardiac repair processes amongst multiple cell types. Given
the close proximity of engrafted stem cell populations to
resident and recruited immune cell populations within the
infarcted heart it is reasonable to propose that the paracrine
factors secreted from these stem populations can directly
mediate the activation, recruitment, function, and phenotype of
immune cell populations that orchestrate cardiac repair. The
therapeutic efficacy of cell-based therapy within the heart is
contingent on the cell type that is used. Each stem cell type
has varying attributes, such as isolation method, differentiation
state, population heterogeneity, and overall efficacy in mediating
cardiac repair. Therefore, the complete characterization of each
cell types secretome on the inflammatory microenvironment
of the infarcted heart is essential. Ideally, an optimum cell
type will promote the differentiation and establishment of pro-
reparative immune cell subsets, i.e., M2 M8s, and Treg cells,
and aide in the suppression of pro-inflammatory cells types,
i.e., neutrophils, M1 M8s, and Tconv cell populations, that can
further contribute to additional injury. To date, studies have
mainly focused on delineating the MSC secretome. Given the
failed clinical efficacy of MSCs, it is essential to investigate
the secretome of other stem cell populations. Investigating
novel stem cell populations that are more primitive and
exhibit an enhanced paracrine secretome that can further
induce the transition of the inflammatory microenvironment
of the infarcted heart from a pro-inflammatory to a pro-
reparative state is necessary and would have immense therapeutic
impact (7). Additional studies investigating whether stem cell
populations can directly mediate autoantigen presentation of
cardiac antigens released during ischemic injury could be of great
therapeutic impact. Delineating how cell-based therapies can be
optimized to mediate the inflammatory microenvironment of the
infarcted heart is an essential need and requires collaborative
investigation from cardiac physiologists, stem cell biologists,
and immunologists.
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