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Abstract

Precipitation and atmospheric circulation are the coupled processes through which tropical ocean 

surface temperatures drive global weather and climate1–5. Local ocean surface warming tends to 

increase precipitation, but this local control is hard to disentangle from remote effects of 

conditions elsewhere. Such remote effects occur, for example, from El Niño Southern Oscillation 

(ENSO) events in the equatorial Pacific, which alter precipitation across the tropics. Atmospheric 

circulations associated with tropical precipitation are predominantly deep, extending up to the 

tropopause. Shallow atmospheric circulations6–8, impacting the lower troposphere, also occur, but 

the importance of their interaction with precipitation is unclear. Uncertainty in precipitation 

observations9,10, and limited observations of shallow circulations11, further obstruct understanding 

of the ocean’s influence on weather and climate. Despite decades of research, persistent biases 

remain in many numerical model simulations12–18, including excessively-wide tropical 

rainbands14,18, the ‘double-intertropical convergence zone (ITCZ) problem’12,16,17 and too-weak 
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responses to ENSO15. These demonstrate stubborn gaps in our understanding, reducing confidence 

in forecasts and projections. Here we show that the real world has a high sensitivity of seasonal 

tropical precipitation to local sea-surface temperature. Our best observational estimate is 80% 

precipitation change per g/kg change in the saturation specific humidity (itself a function of the 

ocean surface temperature). This observed sensitivity is higher than in 43 of the 47 climate models 

studied, and is associated with strong shallow circulations. Models with more realistic sensitivity 

have smaller biases across a wide range of metrics. Our results apply to both temporal and spatial 

variation, over regions where climatological precipitation is around 1 mm/day or greater. Novel 

analysis of multiple independent observations, physical constraints and model data, underpin these 

findings. The spread in model behaviour is further linked to differences in shallow convection, 

providing a focus for accelerated research, to improve seasonal forecasts through multidecadal 

climate projections.

We first define a measure (kqsat) of the sensitivity of seasonal mean precipitation to variation 

in local sea surface temperature (SST). We will show that kqsat is a key property of the 

atmosphere, using it to link diverse gaps in understanding to a limited subset of physical 

mechanisms. Precipitation increases non-linearly with SST19. Since tropical precipitation 

increases roughly exponentially with column atmospheric water vapour20,21; and over 

seasonal or longer timescales, SST variation forces variation in column water vapour22, via 

differences in saturation specific humidity of the ocean surface (qsat, Methods), we define 

kqsat as follows:

loge(P1/P0) ≈ kqsat* qsat,1‐qsat,0 +<other processes> Equation 1.

This describes the variation in precipitation (from P0 to P1) driven by local variation in qsat 

(from qsat,0 to qsat,1). This approximation is validated within the calculation of kqsat 

(Methods). Moist static energy arguments19 also predict a roughly exponential relationship 

between qsat and P. kqsat quantifies the combined effect of the physical processes by which 

local SST anomalies affect precipitation at the same location. The òther processes’ term 

includes the effects of internal atmospheric variability independent of SST, and of remote 

forcing from land or SST elsewhere, which can be large at individual locations or times. In 

order to estimate kqsat, we filter out these other processes, by combining information from 

multiple locations and times (see Methods). We evaluate kqsat from interannual variability, 

with P0 and qsat,0 taken as seasonal climatological means at each location for each season. 

However, our estimates of kqsat are shown to be also informative about spatial variations in 

precipitation.

kqsat relates most directly to the strength of percentage variations in precipitation. Writing 

Equation 1 in exponential form, percentage precipitation differences are a function of kqsat 

and qsat:

P1–P0 /P0*100 ≈ 100 exp kqsat* qsat‐qsat,0 –1 . Equation 2

Absolute differences depend also on the reference precipitation P0:
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P1–P0 ≈ P0[ exp kqsat* qsat‐qsat,0 –1 , Equation 3

(in absolute terms, precipitation variations are largest in regions of large mean 

precipitation19. However, we will show that spatial variation in P0 itself also depends partly 

on kqsat.

Validating satellite observations

Given uncertainty in precipitation observations9,10, we perform a high-precision evaluation 

of log(precipitation) (as Equation 1) from two satellite datasets: TRMM23,24 (3B43, v7) and 

GPCP25 (v2.3), both for 1998–2015. We do this (Methods) using in-situ raingauge data from 

89 buoys of the Global Tropical Moored Buoy Array (GTMBA)26–28. Satellite-GTMBA 

validation is challenging: on top of satellite error9,10, the GTMBA point observations 

include noise from small-scale variability unresolved by satellite data, missing data, error in 

individual raingauges and wind undercatch29. Our method reduces this noise considerably, 

giving a tight relationship between GTMBA and TRMM data (Figure 1a). Critically, the best 

fit gradient ≈1, so TRMM accurately retrieves differences in log precipitation. On the other 

hand, GPCP underestimates differences in log precipitation (Figure 1b, gradient > 1; 

differences between TRMM and GPCP emerge primarily at low precipitation9), although 

GPCP is more suitable over larger spatial scales (Extended data Figure 1). Since TRMM 

captures differences in log(precipitation) more accurately than GPCP, TRMM is used below.

Model precipitation simulations

We first highlight precipitation biases in 28 atmospheric models from the fifth Coupled 

Model Intercomparison Project (Methods), each forced by observed SST (CMIP5 AMIP 

experiment; Figure 2a–f). We quantify temporal, seasonal and spatial variation in 

precipitation: the 1997–98 El Niño divided by the mean of the 1998–2000 La Niñas; Aug-

Oct divided by Feb-Mar seasons, and precipitation scaled by its latitudinal maximum. Our 

metrics coincide with significant spatial or temporal differences in SST (Methods). Spatial 

variation across the west Pacific is excluded, for example, because spatial gradients in SST 

are weak there, so model differences in kqsat will be less important for spatial variation there. 

Given the form of Equation 1, precipitation is shown on log scales as ratios. Although some 

models are close to the observations, in others, biases exceed a factor of five in the El 

Niño/La Niña ratio, seasonal cycles over the Atlantic and West Pacific, and in the Atlantic 

spatial pattern for the Aug-Oct season (Figure 2a–d). Biases over a factor of two occur in the 

spatial patterns of the East Pacific annual mean (the long-standing ‘double-ITCZ’ 

problem12,17) and the Indian Ocean for November-April (Figure 2e–f). Such biases are 

known, but their causes are not well understood.

These biases (Figure 2a–f) all correspond to excessively weak spatial/temporal variations in 

precipitation (precipitation ratios too close to 1; including excessively-wide inter-tropical 

convergence zones14,18). This suggests a hypothesis (H0), that the sensitivity of seasonal 

precipitation to local SST (kqsat) may be too weak in many models.
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To test H0 objectively, we use a method independent of Figure 2 (Figure 2 was used to 

propose H0). This involves estimating kqsat for each model using different data.

Evaluating kqsat in models

We evaluate kqsat using interannual variability in seasonal mean precipitation and SST (the 

AMIP SST dataset30 used to drive the model experiments; using years 1980–2005). kqsat is 

calculated using gridpoint values of seasonal precipitation and qsat, from each location in the 

study region, and for each year. With these data, Equation 1 becomes a model of the effect of 

local interannual SST variability on precipitation:

loge P x,t /P0 x ≈ kqsat* qsat x,t ‐qsat,0 x +<other processes>,

where (x,t) indicates values for each gridpoint and year; and here, P0 and qsat,0 are the 

corresponding climatological means for each gridpoint. We estimate kqsat from these data 

using a modified regression approach (detailed in Methods), minimising the influence of 

other processes in Equation 1.

To minimise observational error, we exclude the 30% of the tropical oceans with the lowest 

climatological mean SST (Figure 3b–e, area outside white contour).

Taking logarithms means that all areas of our study region contribute relatively equally to 

our kqsat estimate (Methods). Consequently, kqsat is relevant over most of the tropical oceans 

(Figure 3a, correlations are high except for the left bar). kqsat is inapplicable over the coolest, 

driest ocean regions (Figure 3a, left bar; area masked in Figure 3b–e). The applicable region 

corresponds to climatological precipitation > ~1 mm/day (Figure 3b–e, orange contour).

kqsat is intended to be independent of large-scale SST spatial patterns. To avoid bias from the 

large, recurrent ENSO pattern, our ‘sortav’ regression method first processes the data so all 

years contribute equally. Linear regression is then applied to obtain kqsat. Rankings of 

CMIP5 models by kqsat are robust: insensitive to season, to using fewer years of data, or to 

excluding ENSO years - Extended data Figure 2e–g. Calculated this way, kqsat is less 

sensitive to the time period used than with simple least squares regression (Extended Data 

Figures 2h, 7).

We find that the sensitivity of precipitation to local SST variability is much stronger in some 

models than in others: kqsat varies across CMIP5 models by a factor of 2.5 (0.26–0.66 kg/g; 

median = 0.46). We group the models into ‘high-kqsat’ (the 6 models with the largest kqsat 

values), ‘low-kqsat’ (the lowest 6 kqsat values) and ‘mid-range’ subsets.

In Equation 2, setting (qsat - qsat,0) to 1, expresses kqsat as the percentage precipitation 

change per g/kg change in saturation specific humidity (qsat):

P1–P0 /P0*100 ≈ 100 exp kqsat*1 –1 =100 exp kqsat –1 . Equation 4
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Expressed this way, the precipitation sensitivity in CMIP5 models spans 30–93% per g/kg 

(median = 58%). For context, qsat can vary by a few g/kg, 10° either side of the East Pacific 

ITCZ during Aug-Oct, and anomalies during ENSO events have a similar magnitude.

High sensitivity of precipitation to SST

We hypothesised above (H0) that kqsat may be too low in most models. To begin testing this, 

the results in Figure 2a–f are replotted, but with the ‘high-kqsat’ subset of models highlighted 

in magenta (Figure 2g–l). The ‘high-kqsat’ subset shows much better agreement with TRMM 

than the full ensemble, in all six panels. Conversely, the ‘low-kqsat’ subset performs much 

worse (Extended data Figure 3). Next, we calculate kqsat
(spatial) (Methods): as kqsat, but using 

spatial patterns in climate means, rather than internal variability (Figure 4b). Again, models 

closest to the observations (Figure 4b, horizontal line) tend to be those with high kqsat. These 

results all imply that kqsat should be high in the real world (H0).

These results also show that kqsat is relevant to both spatial and temporal variations in 

precipitation. We emphasise this by quantifying the overall sensitivity of precipitation to 

local SST (kqsat
spattemp ), including both spatial and temporal variations (including spatial 

variation in P0, Methods). kqsat
spattemp is well correlated with kqsat (Extended data Figure 2i). 

This confirms that kqsat is a useful measure of the underlying sensitivity of precipitation to 

local SST, relevant to spatial and temporal variations. kqsat does not give information about 

tropical mean precipitation, which is governed by different processes31. kqsat remains our 

primary measure of precipitation sensitivity to local SST, because it is insensitive to details 

of SST patterns. In contrast, kqsat
spattemp and kqsat

(spatial) may be sensitive to the specific spatial 

patterns in climatological SST (Methods), explaining some of the noise in Figure 4b and 

Extended data Figure 2i.

We estimate a lower bound for kqsat, using observed interannual variability (independent of 

Figure 2; Methods). Three values of kqsat are estimated, exactly as for the models, but using 

TRMM precipitation, and qsat from each of three different SST datasets (HadISST32 version 

1.1, ERSST33 version 4 and COBE34 version 2). Uncertainties are estimated, from SST error 

(including regression dilution bias) and internal variability (the TRMM observational period 

only partly overlaps the model simulation period). A lower observational bound (95% 

confidence) of 0.51 kg/g for kqsat is obtained.

For a central observational estimate of kqsat (details in Methods), we return to Figure 2. We 

ask: if all CMIP5 models had the same value of kqsat, with what value would they best 

reproduce the observations in Figure 2? We first find where, geographically, the models are 

most sensitive to kqsat. This reveals seven intervals (shaded in Figure 2g–l). For each 

interval, model errors relative to TRMM are regressed against modelled kqsat (Extended data 

Figure 6). For each interval, kqsat is estimated as where the regression line intercepts the x-

axis (the value for a theoretical model with zero precipitation error). These seven estimates 

of kqsat range from 0.56 to 0.68 kg/g (Figure 4a, white dashed lines), all larger than our 

lower bound estimate. The spread of estimates comes from uncertainty in processes not 

quantified by kqsat. The range of conditions used, covering spatial, seasonal and temporal 
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variability across different locations, helps to quantify and mitigate this uncertainty. 

Robustness is tested by plotting results from the sixth model intercomparison project 

(CMIP6, not used to select the seven intervals) on Extended data Figure 6. The mean of the 

seven kqsat values (0.6 kg/g; or, using Equation 4, 80% per g/kg) is our central estimate (for 

1980–2005; other periods would give slightly different values, from internal SST variability 

- Extended data Figure 2h).

These results, from two independent methods, suggest that most models underestimate kqsat. 

Our central estimate (0.6 kg/g, Figure 4a, horizontal black line; Figure 4b, vertical line) is 

greater than 43 of the 47 model values from CMIP5 and CMIP6. This implies that models 

underestimating the sensitivity of precipitation to local SST underlies a range of model 

biases over tropical oceans. CMIP5 and CMIP6 have similar ranges of kqsat values (Figure 

4a), highlighting the need for accelerated model development.

Other studies35 have found biases in a different aspect of the SST-precipitation relationship: 

model precipitation often tracks SST maxima more closely than in observations. We 

quantify this in each CMIP5 model as the correlation coefficient between climatological 

spatial patterns of precipitation and SST, for each season, then average the four seasonal 

values. This ‘spatial-correlation index’ is uncorrelated with kqsat (r = 0.01; i.e. models with a 

high spatial-correlation index can have high, low or intermediate kqsat), so it involves 

different processes.

Processes behind uncertainty in kqsat

To guide model improvements, we explore what causes model differences in kqsat, revealing 

links to shallow atmospheric circulations. We first note that kqsat involves processes 

unrelated to tropical mean precipitation: the correlation across CMIP5 models between the 

two measures is 0.03. Energy budgets constrain tropical mean precipitation31, while the 

value of kqsat affects precipitation variation in both time and space.

Beginning with interannual variability, we define kqsat
wap(p): the sensitivity of the vertical 

pressure velocity (wap) to local SST change, at each pressure level (p). This is evaluated like 

kqsat, using data from all seasons across the tropical oceans, but using wap(p) instead of 

log(precipitation). A deep mode dominates tropical variability36, so the CMIP5 mean profile 

of kqsat
wap peaks around 450 hPa (Figure 5a). In contrast, model spread in kqsat is linked to 

shallow circulations: correlations between kqsat
wap(p) and kqsat (Figure 5b) peak near 

700hPa (r = −0.9; correlations are small at 1000hPa, as wap approaches zero near the 

surface). That is, in models with high kqsat (as in the real world), shallow circulations 

respond strongly to SST anomalies. Although deep circulations are important36 in all 

models, and shallow circulations have been linked to mean precipitation, especially over the 

Eastern Pacific7, our novel finding is that shallow circulations are central to model 

uncertainty in SST-driven precipitation variability, across the tropics.

Shallow circulations are further linked to model differences in climate means. We study 

zonal, ocean-only means over 180W-10E (most of the Pacific, entire Atlantic), in Aug-Oct, 

when meridional SST gradients are strong. CMIP5 results are used to define key regions 

Good et al. Page 6

Nature. Author manuscript; available in PMC 2021 April 26.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



(black and orange lines in Figure 5c–e), and CMIP6 used to test the conclusions. As 

expected4,7, CMIP5 mean vertical velocity profiles are bottom heavy, but extend throughout 

the troposphere (Figure 5c, colours). Meridional wind (white contours) peaks near the 

tropopause, with a weaker shallow flow between 500–700hPa37. Again, however, inter-

model spread in kqsat is associated with shallow circulations: models with high kqsat have 

stronger shallow descent south of the ITCZ between 600–850hPa (Figure 5d, yellow; 

Extended Data Figure 8a, magenta line; Extended Data Figure 8d). They also tend to have 

stronger shallow ascent in the ITCZ (Figure 5d, blue region; Extended Data Figure 8c, 

magenta line), stronger trade winds and stronger return flow between 500–700hPa (Figure 

5d, white contours; Extended Data Figure 8b, magenta line). This shallow circulation is 

weak in the low-kqsat mean (Extended Data Figure 8a–c, blue lines).

The weak link between model differences in kqsat and deep circulations may arise partly 

from physical constraints. In descending air, differences in vertical velocity are largest below 

about 600 hPa (Extended Data Figure 8a,i). This is partly explained by the vertically-

integrated dry static energy (DSE) budget. This budget constrains vertical velocities, 

requiring balance between radiative, sensible and latent heating, and advection of DSE 

(Methods). In descending air above 600 hPa, there are fewer uncertain processes affecting 

this budget, with negligible energy input from cloud and precipitation. Here, therefore, 

downward advection of DSE is balanced mostly by dry clear-sky radiative cooling 

(Extended Data Table 1). Further, vertical temperature profiles are similar across CMIP5 

models. This constrains both radiative cooling and vertical gradients of DSE, limiting model 

differences in vertical velocity. Model temperatures are constrained, near the surface by SST, 

and near the tropopause as modelling groups aim to reproduce observed outgoing longwave 

radiation. Below 600hPa, there are additional sources of uncertainty, from cloud and 

precipitation38, leading to larger model differences in shallow descent, and so stronger links 

to differences in kqsat.

The depth of the meridional return flow (500–700hPa, Figure 5e, white contours) suggests a 

circulation driven by precipitating shallow convection37,39. The alternative, sea-breeze 

mechanism reaches lower levels37. Both circulation types may exist over the Galapagos 

(Extended Data Figure 8g): here, model meridional winds between 600–700hPa (shallow-

convection-type) are uncorrelated with those between 700–850hPa (sea-breeze-type), 

indicating different physical processes at these two levels. The column dry static energy 

budget (Methods) also implicates precipitating shallow convection. Model differences in this 

budget are predominantly a balance between vertical advection integrated over 600–1000 

hPa, and precipitation latent heating (Extended Data Table 1, final column): in descending 

air below 600 hPa, high-kqsat models have stronger shallow advective warming from 

stronger shallow descent, balancing weaker warming from weaker precipitation. As 

expected, the ensemble mean in descending air is mostly a balance between radiative 

cooling and advective warming.

Causality is hard to fully establish, but the most likely explanation of our results is that 

model differences in kqsat mostly originate from model differences in the behaviour of 

shallow precipitating convection. Such differences would affect the sensitivity of 

precipitation to SST directly. The consequent differences in shallow latent heating also 
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appear to lead to differences in shallow circulations. This couples shallow vertical velocities 

in descending and ascending air (Extended Data Figure 8e), further modifying the sensitivity 

of precipitation to SST.

Significant model differences in the physical representation of convection40,41, including its 

coupling to circulation5,42, are well established. Improvements in kqsat in the CNRM model 

from CMIP5 (0.43 kg/g) to CMIP6 (0.54 kg/g) are largely associated with convection 

scheme changes. Running CNRM-CM6 with the CNRM-CM5 convection scheme gives 

kqsat=0.36 kg/g, even smaller than that of CNRM-CM5. That is, the effect of changing the 

convection scheme is partly offset by changes in other schemes. Changes from CM5 to CM6 

include the shallow convection scheme and the transition from shallow to deep convection43. 

These, and other physics schemes, including boundary layer, deep or mid-level convection, 

or microphysics, could all affect how shallow precipitating convection responds to SST.

Other processes may have smaller contributions. Dry shallow circulations44 are more 

important over hot, dry land. A limited role for differences in radiation (Extended Data Table 

1, final column), suggests cloud parameterizations are not dominant. Differences in 

dynamical schemes are thought to be less likely to be important for tropical precipitation 

biases, although coupling of dynamics to physics is important45–47.

Models with stronger shallow circulations can also import more moist static energy in 

ascending air, driving enhanced deep convection48. Our results support this (Extended Data 

Figure 8h), showing that model differences in shallow ascent are strongly positively 

correlated with differences in deep ascent. This is an indirect link to kqsat, which is more 

weakly associated with deep ascent rates (Figure 5d).

Strong real-world shallow circulations

Shallow circulations are challenging to observe11, but our results suggest they are stronger in 

the real world than in most models. Models with high kqsat (as in the real world) tend to have 

strong shallow circulations (in both climate means and internal variability). We test this 

further with two independent observations, in Aug-Oct. In models, there is a strong (r=0.86) 

relationship between shallow descent, and northward trade winds (Figure 4c). If the shallow 

descent is strong in the real world, we would expect strong northward trades – and this is 

confirmed by QuikSCAT satellite observations49 (SeaWinds scatterometer, Level 3 product, 

years 1999–2009 - horizontal line in Figure 4c). There is, similarly, a strong (r=0.81) 

relationship (Figure 4d) between 500–700hPa meridional winds over our study region, and 

the mean 600–700hPa meridional wind over Galapagos and Christmas Islands (915 MHZ 

wind profiler8,50 observation sites, years 1994–2005 at Galapagos, 1990–2002 at Christmas 

Island; few observations reach above 600hPa). If the large-scale 500–700hPa wind is strong 

in the real world, we would expect strong southward winds in the observations, and this is 

what the wind profilers show (horizontal line in Figure 4d). These results, using multiple 

observations, confirm a previous suggestion based on a single reanalysis product5.
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Conclusions

Our results show that kqsat is linked to a range of model biases in precipitation and 

atmospheric circulation. Improving kqsat should reduce those biases, giving greater 

confidence in seasonal through multi-decadal model projections. kqsat affects the strength of 

precipitation variation in both time and space. Other biases, in large-scale energy budgets, 

and teleconnections, also affect precipitation. We show that kqsat can be constrained by 

observations, and give evidence that improving the representation of shallow tropical 

precipitating convection, and its coupling to SST and circulation, could improve kqsat. This 

identifies specific model development goals and gives new ways of linking these to 

observable physical processes.

Methods

Data domain, SST, precipitation and qsat

Results are based on seasonal means of precipitation and SST, over the tropical oceans 

(20S-20N). qsat is calculated as the saturation specific humidity at the seasonal mean sea-

surface temperature and 1000 hPa air pressure. Use of seasonal mean SST here means that 

qsat will be lower than the seasonal mean of saturation specific humidity calculated from 

daily SST (due to sub-seasonal SST variability, and nonlinearity in the humidity 

calculation). We use seasonal mean SST to minimise observational error: sub-seasonal SST 

variability is hard to observe accurately.

Observations

Satellite precipitation data are seasonal averages of monthly means from V7 of the 3B43 

Tropical Rainfall Measuring Mission (TRMM)23,24 dataset, covering 1998–2015. Data from 

V2.3 of the Global Precipitation Climatology Project (GPCP25) retrieval are included in 

Figure 1 only.

In-situ raingauge data from 89 buoys of the Global Tropical Moored Buoy Array (all buoys 

with more than 1 year of precipitation data), from the Tropical Ocean-Global Atmosphere 

(TOGA26) observing system, the Prediction and Research Moored Array in the Atlantic 

(PIRATA28) and the Research Moored Array for African-Asian-Australian Monsoon 

Analysis and Prediction (RAMA27), were retrieved as daily means. Days with lower quality 

data (quality codes not equal to 1 or 2) were rejected. Monthly means were then calculated 

only for months with 20 or more days with code 1 or 2 data (other months are marked as 

missing). Seasonal means were taken only where three consecutive months had non-missing 

data.

Monthly mean SSTs are taken from four different datasets. The CMIP5 AMIP dataset30 (the 

dataset used to drive the AMIP SST-forced model runs) is available only for 1980–2005. 

This was used to calculate kqsat for each model. For our observational estimate of a lower 

bound on kqsat (using TRMM precipitation), three SST datasets were used: HadISST32 

version 1.1, ERSST33 version 4 and COBE34 version 2 (the AMIP dataset used by the model 

simulations was not used, due to its limited temporal overlap with the TRMM operational 

period).
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Surface meridional wind observations are from SeaWinds on QuikSCAT Level 3, for the 

period Aug 1999-Oct 2009. Wind profiler observations at San Cristóbal, Galápagos (0.9°S, 

89.7°W, 1994–2005) and Christmas Island (2.8°N, 157.5°W, 1990–2002) used 915 MHz in 

low mode, as used in other studies of shallow circulation8.

Model data

All model results are from atmosphere-only AMIP runs (one run per model version) forced 

by observed SST, corresponding to the period 1980–2005. This includes 28 models from 

CMIP5 (ACCESS1–0, ACCESS1–3, BNU-ESM, CCSM4, CESM1-CAM5, CNRM-CM5, 

CSIRO-Mk3–6-0, CanAM4, GISS-E2-R, HadGEM2-A, IPSL-CM5A-LR, IPSL-CM5B-LR, 

MIROC-ESM, MIROC5, MRI-AGCM3–2H, MRI-AGCM3–2S, MRI-CGCM3, NorESM1-

M, inmcm4, bcc-csm1–1-m, bcc-csm1–1, EC-EARTH, MPI-ESM-LR, MPI-ESM-MR, 

FGOALS-s2, FGOALS-g2, GFDL-CM3, GFDL-HIRAM-C180) and 19 from CMIP6 (BCC-

CSM2-MR, BCC-ESM1, CAMS-CSM1–0, CanESM5, CNRM-CM6–1, CNRM-ESM2–1, 

EC-Earth3-Veg, INM-CM4–8, INM-CM5–0, IPSL-CM6A-LR, MIROC6, HadGEM3-

GC31-LL, UKESM1–0-LL, MRI-ESM2–0, GISS-E2–1-G, GFDL-AM4, GFDL-CM4, 

NESM3, SAM0-UNICON).

Evaluation of satellite precipitation using GTMBA raingauge data

First, seasonal mean satellite precipitation data (for all seasons) were interpolated linearly to 

the GTMBA locations. Logarithms of seasonal mean precipitation were then taken, and all 

datasets masked at times and locations where any data (GTMBA or satellite) were missing. 

This resulted in 1723 observations of seasonal mean precipitation from each dataset, 

covering the period 1998–2015 (the overlap between TRMM and GTMBA operational 

periods). For the remainder of the analysis, the observation location and time are ignored.

To reduce noise effectively, while retaining the signal of interest, we use the fact that 

precipitation tends to increase with SST, but the noise (as defined here) is largely 

independent of SST. For each dataset, the 1723 observations were grouped into 120 bins (14 

observations per bin). This was done by ranking the observations by seasonal mean SST (the 

14 observations corresponding to the 14 lowest SST values were placed in the first bin, and 

so on). The mean across each bin was then taken, giving 120 bin means of log(seasonal 

precipitation): giving 120 symbols in Figure 1. 120 bins were chosen, as a mean over 14 

observations is sufficient to reduce noise significantly, while retaining a large number of 

symbols in Figure 1 to assess the method visually. Doubling the number of bins has 

negligible effect on the gradient in Figure 1. Results are insensitive to which SST dataset is 

used to bin the data (compare Extended data Figure 4, bottom two rows, with Figure 1).

We demonstrate that regression dilution bias is likely to be small in Figure 1a (method 

justification in Methods subsection ‘Estimating regression dilution bias’ below). We do this 

by repeating the analysis in Figure 1a, but regressing first TRMM against GPCP (Extended 

data Figure 4, top left), then GPCP against TRMM (Extended data Figure 4, top right). The 

product of the two regression gradients is 0.98 (close to 1), suggesting that this bias is small.

We also tested sensitivity of the validation to potential undercatch by the GTMBA 

raingauges in windy conditions29. This issue could only bias the gradients in Figures 1a,b if 
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the percentage undercatch varied systematically from low to high precipitation (because 

Figure 1 shows log precipitation). To test this, we recalculated the gradients in Figures 1a,b, 

but after masking the data according to the seasonal mean wind speed (also observed by 

GTMBA buoys). Gradients calculated for low wind (0–4 m/s; 22% of all data) and high 

wind (6–10 m/s; 27% of all data) show no significant differences from Figure 1a,b (for 

TRMM, confidence intervals consistently spanning 1 and best estimate within 5% of 1; for 

GPCP, confidence intervals consistently excluding 1). This suggests that the satellite 

validation is insensitive to wind undercatch.

Figure 2 data preparation (regions, seasons, time periods)

For Figure 2, all data is first regridded by area-averaging to a common grid (resolution: 

1.25° latitude by 1.875° longitude).

The El Niño/La Niña ratio is based on large ENSO episodes in years both simulated by the 

models and observed by TRMM: the 1997–1998 El Niño divided by the mean of 1998–1999 

and 1999–2000 La Niñas, for the El Niño peak season (November-January), averaged over 

10S-10N.

Other data are zonal means over the following longitude bands (with land masked out): 

(Atlantic) 70W-25E; (East Pacific) 150–100W; (Indian Ocean) 50–100E.

Seasonal cycles over Atlantic and Pacific are calculated as the zonal mean for August-

October divided by the zonal mean for February-April). These seasons were chosen because 

they show large differences in SST, but small differences in solar zenith angle (the latter can 

affect precipitation by altering land temperature).

Spatial patterns are calculated, for each model/observational dataset, as the zonal mean at 

each latitude, divided by the maximum, zonal mean for the same model/observational 

dataset. This was calculated for August-October (ASO) for the Atlantic, due to the large 

meridional SST gradient for this season. November-April was used for the Indian Ocean, as 

this basin has a significant meridional SST gradient for this period.

Estimating kqsat, part 1: data preparation

kqsat is used here specifically to rank the models and compare with observations. Therefore, 

the method of calculation needs to be consistent across models and observations, and to 

minimise the potential for observational error.

For each year, for a given season, the logarithm of seasonal mean precipitation is calculated. 

The spatial pattern of climatological mean precipitation (Extended data Figure 2j) is 

dominated by a small area of large precipitation (occupying around 10% of the area). Hence, 

if we evaluated kqsat without taking the logarithm, our result would be dominated by this 

small area of the tropics. The spatial distribution of log(precipitation) is much more uniform 

(Extended data Figure 2k), except for the driest 10% of the tropics (which is eliminated from 

our analysis as we mask the region of coolest SST). Hence, using log(precipitation) to 

calculate kqsat ensures that the result is influenced fairly equally by all parts of our analysis 
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region (confirmed in Figure 3a). Our results use seasonal mean precipitation. Use of other 

timescales would alter kqsat, due to the (nonlinear) logarithm in Equation 1.

For models, kqsat is calculated using data on each model’s native grid. For observations, qsat 

is regridded linearly to the high resolution TRMM horizontal grid.

Before estimating kqsat, to minimise observational error, we exclude the 30% of the tropical 

oceans with the lowest climatological mean SST. An advantage of using a logarithm in 

equation 1 is that kqsat estimates are not dominated by the narrow ITCZ region. However, it 

could mean that error in observing the very lowest rainfall rates could cause large error in 

our real-world estimate of kqsat. Therefore we mask the regions with coolest SST on 

average. This masking is only done in calculating kqsat. It is not done in Figure 2, as the 

climatological means reduce observational error there.

At each location, anomalies relative to climatological means are calculated for each year, for 

both qsat and log(precipitation). Locations that have missing data in any year are excluded. 

These data are used in the sortav method, described below.

Estimating kqsat, part 2: sortav regression method

Once the data is prepared as above, our regression method for estimating kqsat (denoted 

‘sortav’) is applied. For python code for this method, and an illustrative example, see Code 

Availability Statement. The sortav method is designed to prevent dominance from the SST 

spatial pattern associated with ENSO (an issue because ENSO features large SST anomalies 

in a consistent pattern). In estimating kqsat from inter-annual variability, our aim is to reduce 

the ‘other-processes’ term in Equation 1, by averaging over different SST patterns, with 

different patterns of large-scale circulation anomalies. If a single SST pattern (ENSO) was 

allowed to dominate, this would not be effective. If standard linear regression was used, the 

ENSO pattern would dominate, because ENSO features large SST anomalies. In addition, 

tropical means of precipitation and SST can vary over time, involving different processes 

than those represented by kqsat. Our method avoids these issues.

The first step sorts each year of data. Say the data has n locations and y years. For each year, 

the n anomalies in log(precipitation) are sorted in order of increasing qsat anomaly. This 

produces, for each year, a vector of length n, with the first element corresponding to the 

location with the most negative qsat anomaly, and the last element being that with the most 

positive qsat anomaly. If Equation 1 was exactly true, with zero noise, each vector would be 

sorted in order of increasing anomaly in log(precipitation). Because of the noise (from large-

scale processes), this is not, in general, true. This gives y sorted vectors, each of length n.

We then average over the y years, to produce one mean vector of length n (e.g. the 1st 

element of this vector is the mean of the y precipitation anomalies found over the most 

negative qsat anomaly from each year). This averaging removes much of the noise, because 

Code Availability
Python code for calculating kqsat, including the sortav regression routine, is available from http://doi.org/10.5281/zenodo.3878691.
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the noise is largely independent of qsat. In this mean, years with large SST anomalies have 

the same weighting as other years, avoiding dominance by ENSO.

The same process is repeated for qsat. This gives two mean vectors, each of length n: for 

anomalies in log(precipitation) and in qsat.

The relationship between the averaged anomalies in log(precipitation) and qsat is relatively 

linear in both models and observations (e.g. Extended data Figure 2a–d), suggesting that 

Equation 1 is a useful approximation in this context. kqsat is then estimated from these 

vectors, by ordinary least squares linear regression (e.g. the gradients of the best fit lines in 

Extended data Figure 2a–d).

To compare with our sortav method, alternative estimates of kqsat (marked OLS in Extended 

Data Figures 2h,7) use standard linear regression between seasonal anomalies in 

log(precipitation) and qsat (without sort-averaging).

Calculating kqsat
(spatial) and kqsat

spattemp

kqsat
(spatial) is calculated using the same method as kqsat, except that it quantifies seasonal 

and spatial variation in time-mean climate (in contrast with kqsat, which quantifies 

interannual variability). First, time means are taken for each dataset and season (giving 4 

season means per grid point per dataset). For each dataset and each season separately, 

precipitation is divided by the tropical mean, before taking logarithms. This is done to scale 

out model variation in the tropical mean (which is controlled by the large-scale energy 

budget). For qsat, for each dataset and season separately, anomalies are taken with respect to 

the tropical mean. Masking, to exclude regions with low qsat, is based on annual mean qsat.

kqsat
spattemp is defined as follows:

P /P ≈ exp kqsat
spattemp ⋅ qsat′

This approximates variation in precipitation relative to the tropical mean, driven by variation 

in qsat relative to its tropical mean. The overbar represents the tropical mean for the current 

season of the current year, and qsat′ is specifically the qsat anomaly with respect to the 

tropical mean:

qsat′ = qsat − qsat

Anomalies expressed this way capture temporal and spatial variability associated with 

variation in local SSTs, but exclude temporal variability in tropical mean precipitation 

(which is constrained by the large-scale atmospheric energy budget).

kqsat
spattemp is estimated using the same approach as kqsat, but anomalies of log(P) and qsat are 

taken relative to their tropical means for the corresponding season and year (kqsat is 

evaluated using anomalies with respect to local climatological means for each location).
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A disadvantage of both kqsat
(spatial) and kqsat

spattemp is that they have some sensitivity to other 

processes (teleconnections) associated with the specific spatial patterns in climatological 

mean SST (these spatial patterns are filtered out less effectively as there are only 4 seasons, 

compared to the 25 years of internal variability used to estimate kqsat).

A lower bound for kqsat, using observed interannual variability

This method (estimated lower bound on kqsat) accounts for three forms of observational 

error, combined using Monte Carlo sampling.

First, systematic error in the observed magnitudes of seasonal mean SST anomalies could 

bias kqsat. To explore this, we first estimated kqsat (with the sortav method) using TRMM 

precipitation, and each of the three SST datasets (HadISST, ERSST, COBE) that cover the 

whole TRMM operational period, giving three direct, unscaled estimates of kqsat (Extended 

data Table 2a).

Second, error in the SST spatial pattern will cause a low bias in kqsat (regression dilution 

bias). Typical magnitudes of this bias are estimated (see more detail in Methods section 

‘Estimating regression dilution bias’). This is done by regressing pairs of SST datasets 

against each other, with regression coefficients calculated using the sortav method (as used 

for kqsat). Extended data Table 2b shows the results for each pair of SST datasets. The final 

column of Extended data Table 2b gives the 6 different estimates of regression dilution bias.

Third, the TRMM operational period does not fully overlap the AMIP SST-forced model 

simulation period. Thus, kqsat estimated for the TRMM period will be different from that 

obtained if TRMM were operational throughout the AMIP period (due to a different set of 

SST patterns during the TRMM and AMIP period). Estimates of typical magnitudes of this 

error were obtained using samples from coupled ocean-atmosphere simulations (Extended 

data Figure 7), giving 85 samples of percentage error.

10000 estimates of kqsat were then generated using Monte Carlo sampling. For each 

estimate, one of the three direct estimates (Extended data Table 2a) was selected at random, 

‘corrected’ by a random selection from the 85 samples of percentage error (Extended data 

Figure 7), and further corrected using a random selection from the 6 estimates of regression 

dilution bias (Extended data Table 2b).

The lower bound of the 95% confidence interval of these 10000 estimates is then taken. We 

only use the lower bound for the following reason: it seems unlikely that the true regression 

dilution bias is weaker than the minimum value estimated here (around 10%, Extended data 

Table 2b). This is because we do not expect the SST datasets to be significantly closer to the 

real SST than they are to each other. However, it is plausible that the regression dilution bias 

could be larger than estimated, so we do not quote an upper bound for kqsat.

The appropriate lower bound for an atmosphere-only AMIP model may be even higher than 

our quoted result, as the observed kqsat value may be reduced by the effect of atmospheric 

internal variability on SST19. kqsat values from AMIP models are similar to or higher than 

from the equivalent coupled models. In contrast, this coupling issue should be small for our 
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central estimate of kqsat (next section), as that is based on metrics where ocean dynamics 

(for ENSO) or forcing associated with the mean state/seasonal cycle dominate the SST 

differences/gradients.

Central estimate of kqsat in the real world

We start by finding where, geographically, the models are most sensitive to kqsat. This is 

done using correlation coefficients (r) between kqsat and the log of precipitation ratios 

(Extended data Figure 5) for each latitude (or longitude for ENSO) in each panel in Figure 2. 

This reveals six discrete intervals (shaded in Figure 2) where |r| > 0.6 (about 50% variance 

explained), and a seventh, showing weaker correlations, over the Indian Ocean. For each 

model, we average the log of precipitation ratios over each interval, and take the difference 

from the equivalent value for TRMM. This gives seven error indices for each model (y-axes 

in Extended data Figure 6). For each interval, the 28 model error indices are regressed 

against kqsat (x-axes in Extended data Figure 6), and kqsat is estimated from where the line of 

best fit crosses zero error. This gives seven estimates of kqsat; their mean is our central 

estimate.

We did not use the coupled ocean-atmosphere models to estimate kqsat, due to the evident 

residual biases from SST error in these models, and because it isn’t possible to use the 

ENSO response for coupled models, due to model differences in simulations of ENSO SST 

responses.

Estimating regression dilution bias

Regression dilution bias51 arises when there is random error in the independent variable (e.g. 

qsat in estimating kqsat). This causes the regression gradient to be biased low. This bias 

reduces the gradient by a factor (β) that depends only on the characteristics of the 

independent variable. We estimate typical magnitudes of this bias using different 

observations of the independent variable (e.g. different SST datasets), as follows.

Say the vector of true values of the independent variable is x, and we have two different 

observational estimates, x1 and x2. We first regress x1 against x2. This regression uses the 

same methodology as when regressing the dependent variable against x: i.e. for estimating 

dilution bias in observations of kqsat, the sortav method is applied; and for the satellite 

precipitation validation, the SST binning is used. The regression gradient (f12) obtained from 

regressing x1 against x2, will be biased low by a factor β2 (from error in x2). We then 

regress x2 against x1. This regression gradient (f21) will be biased low by a factor β1 (from 

error in x1).

We then estimate the dilution bias as:

β ≈ sqrt β2 ⋅ β1 =sqrt f12 ⋅ f21

(with no dilution bias, f12 ∙ f21 = 1, by definition).

This method assumes that the errors in x1 and x2 are independent.
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Column dry static energy budget (DSE)

Dry static energy (DSE) is given by s = cpT + gz, where cp is the specific heat at constant 

pressure, T is the temperature, g is the gravitational acceleration, and z is altitude). DSE is 

affected by advection, precipitation, radiation and sensible heat:

−ω ∂s
∂p − v . ∇s + LP + R + Qturb = 0,

where ω is the vertical pressure velocity, p is pressure, v is horizontal wind. Angle brackets 

represent the mass-weighted vertical integral from 1000–100hPa. The first term represents 

import of DSE via column-integrated vertical advection; the second is horizontal advection. 

P is the total surface precipitation and L the latent heat of condensation; R is net radiation 

into the atmospheric column; and Qturb is the surface sensible heat flux.

Extended Data

Extended data Figure 1. 
Effect of low spatial resolution in GPCP satellite observations of log(seasonal precipitation). 

y-axis: regression gradient in validation against GTMBA raingauge data (i.e. gradients in 

Figure 1 for light blue and red symbols). x-axis: horizontal grid dimension relative to 

TRMM (e.g. the TRMM resolution is 0.25°, ten times smaller than the GPCP resolution of 

2.5°, so the red symbol is placed at x=10). Dark blue symbols: results when TRMM data is 

regridded (by area averaging) to coarser grids. The coarser grids are chosen so the grid box 

edges overlap edges of the native TRMM grid. To give the errors context, the dash-dot line 

marks the ratio between the largest and smallest model values of kqsat (2.5). Solid black line 

is a quadratic least-squares best fit line through the TRMM-based data. The intercept of the 
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TRMM best-fit curve at x=0 (i.e. infinitely fine grid) is very close to the value estimated on 

the TRMM native grid (light blue symbol), indicating that the TRMM grid is sufficiently 

fine for comparison with the rangauge data on seasonal timescales.

Extended data Figure 2. 
Testing the method of estimating kqsat. a-d: example results of the sortav method for TRMM 

precipitation and HadISST SST, for different seasons: mean vectors of anomalies in (y-axis) 

log(precipitation) and (x-axis) qsat; kqsat is given by the gradient of the blue best-fit 
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regression line. e, y-axis: kqsat calculated after excluding the 9 years with the largest absolute 

value of the nino3.4 index; x-axis: default kqsat (one symbol per model); kqsat is on average 

6% lower when ENSO years excluded, due to a small sensitivity to the ENSO characteristic 

spatial pattern; but the model ranking is largely unchanged (r = 0.99). f, kqsat calculated for 

individual seasons versus the annual mean value; g kqsat using only years 1995–1999 versus 

the full 25-year estimate; h, estimating variability (due to internal variability in SST 

patterns) in kqsat estimated from 25 years of data: for each coupled ocean-atmosphere model, 

kqsat is estimated both for the full historical run, and for all 25-year chunks. Panel shows the 

cumulative distribution function of absolute percentage differences between the 25-year 

estimates and the full estimates (95% of samples are within 8% of the long-term value from 

the full historical run). This panel shows results for two methods of estimating kqsat: our 

‘sortav’ method (as used throughout the manuscript), and standard OLS regression between 

seasonal anomalies in log(precipitation) and qsat. i comparing kqsat
spattemp with kqsat; each cross 

represents one CMIP5 model. j,k Cumulative distribution functions of j climatological mean 

precipitation and k log(precipitation). From HadGEM2-A, May-July season (same picture 

seen in other seasons).
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Extended data Figure 3. 
Model biases for the high, mid-range and low-kqsat models separately. As Figure 2, for a-f 
high-kqsat models; g-l mid-kqsat models; m-r low-kqsat models.
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Extended data Figure 4. 
Testing potential errors in the satellite validation against GTMBA. a,b testing for regression 

dilution bias from error in TRMM observations: as Figure 1, but for a TRMM versus GPCP 

(both interpolated to GTMBA sites and masked as in Figure 1) and b GPCP versus TRMM. 

c-f testing for effects of SST uncertainty on the binning: as Figure 1, but using c,d ERSST 

and e,f COBE SST datasets to bin the data.
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Extended data Figure 5. 
Regions where models are most sensitive to kqsat. For each latitude of each region: y-axis 

shows Pearson correlation coefficients (r) between the 28 different CMIP5 model values 

kqsat, and the 28 CMIP5 model values of the logarithm of the precipitation ratio for that 

latitude and region (i.e. the logarithm of the grey lines in Figure 2a–f). Green bands mark the 

latitude intervals chosen to estimate the observational constraints on kqsat (a-e: intervals 

chosen where |r|> 0.6; f, a band of most negative r is chosen). Coefficients close to zero near 

8N in the Atlantic and East Pacific spatial patterns correspond to the latitude of the 
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precipitation peak in most models (the model spread in the precipitation peak is scaled out; 

coefficients are not exactly zero as there is a small model spread in the latitude of the 

precipitation peak).

Extended data Figure 6. 
Scatter plots underpinning the central observational estimate of kqsat. a-g Precipitation error 

index versus kqsat for each of the 7 latitude intervals highlighted in Figure 2. Y-axes: 

logarithm of precipitation ratio, averaged over each latitude band, minus the equivalent value 
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for TRMM observations, for (black) CMIP5 and (red) CMIP6 models. Dotted lines: linear 

least-squares fits (using CMIP5 data only). Vertical black line: kqsat estimate for each 

latitude interval, from the intercept of the green line with zero error index (dotted line). h 
Mean precipitation error index versus kqsat: mean error index is averaged over the 7 indices 

in the other panels (after the signs of the 5 indices with negative best-fit slopes were 

changed, to ensure a positive correlation with kqsat).

Extended data Figure 7. 
Supporting results for observational estimate of the kqsat lower bound. Estimating error, from 

internal variability, due to the fact that the TRMM operational period only partly overlaps 

the time period simulated by the AMIP SST-forced models. Error magnitudes are estimated 

from the coupled ocean-atmosphere simulations, using differences between kqsat estimated 

from all possible overlapping 17-year (TRMM-like) and 25-year (AMIP-like) periods (with 

the same overlap as TRMM and the 25-year SST-forced model simulations). Results are 
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given for two methods of estimating kqsat: our ‘sortav’ method (as used throughout the 

manuscript), and standard OLS regression between seasonal anomalies in log(precipitation) 

and qsat.

Extended Data Figure 8. 
Atmospheric circulation measures in CMIP5 and CMIP6 models. a-c thick lines are CMIP5 

composite means, for (magenta) high kqsat subset; (blue) low kqsat subset and (gold) 

intermediate kqsat. Thin grey lines are individual models (CMIP5 and CMIP6). Descent 

(5S-1N), mid (1–7N) and ascent (7–13N) regions are marked by vertical dotted lines in 

Figure 5c–e. d-h: each symbol represents one CMIP5 (black) or CMIP6 (red) model. Title 

gives Pearson correlation coefficient. d shallow descent versus kqsat; vertical line marks our 

best estimate of kqsat. e shallow ascent versus shallow descent. f shallow meridional return 

flow versus shallow descent. g shallow versus very-shallow meridional wind, over Galapgos: 

the negligible correlation indicates different physical processes at these two levels. h deep 
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versus shallow ascent. i standard deviation, across models, of the pressure velocity (wap) at 

each pressure level.

Extended Data Table 1.

Column-integrated dry static energy budget for the descent region, Aug-Oct, averaged over 

the high-, mid- and low-kqsat groups of CMIP5 models. Vertical advection by mean vertical 

velocity is calculated using seasonal mean vertical velocity. The final row, calculated as a 

residual from the first three columns, includes horizontal advection, and vertical advection 

by transient eddies.

Descent region, column integrals High kqsat 
mean

Mid kqsat 
mean

Low kqsat 
mean

High kqsat – 
Low kqsat

Net radiation + sensible heat flux −129.4 −125.9 −127.5 −1.8

Latent heating by precipitation 14.4 22.9 35.5 −21.1

Vertical advection by mean vertical velocity, 
integrated over 100–1000 hPa

130.1 110.0 95.5 34.6

Vertical advection by mean vertical velocity, 
integrated over 600–1000 hPa

74.5 57.4 48.1 26.4

Residual advection −15.1 −7.0 −3.5 −11.6

Extended data Table 2.

Supporting results for observational estimate of the kqsat lower bound (see Methods for 

details). a Unscaled estimates for kqsat directly estimated using TRMM precipitation and 

three different SST datasets (the AMIP SST dataset was not used due to limited temporal 

overlap with the TRMM operational period). These values are contaminated by regression 

dilution bias so do not represent central estimates. b Estimating typical values of regression 

dilution bias from each pair of SST datasets. K1 is the gradient from linear regression when 

regressing SST1 against SST2 (using the sortav regression method). K2 is the value obtained 

when regressing SST2 against SST1.

a SST dataset Unsealed kqsat estimate (no bias correction)

HadISST 0.58

ERSST 0.49

COBE 0.51

b SST1 SST2 Kl (X = SST1) K2 (X = SST2) SQRT(K1*K2)

AMIP HadlSST 0.77 1.01 0.89

AMIP COBE 0.85 1.00 0.92

AMIP ERSST 0.76 0.97 0.86

HadlSST COBE 0.76 0.79 0.78

HadlSST ERSST 0.83 0.55 0.68

COBE ERSST 0.92 0.54 0.70
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Figure 1. 
Validating observations of log precipitation from satellites. GTMBA in-situ raingauge 

observations versus satellite observations from a TRMM and b GPCP. Each symbol 

represents the mean of all seasonal mean data within a given SST bin (Methods). Green line: 

best fit line (gradient and its 95% confidence interval quoted in each figure); dotted line: 1:1 

line.
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Figure 2. 
Model precipitation biases. (black) TRMM observations. Horizontal dashed line marks 

precipitation ratio=1. a-f all CMIP5 models are shown in grey lines; g-i magenta: ‘high-

kqsat’ subset; grey: other models. Spatial patterns (bottom 3 rows) given by scaling zonal 

mean precipitation by its latitudinal maximum. Green shading marks the intervals used for 

the 7 estimates of kqsat. These examples were chosen as they feature large differences/

gradients in SST. Precipitation ratios are plotted because of the form of Equation 1.
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Figure 3. 
The region of applicability of kqsat. (a) each bar represents a climatological zone covering 

20% of the tropical oceans, defined by the seasonal climatological SSTs (e.g. the left bar is 

the zone with the coolest 20% of SSTs – white masked ocean in the maps below). 

Climatological zones are defined separately for each season. Bar height: the correlation 

coefficient, across CMIP5 models, between the standard calculation of kqsat, and that 

calculated only over the selected climatological zone. Mean SST (°C) for each zone is also 

shown. (b-e) Colours: mean TRMM precipitation; orange line highlights 1 mm/day contour. 
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Data is masked over the 20% of the oceans where kqsat is inapplicable (left-hand bar in 

panel a shows low correlation). White contour shows the 30th percentile of SST: the standard 

calculation of kqsat uses data inside this contour.
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Figure 4. 
High sensitivity of precipitation to SST, and strong shallow circulations, in the real world. a 
horizontal lines mark (white dashes) the 7 estimates of kqsat (Extended data Figure 6), and 

the central estimate (black solid); shading marks kqsat values above our lower-bound 

estimate; symbols mark sorted model kqsat values for (crosses) CMIP5 (blue and magenta 

denote low-kqsat and high-kqsat model subsets) and (circles) CMIP6. b kqsat
(spatial) versus 

kqsat, for each (black) CMIP5 and (red) CMIP6 model; horizontal line: kqsat
(spatial) from 

TRMM observations; vertical line: best estimate of kqsat. c,d each symbol represents one 

CMIP5 (black) or CMIP6 (red) model; title gives Pearson correlation coefficient. c surface 

meridional wind averaged over the mid-region (180W-10E, 1–7N) versus shallow descent 

index (defined in Figure 5); horizontal line marks QuikSCAT observation. d meridional 

Good et al. Page 33

Nature. Author manuscript; available in PMC 2021 April 26.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



wind averaged over Galapagos & Christmas island, 600–700hPa (few observations above 

600hPa) versus meridional wind averaged over the mid region (180W-10E, 1–7N), 500–

700hPa; horizontal line marks wind profiler observation.
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Figure 5. 
Linking kqsat to shallow circulations. a,b quantifies internal variability, and c-e climate 

means. a CMIP5 ensemble mean of kqsat
wap (Pa kg/g), at each pressure level. b inter-model 

correlations (Pearson r) between kqsat, and kqsat
wap, at each pressure level. Correlations are 

negative because of the definition of wap. c-e Aug-Oct, 180W-10E zonal means. c CMIP5 

ensemble mean of (colours) vertical velocity (Pa/s) and (white contours) meridional wind. d 
inter-model correlations between kqsat and mean vertical velocity (colours) and between 

kqsat and mean meridional wind (white contours). e as d, but for correlations with the 
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shallow descent index instead of kqsat (shallow descent index = vertical velocity averaged 

over left-hand orange-dashed box: 5S-1N, 850–600 hPa).
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