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Obesity–insulin resistance–b-cells apoptosis” is an important trilogy of the

pathogenesis of type 2 diabetes. With the global pandemic of obesity and

diabetes, continuous research and development of new drugs focuses on the

prevention of the pathological progress of these diseases. According to a

recent study, the natural product kaempferol has excellent antidiabetic effects.

Therefore, this review comprehensively summarized the frontier studies and

pharmacological mechanisms of kaempferol in the treatment of diabetes. The

successful research and development of kaempferol may yield a significant

leap in the treatment of diabetes and its complications.
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Introduction

Diabetes is a serious global public health concern. Approximately 451 million people

were diagnosed with diabetes in 2017, and 693 million people are predicted to be

diagnosed with diabetes by 2045 (1). Moreover, 374 million people have impaired glucose

tolerance (1). The prevalence of diabetes varies slightly across countries and regions. It

affects nearly 25.8 million people in the United States, accounting for 8.3% of the total

population (2). The morbidity rate of diabetes is 11.2% among Chinese adults (3). The

incidence rate of diabetes in obese and overweight individuals has increased significantly

(4). The development of new antidiabetic drugs, including sodium-glucose cotransporter

2 inhibitors, has improved the survival rate of patients with diabetes. Unfortunately, the

morbidiry associated with diabetes continues to increase. Therefore, the continuous

development of new antidiabetic drugs is inevitable (5–8).

The prevalence of diabetes is associated with an increase in obesity (9). According

to the World Health Organization, more than 1.9 billion adults worldwide are
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overweight, and more than 600 million people are obese (10).

Excess adipose tissues in obesity release nonesterified fatty

acids (NEFAs), glycerol, adipokines, and pro-inflammatory

cytokines (tumor necrosis factor-a) [TNF-a], interleukin

[IL]-6, IL-1b), leading to insulin resistance (IR) and type 2

diabetes mellitus (T2DM) (11). Lipid metabolism disorders,

chronic inflammation and IR caused by obesity are the core

pathogeneses of T2DM. Chronic exposure to NEFAs is

associated with impaired glucose-stimulated insulin secretion

and decreased insulin biosynthesis (12). Increased NEFA and

glucose levels can occur simultaneously, and when combined,

these two are significantly detrimental and lead to “glycolipid

toxicity” (13). IR acts as a bridge between obesity and T2DM.

Some insulin-resistant individuals maintain normal blood

glucose levels. This is because islet b cells overcome the

decrease in insulin efficiency by increasing insulin release

(14, 15). b cells play an important role in the pathogenesis of

type 2 diabetes. Expectedly, b-cell dysfunction exists in insulin-

resistant individuals with normal blood glucose levels (16). In

patients with type 2 diabetes, the number of b cells decreases by

approximately 50%, and only 25% or less of b cells can function

(17). Therefore, “obesity–IR–b-cell apoptosis” results in

diabetes and its complications.

The natural product kaempferol, extracted from plants, has

become the focus of studies. In recent years, natural products

have accounted for 30% of global clinical drugs, and more than

65% of the global population uses natural products to treat

diseases (18, 19). The development of natural products for the

treatment of diabetes has attracted considerable attention (20,

21). The use of natural plants such as Ginkgo biloba, galangal,

and Pueraria, has a long history, especially in Asia.
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Kaempferol (3,5,7-trihydroxy-2-[4-hydroxyphenyl]-4H-1-

benzopyran-4-one) is a natural flavonoids compounds with a

low molecular weight (286.2 g/mol) (22). It can be found in

traditional medicines, such as Sophora japonica, ginkgo, and

galangal, and in foods, such as beans, cauliflower, cabbage,

gooseberry, grapes, cabbage, strawberries, tea, and tomatoes

(22). Kaempferol has anti-inflammatory (23), anti-oxidative

stress (24), antitumor (25), anti-atherosclerotic (26),

hypoglycemic (27), and hypolipidemic (28) effects.

In this article, we discussed the antidiabetic mechanisms of

Kaempferol Figure 1 from three perspectives. Kaempferol

regulates lipid metabolism and improves IR to reduce

lipotoxicity. Second, kaempferol improves insulin signaling

and restores the balance between glucose utilization and

production, thereby improving glucose toxicity. Finally,

kaempferol restores the imbalance in autophagy-apoptosis to

protect b cells. Therefore, the antidiabetic mechanisms of

kaempferol is to comprehensively prevent the progression

of “obes i ty– IR–b -ce l l apoptos i s–diabetes–diabet i c

complications” (Table 1).
Anti-lipotoxicity effect
of kaempferol

With the lipid accumulation in adipose tissues during

obesity, fat macrophages release inflammatory cytokines, such

as TNF-a and IL-6. In insulin-sensitive organs, these cytokines

stimulate c-Jun amino terminal kinase (JNK) and IkB kinase-b/
nuclear factor-kB (NF-kB) pathways, blocking insulin signaling.

IR results in T2DM (52). In IR, the function of insulin in
FIGURE 1

Mechanism of kaempferol antidiabetes. Kaempferol prevens the pathological progress of obesity-insulin resistance-b Cells apoptosis-diabetes.
IR, insulin resistance; T2DM, type 2 diabetes mellitus.
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TABLE 1 Mechanism of kaempferol anti-diabetes.

Experimental Object Kaempferol Dosage Modes of Antidiabetic
Action

Related Signaling Pathways or
Targetes

References

3T3-L1 cells ;
zebrafish

3T3-L1 cells:
7.5/15/30mM
zebrafish :
5/10/20mM

(a) fatty acid synthesis↓;
(b) triglyceride synthase↓;

PPARg, C/EBP-a And ap2↓
LPAATq, lipin1 DGAT1↓
FASN and SREBP-1C↓

29

3T3-L1 cells ; 5mM, 40mM; (a) Lipid Accumulation↓;
(b) Fatty Acid Oxidation↑;

PPARg, LXR-a, SREBP-1c and C / EBPA↓ 30

Male Wistar rats 75, 150 or 300 mg / kg (a) fatty acid oxidation↑; SREBPs ↓
iPPAR -a↑

31

Human mesenchymal stem cells
(hMSCs)

1mM, 10mM and 25mM (a) adipogenesis↓;
(b) lipolysis↑;

C/EBP-b And SREBP1c↓ ATGL↑ 32

C57BL / 6 mice 200mg / kg (a) blood glucose↓;
(b) insulin resistance↓ ;
(c) Regulating intestinal flora

intestinal flora ↑ 33

SHEPG2 cells (liver) ,
THP-1 cells (marcophages,
Caco2 cells (intestine)

10mM,20mM (a) hepatic triglyceride
accumulation↓;

Akt and SREBP-1↓
Akt-MTORC1dependent autophagy
pathway.

34

THP-1 cells. 2.5mg / ml;
5 mg / ml;
10 mg / ml;

(a) Macrophages lipid
accumulation ↓ ;
(b) Prevention of
atherosclerosis;

CD 36↓
ABCA1, ABCG1↑

35

In vitro:
HeLa cells,
3T3-L1cells.
In vivo:
Rats.

20mM;
10 mg/kg

(a) Lipid autophagy↑;
(b) lipid droplet degradation↑;
(c) lysosomal Ca2 + efflux ↑;
(d) TFEB translocation↑;

ATG5-ATG12 ↑
TFEB ↑
TUFM ↑

36

3T3-L1 cells 60mM (a) lipolysis↑;
(b) lipid accumulation↓;
(c) fat differentiation ;

CEBP- a↓
PNPLA2 and LIPE ↑

28

Male TSOD mice and TSNO
mice

5mg / kg
15mg / kg

(a) lipid synthesis↓;
(b) fatty acid oxidation↑;
(c) liver cholesterol
transport↑;

LXR, SREBP - 1C↓
PPAR a↑
ApoA1 ↑

37

HepG2 cells 5mM, 10mM, 20mM (a) lipid accumulation ↓;
(b) oxidative stress ↓;

SREBP1, FASSCD-1↓
PPARg , C/EBP-b↓
HO-1/Nrf2↓

38

3T3-L1 cells 50mmol/L (a) the early stage of
adipogenesis↓;

MCE↓
apoptosis↑

34

MaleC57BL/ 6 J mice 10mg/kg (a) lipid metabolism↑ ;
(b) glucose metabolism↑;

PPARg/LXRa/ABCA1↑
PPARg/PI3K/AKT↑

39

In vivo:
db/db mice,
In vitro:
MIN6 pancreas b Cells

50mM, 100mM (a) lipid metabolism↑ ;
(b) glucose metabolism↑;
(c) b-cell proliferation↑;

SREBP-1↓
IRS/PI3K/AKT↑
IRS2/FOXO1↑

40

ApoE-C57BL / 6J male mice 150 mg / kg (a) plasma glucose↓
(b) insulin sensitivity↑;
(c) high-density lipoprotein
cholesterol levels↑;

LXR-b↑
Akt , SREBP-1↓

41

Male Wistar rats. 50, 100, and 200 mg/kg (a) blood glucose↓;
(b) antioxidant↑;

lipid peroxidation↓ 42

Male Wistar rats. 100mg/kg (a) membrane-bound ATPases↑;
(b) antioxidant↑;

– 43, 44

Yeast glucosidase Kaempferol solution (6.82 * 10-
6mol / L)

(a) Blood glucose↓; a-glucosidase↓ 45

Male C57BL/6J mice 50mg/kg (a) hepatic gluconeogenesis↓;
(b) glycogen synthesis↑;
(c) Blood glucose↓;

PC and G6P ↓
Akt and GCK↑

27, 46

(Continued)
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inhibiting lipolysis is impaired, and free fatty acids (FFA) levels

increase. Subsequently, these fatty acids are deposited in insulin-

sensitive organs and tissues, such as the liver, skeletal muscle,

and pancreas. Lipid metabolism disorders are a charecteristics

of T2DM.

According to a previous study, an increase in circulating FFA

levels occurred earlier than glucose intolerance (53). FFAs are

transported to the liver and metabolized into acetyl coenzyme A

(CoA), which enhances the activity of pyruvate carboxylase (PC)

and provides a substrate for gluconeogenesis (54). Glycerol released

from lipolysis is also a direct substrate for hepatic gluconeogenesis

(55). One of the mechanisms by which metformin inhibits diabetes

is the inhibition of gluconeogenesis using glycerol as a substrate.

The “glucose fatty acid cycle” is usually used to describe glucose

metabolic damage induced by FFAs (56). Theoretically,

hyperglycemia can be corrected by removing the excessive

accumulation of ectopic lipids (57, 58).
Anti-adipogenic effect of kaempferol

Chronic overnutrition and obesity are usually associatedwith IR

and hepatic steatosis (fatty liver) (59). Under nutrient-rich

conditions, the expression and transcription of fatty acid synthesis

genes are upregulated, leadig to increased fatty acid synthesis. Sterol

regulatory element-binding proteins (SREBPs) are adipogenic

transcription factors that contain two subtypes SREBP1 and

SREBP2. SREBP1c is the main subtype expressed in most tissues,

whereas SREBP1a is highly expressed only in some tissues and cells

(heart,macrophages) (60). SREBP2 regulates cholesterolmetabolism

(61). SREBP2 activity is controlled by downstream products of the

cholesterol biosynthesis pathway with a highly regulated negative

feedback mechanism (62). When SREBP2 is transferred to the
Frontiers in Endocrinology 04
nucleus, it activates the expression of cholesterol-related genes,

such as 3-hydroxy-3-methylglutaryl-CoA reductaseand low-

density lipoprotein receptor (LDLR) (63). Nevertheless, the

mechanism by which SREBP2 regulates cholesterol homeostasis is

complex, and there may be different regulatory mechanisms in

different organs. In the liver, berberine inhibits hepatic cholesterol

deposition by downregulating the silent mating type information

regulation 2 homolog (SIRT1)-forkhead box protein O1 (FOXO1)-

sSREBP2 pathway (64). In the aorta, metformin inhibits SREBP2-

LDLR-mediated aortic cholesterol uptake by activating activated

protein kinase (AMPK) (65). However, there are no direct

experimental data to confirm that SREBP2 is a mechanism by

which kaempferol regulates lipid metabolism disorders. Notably,

this aspect deserves further study.

SREBP1c (Figure 2) primarily controls the expression of

adipogenic genes and regulates fatty acids. During IR, chronic

hyperinsulinemia overactivates the liver protein kinase B (Akt)/

mammalian target of rapamycin complex 1 (mTORC1)/SREBP1c

pathway, inducing excess adipogenesis (66). This is one of the causes

of lipidmetabolism disorders in patients with diabetes. In detail, Akt

(threonine protein kinase) phosphorylates and inhibits insulin-

induced gene (INSIG2), which transports SREBP-SREBP cleavage-

activating protein complex to the Golgi apparatus for proteolytic

activation (67). Akt phosphorylates and inhibits glycogen synthase

kinase 3 (GSK3) b/F-box and WD repeat domain containing 7-

mediated ubiquitin precursor system, thereby reducing SREBP

degradation (68). mTORC1 promotes SREBP1 activation and lipid

synthesis by interactingwith ribosomal protein S6 kinase (S6K) (69).

Moreover, mTORC1 inhibits tuberous sclerosis complex (TSC) (an

upstream inhibitor of mTORC1) through Akt-mediated

phosphorylation, whereas phosphorylated mTORC1 secretes the

nuclear phosphatase lipin-1, thereby activating nuclear SREBP1c

(70). Once SREBP1c is activated, insulin signaling is blocked (71).
TABLE 1 Continued

Experimental Object Kaempferol Dosage Modes of Antidiabetic
Action

Related Signaling Pathways or
Targetes

References

RIN-5F cells 1mM, 10mM and 50mM (a) lipotoxicity l↓;
(b) pancreatic b-cells
apoptosis↓;

AMPK/mTOR↑ 47

IN-5F cells 10mM (a) Lipophagy↑;
(b) ER stress↓;
(c) b-cell mass and
function↑;

AMPK/mTOR↑ 48

HeLa cells 1mM (a) Anti diabetes and diabetic
complications;

Ca2+ uniporter↑ 49

INS-1E b Cells, 0.1mM, 1mM
and 10uM

(a) pancreatic b-cells
apoptosis↓;
(b) b-cells secrete insulin↑;

PDX-1/cAMP/PKA/CREB↑
MCU↑

21, 50

INS-1E b Cells,
Human islet (CMRL-1066) cells

0.01mM, 0.1mM, 1 mM and 10uM (a) apoptosis↓;
(b) pancreatic b-cells↑;

caspase-3↓
Akt and Bcl-2 ↑

51
fr
“↑” refers to upregulation, and "↓" refers to downregulation.
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Kaempferol downregulates SREBPs and upregulates liver

peroxisome proliferator-activated receptor a (PPARa),
promoting the expression of propyl CoA oxidase and

cytochrome P450 isomer 4A1 reducing the accumulation of

visceral fat, and improving hyperlipidemia in high-fat diet-fed

obese rats (31). Kaempferol upregulates liver X receptor

(LXR), which regulates lipid transport (37, 41). Therefore,

kaempferol exhibits a strong lipid-regulating effect in different

cell types. In adipocytes, differentiated from human

mesenchymal stem cells, kaempferol downregulates the

CCAAT enhancer binding protein (C/EBP) b and SREBP1c,

and upregulates the expression of adipose triglyceride (TAG)

lipase (ATGL) to inhibit the accumulation of TAGs (32). In

3T3-L1 cells, kaempferol inhibits TAG synthase (such as

LPAATq , l ipon-1[LPIN1] and diacylglycerol [DAG]

acyltransferase 1), fatty acid synthase (FASN), and SREBP1c

related fatty acid synthesis to inhibit lipid accumulation (30).

Kaempferol inhibits mitotic clonal expansion and induces

apoptosis in the early stages of adipogenesis (34). In HepG2

cells, kaempferol inhibits Aktactivity and SREBP1 through a

variety of mechanisms, increasing the expression of INSIG-2a,

reducing SREBP1 phosphorylation, and increasing GSK-3

phosphorylation (72).
Frontiers in Endocrinology 05
Kaempferol regulates lipolysis
and transport

Under the condition of excess energy, fuels are stored in

adipocytes as TAGs. The fat storage capacity of adipocytes

prevents lipotoxic damage (lipid-induced dysfunction and

programmed cell death) in tissues and organs (especially the

skeletal muscle, liver, and pancreas) (73). Lipolysis is defined as

the decomposition of TAGs in lipid droplets into glycerol and

non-acylated fatty acids (NEFAs) with the release of energy

(74). The main hormones that regulate lipolysis are

catecholamines and insulin. Catecholamines promotes

lipolysis, whereas insulin inhibits lipolysis. Insulin regulates

the uptake of glucose and fatty acids in adipocytes and triggers

the translocation of fatty acid transport (75). Insulin strongly

inhibits basal lipolysis and catecholamine-induced lipolysis by

activating phosphodiesterase-3b (PDE-3B) through PKB/Akt-

dependent phosphorylation (76). PDE-3B reduces cyclic

adenosine monophosphate (cAMP) levels, downregulates

protein kinase A (PKA) activation, and reduces PKA-

stimulated hormone-sensitive lipase (HSL) phosphorylation

by catalyzing cAMP decomposition into inactive forms (76).

Insulin also activates the regulatory subunit of protein
FIGURE 2

Kaempferol reduces SREBPlc to inhibits lipogenesis. Hyperinsulinemia over activates Akt the downstream signaling targets of insulin. Therefore,
it causes the activation of AKT/mTORC1/SREBP1C signal and lipogenesis. Kaempferol inhibits the activation of Akt and mTORC1, thereby
blocking the activation of the downstream signal SREBP1C. In addition, kaempferol directly activates AMPK to inhibit SREBP1C mediated
adipogenesis. IRS, Insulin receptor substrate; PI3K, inosine phosphate 3-kinase; AKT; threonine protein kinase; mTORCl: rapamycin complex 1;
S6K, ribosomal protein S6 kinase; INSIG: insulin induced target gene protein; GSK3b, Glycogen synthesis kinase 3b; TSC, tuberous sclerosis;
SREBP1, sterol regulatory element binding proteinsl; SCAP, SREBP cleavage-activating protein; FBXW7, F-box and WD repeat domain containing
7; AMPK, AMP-activated protein kinase.
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phosphatase-1 by phosphorylation, causing rapid HSL

dephosphorylation and inactivation (77).

In addition, inflammatory cytokines such as TNF-a, IL-6,
and IL-1b, secreted by adipocytes and adipocytes promote

lipolysis. The mechanisms by which TNF-a promotes lipolysis

are as follows. First, insulin signaling is inhibited by tyrosine

phosphorylation of insulin receptor substrate 1. Perilipin is a

protective protein around lipid droplets that prevents lipid

droplets from being decomposed by HSL (78). However, TNF

receptor 1 reduces perilipin through mitogen-activated protein

kinase (MAPK) (p44/42, JNK) (79). IL-1b is another significant

pro-inflammatory cytokine that is mainly produced by

macrophages. In human adipocytes, IL-1b inhibits insulin

signal transduction and glucose transporter type 4 (GLUT4) at

doses as low as 2 ng/ml (80). During IR, the inhibition of

perilipin allows lipase to enter lipid droplets. After lipase

activation, TAGs are decomposed in three steps. Initially,

TAGs are hydrolyzed by ATGL to produce fatty acids and

DAG (81). HSL catalyzes the hydrolysis of DAG to

monoacylglycerol (MAG) and fatty acids (82). Finally, MAG

lipase hydrolyzes MAG to fatty acids and glycerol (83).

It differs from hyperlipidemia caused by excessive lipolysis

during inflammation and IR. The ultimate goal of kaempferol in

the regulation of lipid metabolism is to reduce ectopic lipid

deposition and maintain lipid homeostasis. Kaempferol at 60

mM stimulates 62% inhibition of adipogenesis in preadipocytes

and results in a 39% reduction in intracellular lipid accumulation

in mature adipocytes (28). The PPARb/d signaling cascade

regulates the expression of PPARg and C/EBP family (84, 85).

PPARg and C/EBP are pivotal transcriptional regulators of lipid

homeostasis, regulating the expression of FASN, ATGL, and

HSL (29, 86). Kaempferol downregulates PPARg and C/EBP-b
to activate ATGL and directly promotes lipolysis in a

concentration-dependent manner (29). Patatin-l ike

phospholipase domain containing 2 (Pnpla 2) and Lipe also

encode ATGL and HSL, respectively (87). In 3T3-L1 cells,

kaempferol upregulates the mRNA expression of Pnpla 2 and

Lipe, indirectly increasing the expressions of ATGL and HSL

(28). LPIN1, a co-regulator of DNA-bound transcription factors,

is highly expressed in adipocytes and functions as a phosphatidic

acid (PA) phosphatase enzyme that dephosphorylates PA to

DAG (88). LPIN1, PPARg coactivator a, and PPARa
synergistically regulate fatty acid oxidation gene expression

(89). Kaempferol downregulates the protein level of LPIN1 in

a dose-dependent manner (29), which seems to be related to the

downregulation of PPARg. LXR maintains cholesterol

homeostasis by regulating cholesterol efflux, transportation,

and absorption (90). The use of LXR agonists (fibrates)

activates SREBP1c, eventually leading to fatty liver and

hypertriglyceridemia (59). Kaempferol activates LXR,

especially the b subtype, which lowers cholesterol and glucose
Frontiers in Endocrinology 06
levels in apolipoprotein E-deficient mice (41). However, the

expression of LXR b is not highly in the liver; therefore, the

selective activation of LXR b by kaempferol does not cause an

increase in SREBP1c. In macrophages, lipids are absorbed by

scavenger receptor A and cluster of differentiation 36 (CD36)

(91). Cholesterol is transported to the outside of the

macrophages by reverse cholesterol transporters, including

scavenger class B type I (SR-BI), ATP-binding cassette

transporter A1 (ABCA1), and ATP binding cassette

transporter G1 (ABCG1) (92, 93). Kaempferol downregulates

CD36 and upregulates SR-BI, ABCA1, and ABCG1 (35). The

phagocytosis of lipid-forming foam cells by macrophages is an

early marker of atherosclerosis. Therefore, kaempferol is likely to

have anti-atherosclerotic effects. Similar to other phenolic

substances different kinds of kaempferol have strong anti-

inflammatory effects. Kaempferol glycosides inhibit the

expression of the transcription factor PPARg and decrease

TNF-a levels (94). In contrast, kaempferol inhibits the pro-

inflammatory signals of TNF-a, IL-6, IL-1b, and NF-kB (95–

97). Evidently, anti-inflammation is also a good measure to

regulate metabolic disorders and diabetes.
Kaempferol improves
glucose metabolism

Insulin resistance and hyperglycemia

The discovery and administration of insulin are milestones

in the treatment of diabetes, which transforms diabetes from a

life-threatening disease to a controllable disease (98). Insulin

binds to the insulin receptor on the outer surface of the cell,

causing tyrosine phosphorylation of insulin receptor substrate,

and then binds to inosine phosphate 3-kinase to form

phosphatidylinositol (3,4,5)-triphosphate (PIP3). PIP3

activates Akt, 3-phosphoimide dependent protein kinase 1,

which then activates P70 ribosomal S6 kinase (S6K) and

protein kinase C (99). Akt-dependent phosphorylation plays

an important role in the physiological effects of insulin. First,

Akt-induced phosphorylation causes GSK3a/b inactivation,

which leads to dephosphorylation and activation of glycogen

synthase (100). Second, Akt phosphorylates theTBC1 domain

family member 1/AKT substrate of 160 kDa (TBC1D4/AS160)

to regulate the transport of intracellular GLUT4 vesicles to the

cell membrane to increase glucose uptake (101, 102). Third, Akt

phosphorylation of TSC2 leads to mTORC1 activation, which

stimulates lipid and protein synthesis and inhibits autophagy

(103, 104). Fourth, Akt phosphorylates and inhibits the

translocation of FOXO transcription to the nucleus, thereby

inhibiting liver glucose-producing gene and muscle autophagy

gene expressions and lipolysis (105, 106). Interestingly, in
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contrast to insulin inhibition of FOXO transcription, insulin

induces Akt and mTORC1 activation by inhibiting GSK3a/b,
thus inhibiting forkhead box class K (FOXK) phosphorylation

and causing FOXK nuclear localization and transcription (107).

FOXK regulates the expression of genes involved in cell cycle,

apoptosis, and lipid metabolism and even stimulates

glycolysis (108).

Insulin plays a role in regulating metabolism in different

insulin sensitive-tissues through subsequent recognition signal

transduction with insulin receptor substrates and tyrosine kinase

activity (109). In the skeletal muscles, insulin promotes glucose

transport and utilization, stimulates glycogen synthesis, and

inhibits protein decomposition. In adipose tissues, insulin

promotes glucose transport and lipogenesis, and inhibits

lipolysis. In the liver, insulin inhibits gluconeogenesis and fatty

acid oxidation and stimulates glycogen synthesis and lipogenesis

(de novo lipogenesis) (110). In IR, hepatic gluconeogenesis and

hepatic glucose production are increased. However, glycogen

synthesis and glucose uptake are blocked, resulting in an

increased hepatic glucose output and elevated blood

glucose levels.
Frontiers in Endocrinology 07
Multi-target hypoglycemic effects
of kaempferol

Relative or absolute deficiency of insulin secretion and insulin

action is the basic pathogenesis of diabetes. Kaempferol can

interfere with the above process through many ways (Figure 3).

Kaempferol promotes insulin secretion, which is similar to insulin

secretagogue. A study using glibenclamide, an insulin

secretagogue, as the control drug, found that kaempferol

increased the plasma insulin levels and reduced blood glucose

levels in streptozotocin-induced diabetic rats (43). Mitochondrial

Ca2+ plays an important role in insulin release and glucose

metabolism (111). Mitochondrial calcium monoporter (MCU) is

the main pathway of Ca2+ uptake in the mitochondria (112).

Kaempferol directly activates MCU in a concentration-dependent

manner. only 1mM can nearly double the uptake of mitochondrial

Ca2+ and then activate the pancreatic b-cell metabolism/secretion

coupling (49, 50). In a C57BL/6 mouse model of diabetic

nephropathy (DN), kaempferol increased glucagon-like peptide

1 (GLP-1) and insulin levels with an increase in cAMP, Ca2+ and

glutathione (GSH) levels (113). Kaempferol also improves insulin-
FIGURE 3

Mechanism of kaempferol hypoglycemic. In diabetes, insulin signal transduction is blocked. The expression of gluconeogenesis gene was up-
regulated and liver glucose output was excessive. The decrease of glycogen synthesis and glucose uptake makes glucose output greater than
consumption, which leads to hyperglycemia. Kaempferol promote insulin secretion and improve Akt activity by regulating mitochondrial calcium
uptake. Kaempferol can also directly restore the activity of Akt. Thus reversing the up regulation of gluconeogenesis, down regulation of glycogen
synthesis and glucose uptake caused by Akt inactivation. Moreover, kaempferol antioxidant can also regulate autophagy and apoptosis. IRS, Insulin
receptor substrate; PI3K, inosine phosphate 3-kinase; AKT; threonine protein kinase; PIP3, phosphatidylinositol 3,4,5-trisphosphate; PDK1, 3-
phosphoinositide-dependent protein kinase 1; S6K,ribosomal protein S6 kinase; GSK3 b, Glycogen synthesis kinase 3 b ; FOXO, Forkhead box 0;
FOXK, Forkhead Box Class K; TSC2, tuberous sclerosis 2; ROS, reactive oxygen species; Tbc1d4/AS160, Akt substrate of 160 kDa; BCL-2, B
cellleukemia/lyrnphoma-2; mTORC1, rapamycin complex1; PEPCK, phosphoenolpyruvate carboxylase; G6P, glucose-6-phosphatase.
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dependent glucose uptake in 3T3-L1 adipocytes and pig myotubes

(114, 115).

An imbalance in glucose production and utilization causes

glucose metabolism disorders. Hepatic IR is an important cause of

fasting hyperglycemia. Under the condition of hepatic IR, glucose

metabolism-regulating enzymes levels, such as glucose-6-

phosphatase, PC, glucokinase (GCK) and phosphoenolpyruvate

carboxykinase (PEPCK), are abnormal. The activation and

inactivation of GCK are closely related to blood glucose levels.

Therefore, GCK activator is a potential target for the treatment of

diabetes (116). Kaempferol reduces blood glucose levels by

increasing GCK levels and promoting glycogen synthesis (46).

In mice, oral administration of kaempferol (50mg/kg/day)

significantly improves hyperglycemia by restoring the activity of

hexokinase, while inhibiting the activity of PC and

gluconeogenesis, thus reducing the morbidity rate of diabetes

from 100% to 77.8% (27). When insulin signaling is activated, Akt

phosphorylates and inhibits FOXO1 transcription, ultimately

inhibiting PEPCK and G6P expressions (117, 118). The

mechanism by which kaempferol inhibits hepatic gluconeogenes

is also includes a direct increase in Akt activity and PC inhibition

(46). Kaempferol inhibits the hepatic inhibitor IkB kinase/NF-kB
pathway as its anti-inflammatory effect and restores Akt

activity (119).

Adenosine 5’-monophosphate (AMP)-AMPK is one of an

important energy sensor and the main regulator that maintains

systemic metabolic homeostasis (120). IR is accompanied by a

sustained decrease in AMPK activity, which increases insulin

sensitivity (121, 122). AMPK inactivates acetyl CoA carboxylase

(ACC) by phosphorylation, thus preventing malonyl-CoA

synthesis, increasing mitochondrial fatty acid oxidation, and

reducing fatty acids synthesis (123). AMPK activation is an

important pharmacological target for diabetes treatment.

Metformin and thiazolidinediones (TZDs) have been identified

as AMPK activators (124, 125). Kaempferol increases the

phosphorylation of AMPK and ACC in the adipose tissues,

liver, and muscles (126, 127). Therefore, kaempferol is possibly

the same as metformin and TZDs as a direct activator of AMPK.

a-Glucosidase hydrolyzes glucoside bonds to glucose, which
plays an important role in carbohydrate metabolism, and is

therefore an attractive therapeutic target for the treatment of

diabetes, obesity, and metabolic syndrome (128). Kaempferol is a

novel a-glucosidase inhibitor. Kaempferol blocks its catalysis to

glucoside by inserting into the active site of a-glucosidase,
occupying the catalytic center of the enzyme and inducing

conformational changes (45). Therefore, foods rich in

kaempferol can reduce carbohydrate absorption and reduce

postprandial glucose levels. Change in the intestinal

microbiota are important in the pathogenesis basis of obesity,

type 2 diabetes, and metabolic syndrome (129).

Kaempferol reduces the relative abundance of thick-walled

flora, increases the level of Bacteroides, reduces blood lipids and

glucose levels, and improves IR in obese C57BL/6 mice (33).
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Kaempferol protects pancreatic
b cells

Most patients with diabetes experience b cells mass loss and

apoptosis (17). Pro-inflammatory factors, such as IL-1b,
interferon and TNF-a induce b-cell apoptosis. The caspase-

dependent intrinsic apoptotic pathway is the innitial effector of

inflammatory b cells apoptosis (130). TNF-a and IL-1b induce

NF-kB activation (131). NF-kB then reactivates inducible nitric

oxide synthase expression, which subsequently causes the release

of nitric oxide (NO) (132). NO-dependent Ca2+ depletion in the

endoplasmic reticulum (ER) leads to ER stress, C/EBP

homologous protein (CHOP) induction, and finally b Cells

apoptosis (133, 134). However, the proapoptotic and

antiapoptotic effects of NF-kB activation are controversial

among different cell types. The activation of NF-kB promotes

apoptosis after exposure to IL-1b or TNF-a in b cells (131). The

IL-1b/NF-kb pathway is considered the “common pathways” of

b cells death in types 1 and 2 diabetes (135).

Autophagy is defined as an intracellular lysosomal

degradation process of defective proteins, macromolecules,

damaged organelles, and toxic aggregates and plays a crucial

role in maintaining intracellular balance (136). Autophagy

disorders are associated with IR, obesity, and T2DM (137,

138). Exposure of human islets b Cells to fatty acids and high

glucose levels leads to apoptotic cell death by preventing

autophagic flux (139). Overactivation of autophagy is related

to an increase in lipolysis, resulting in ectopic lipid deposition

and lipotoxic damage in b cells.

The mTOR/AMPK pathway and autophagy-related genes

(ATGs) play a significant role in the regulation of autophagy

(140). Microtubule-associated protein light chain 3-II (LC3-II)

and p62 are markers of autophagy. Inhibition of the autophagy

negative regulator mTOR improves IR and hepatic steatosis in

T2DM rats (141). Kaempferol is an excellent autophagy

enhancer (Figure 4). The activation of autophagy induced by

kaempferol promotes intracellular lipid degradation, reduces ER

stress,and protects b cells from lipotoxic damage (142).

Kaempferol interacts with Tu translation elongating factor,

mitochondrial (TUFM). TUFM enhances the interaction

between ATG12–ATG5 complexes, thereby promoting the

formation of autophagosomes and lysosomes. Transient

receptor potential mucolipin 1 (TRPML-1) is a permeable

cation selective channel that promotes intracellular calcium

release (143). Mitochondrial reactive oxygen species (mtROS)

regulates TRPML-1-mediated lysosomal Ca2+ release (143). As

an autophagy enhancer, kaempferol induces mtROS to promote

lysosomal Ca2+ efflux, transcription factor EB translocation, and

autophagy induction (36). In this study, the authors believe that

the enhanced autophagy of 3T3-L1 and HeLa cells induced by

kaempferol is not related to AMPK-mTOR signaling (36). In

contrast, in RIN-5F cells treated with palmitic acid, 10 mM
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kaempferol increased AMPK phosphorylation, decreased mTOR

phosphorylation, reduced caspase-3 cleavage by approximately

2.5 times, and reduced the mortality rate of RIN-5F cells from

32% to 2% (47). In another study, 10 mM kaempferol treatment

increased the colocalization of l ipid droplets with

autophagosomes and lysosomes in cells through AMPK-

mTOR signaling and reduced ectopic lipid accumulation and

ER stress (48). Kaempferol also plays an anticancer role by

activating the IRE1/JNK/CHOP signaling pathway (144).

Diabetes is also closely associated with oxidative stress. Since

oxidative stress was observed in experimental diabetes in the

1980s (145), the role of oxidative stress in the pathogenesis of

diabetes and its complications has attracted extensive discussion

in academia. In diabetes, persistent hyperglycemia eventually

leads to excess production of reactive oxygen species (ROS) by

increasing mitochondrial oxygen consumption, destroying

mitochondrial function, or activating nicotinamide adenine

dinucleotide phosphate oxidase (146). Excess ROS-induced b
Cells dysfunction and IR are the main causes of diabetes and its

complications. Consistent with other natural products,

kaempferol has an excellent antioxidant effect. In diabetes,

kaempferol prevents pancreatic b cells oxidative damage (40,

42, 51, 147). This may be related to kaempferol restoring the

levels of nonenzymatic antioxidants (vitamins C and E, reduced

GSH) and enzymatic (superoxide dismutase, catalase, GSH

peroxidase, and GSH-S-transferase) antioxidants to reduce

glucose and lipid peroxidation in b cells (43). Kaempferol

prevents myocardial hypertrophy by inhibiting the ASK1/

MAPK signaling pathway, regulating oxidative stress,

improving cardiac function, and reducing apoptosis (148). In

male albino Wistar rats, the use of kaempferol reversed

the increase in g-glutamyl transferase and lipid peroxidation

marker (thiobarbituric acid reactive substances and lipid
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hydroperoxides) levels (149). In rats with cerebral ischemia/

reperfusion injury, 10–15 mmol/L kaempferol reduces nitrous

oxidative stress after ischemia/reperfusion and inhibits apoptotic

cell death and apoptotic biochemical markers (such as caspase-9

activity and poly [ADP-ribose] polymerase [PARP] degradation)

for brain protection (150).

Diabetes-related hyperlipidemia and changes in membrane

phospholipids and fatty acids inhibit membrane-bound enzyme

activity (151). Membrane-bound ATPase contains Na+/K+-

ATPase, Ca2+-ATPase, and Mg2+-ATPase, which are channels

for cations to enter and leave cells. It plays an important role in

maintaining cell physiological functions and is closely related to

pathological changes. The use of kaempferol in diabetic rats

significantly increases the activity of membrane-bound ATPases

in the erythrocyte, liver, kidney, and heart tissues (44). This is

another mechanism by which kaempferol protects b cells.
Kaempferol’s role in
antidiabetic complications

Diabetic retinopathy

Diabetes is usually associated with one or more complications.

Diabetic retinopathy is a common microvascular complication. In

hyperglycemia-induced retinal ganglion cell (RGC) injury, 60

mmol/L of kaempferol reduces RGC cell damage and improves

cell survival by increasing extracellular signal-regulated kinase

phosphorylation and vascular inhibitor protein 1 expression

(152). Retinal pigment epithelium (RPE) damage is associated

with diabetic retinopathy progression. Oxidative stress caused by

glucotoxicity and lipotoxicity is the main inducer of RPE injury.

Kaempferol inhibits vascular endothelial growth factor mRNA
FIGURE 4

Kaempferol stimulates autophagy to protect pancretic b Cells. Kaempferol up regulates intracellular lipid autophag of b cells by activating AMPK/
mTOR signal pathway and TUFMTFEB signal pathway. Thus inhibiting b Apoptosis, restore autophagy-apoptosis balance, and protect pancreas b
Cells. AMPK, AMP-activated protein kinase; mTOR, rapamycin; LC3, microtubule-associated protein light chain 3; ATG5, autophagy-related
geneS; ATG12, autophagy-related gene 12; TUFM, Tu translation elongating factor, mitochondrial; TRPML-1, transient receptor potential
mucolipin 1; TFEB, nuclear translocation of transcription factor.
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expression and the bax/bcl-2/caspase-3 signaling pathways, thus

protecting human RPE cells (ARPE-19) from hydrogen peroxide-

induced injury and apoptosis (153). A prior large-scale study

found that kaempferol at a dosage of 5–25 mm has anti-

angiogenesis effects (154). Interestingly, kaempferol inhibits

estrogen-related receptors a, thus also inhibiting the

angiogenesis of human retinal endothelial cells (155).
Diabetic nephropathy

DN is the most prevalent diabetes complications with the

highest prevalence and accounts for 30–47% of all kidney

diseases (156). Damage to glomerular mesangial cells (GMCs)

is a key risk factor for early-stage DN. The interaction between

advanced glycation end products (AGEs) and their receptors

(RAGE) is an important mechanism of GMC damage.

Kaempferol protects GMC to prevent DN. The mechanisms of

kaempferol in DN include inducing antioxidative stress,

inhibiting collagen IV and transforming growth factor- b1,
improving mitochondrial membrane potential, and inhibiting

the mitochondrial/cytochrome C-mediated apoptosis pathway

(157). In hyperglycemia-induced podocyte apoptosis,

kaempferol regulates M1/M2 polarization of glomerular

macrophages and reduces TNF-a and IL-1b levels (3).

Glomerular matrix fibrosis is another predisposing factor for

DN progression. Kaempferol promotes the release of GLP-1 and

insulin while inhibiting RhoA/Rho kinase and fibrosis (113).

Chronic inflammation is also a key factor in DN progression.

Kaempferol blocks Toll-like receptor 4, and NF-kB by

downregulating TNF receptor-associated factor 6 to reduce the

inflammatory response in DN (158).
Diabetic cardiomyopathy

Diabetic cardiomyopathy (DCM) is a major cardiovascular

complication of diabetes that leads to heart failure and even

death (159). Increased production of ROS, inflammation,

cardiomyocyte apoptosis, and myocardial fibrosis are involved

in the pathogenesis of DCM (160). Kaempferol upregulates

SIRT1 (161), inhibits NF-kB nuclear translocation, and

activates nuclear factor E2-related factor (162), thereby

inhibiting diabetes-induced myocardial inflammation and

oxidative stress. Kaempferol inhibits ASK1/MAPK signaling

and regulates oxidative stress to prevent cardiac hypertrophy

(148). In diabetes myocardial ischemia/reperfusion injury,

kaempferol reduces the oxidative stress and inflammation

induced by AGE-RAGE/MAPK to alleviate myocardial

ischemia/reperfusion injury (163).

Moreover, kaempferol promotes wound healing in patients with

and without diabetes by promoting wound reepithelialization (164).
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In DN, kaempferol partially reverses pain sensitivity by regulating

oxidative and nitrosative stresses and reducing AGEs

formation (165).
Conclusion and outlook

Obesity and diabetes are two chronic inflammatory diseases.

NF-kB activation plays an important role in these diseases. This

is inseparable from PARP1 (166, 167). PARP activation induced

by lipotoxicity in the liver causes a decrease in NAD+, SIRT1,

LXR, and AMPK levels and insulin receptor activation (168,

169). Inhibiting PARP1 prevents b-cell death (170, 171).

Kaempferol activates AMPK and PPARa; suppresses C/EBP-

a, SREBP1c, and PPARg; and protects b Cells (38, 39).

Therefore, kaempferol may serve as a natural PARP inhibitor.

Low plasma concentrations of kaempferol restrict its use. In

fact, the flavonoid naturally absorbed by the human body is only 1–

2 g per day, and the plasma concentration is in the range of

micromolars (172). However, kaempferol at concentrations as low

as 1 mM increases mitochondrial Ca2+ uptake by approximately

85% (49). A previous in vitro, study found that kaempferol was not

cytotoxic at a concentration of 60 or 75 mM (28, 47). Low

bioavailability is another limiting factors for clinical studies on

kaempferol (173, 174). The body has a defense mechanism that

excludes foreign objects through cell membrane surface receptors

(173). Interestingly, two methods that may improve the

bioavailability of kaempferol. The first method is binding to

another substance with higher affinity for the transporter protein,

which transports substances with higher affinity to the outside of the

cell, while those with lower affinity remain and continue to work.

This method was validated for the binding of kaempferol and

quercetin to the breast cancer drug resistance protein (ABCG2).

The affinity of kaempferol for ABCG2 was higher than that of

quercetin. Therefore, ABCG2 transports kaempferol to the

extracellular spaceand leaves quercetin in vivo (175). The second

method is to use nanocarriers to increase permeability and achieve

systemic circulation by coating nanoparticles on the surface of

kaempferol. Nanoparticle capsules may to protect kaempferol from

efflux transporters and promote the inward transport of cells while

maintaining their structural integrity (176). Similarly,

nanocurcumin has been used in a number of clinical trails and

has achieved certain efficacy.

Kaempferol a natural product, is a promising antidiabetic drug.

This review provides a systematic summary of the pharmacological

mechanisms of kaempferol for the treatment of diabetes. This is a

systematic summary of animal and cell experiments. Although this

review has some limitations, it adds valuable information that is

beneficial in determining new drugs for the treatment of diabetes,

fromanimal research to clinical studies. Large-scale,multicenter, and

prospective clinical trials will be conducted in the future to obtain

more reliable information.
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