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Type II diabetes is a chronic condition that affects the way our body metabolizes sugar. The body's important
source of fuel is now becoming a chronic disease all over the world. It is now very necessary to identify the
new potential targets for the drugs which not only control the disease but also can treat it. Support vector ma-
chines are the classifier which has a potential to make a classification of the discriminatory genes and
non-discriminatory genes. SVMRFE a modification of SVM ranks the genes based on their discriminatory
power and eliminate the genes which are not involved in causing the disease. A gene regulatory network
has been formed with the top ranked coding genes to identify their role in causing diabetes. To further
validate the results pathway study was performed to identify the involvement of the coding genes in
type II diabetes. The genes obtained from this study showed a significant involvement in causing the disease,
which may be used as a potential drug target.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Support Vector Machine (SVM), a machine learning technique im-
plied in the area of time series prediction and classification [31,36] has
widely been applied in the life science fields, especially in Bioinformat-
ics. It can handle nonlinear classification tasks efficiently by mapping
the samples into a higher dimensional feature space by using a nonlin-
ear kernel function. Since the SVM approach is data-driven and model-
free, it has important discriminating power for classification. This
characteristic of SVM is obvious in caseswhere the sample sizes are neg-
ligible and numerous variables are involved (high-dimensional space).

Expression profile come under such a category, which contain a
large number of attributes (genes). This type of expression data is
used to predict the type and occurrence of the disease in a patient
[39]. An important aspect while analyzing such type of expression
data is the feature selection or dimensionality reduction. Most algo-
rithms lose their potencywhen genes are large in numberwith different
time series data or dimensionality [7].

To accomplish the task of dimensionality reduction a modified ver-
sion of SVM known as SVMRFE (Support VectorMachine Recursive Fea-
ture Elimination) has been used in this work. SVMRFE was used to
identify themost discriminatory target gene in four differentmicroarray
. This is an open access article under
data samples of type II diabetes. These samples have been taken from
the Gene Expression Omnibus database (GEO) [13] and Diabetes
Genome Anatomy Project (DGAP) (http://www.diabetesgenome.org/).
The idea was to build a model wherein the least important features
(genes) can be eliminated at each iterative step based on the weight
assigned to each gene through SVM. The genes identified through this
approach were then classified as essential and non-essential genes.
The protein-protein interaction of these non-essential genes revealed
vital information regarding interacting proteins. Functional enrichment
about these proteins shed a light on their regulatory pathways associat-
ed with type II diabetes which can be further explored and confirmed
using experimental approach.

2. Materials and methods

2.1. Collection of data sample

71 samples from Pancreatic Islet and Skeletal muscle of Homo sapiens
were collected from the GEO and DGAP. Out of these 37 samples are of
normal human beings and 34 are of diabetic humans. Table 1 shows the
detail description of each of the data sets which were undertaken for
studies.

Fisher linear discriminant was applied to all the above-mentioned
data sets to rank thembased on the Fischer score [21]whichwas contin-
ued with a redundancy reduction step to reduce the redundant data in
the microarray dataset [22]. The gene number present in each data set
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Microarray dataset undertaken for studies.

Source Data No. of samples No. of genes Country

Normal Diabetic

GEO Effect of insulin infusion on human skeletal muscle [33] 6 6 22,215 Sweden
DGAP Human pancreatic islets from normal and Type 2 diabetic subjects (A) [18] 7 5 22,191 Caucasian and Asian
DGAP Human pancreatic islets from normal and Type 2 diabetic subjects (B) [18] 7 5 22,550
DGAP Human skeletal muscle - type 2 diabetes [29] 17 18 22,177 Sweden

Fig. 1. Flow chart of the analysis.

Table 3
p-value of genes following the alternative hypothesis for the dataset “GSE7146”.

Probe id Gene p-Value

213524_s_at G0/G1switch 2 0.00001
216599_x_at Solute carrier family 22 (organic anion transporter),

member 6
0.00005

207295_at Sodium channel, non-voltage-gated 1, gamma 0.0001
218409_s_at DnaJ (Hsp40) homolog, subfamily C, member 1 0.0003
203221_at Transducin-like enhancer of split 1 (E (sp1) homolog, 0.0004
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was still high. A t-test [3] with a significance level of 0.05 was applied to
the datasets to filter out the genes which are not involved in causing
type II diabetes. After this reduction step SVMRFE approach (with linear
kernel function and 6 subsets of the training data) [24] was applied to
train the data samples for 5 iterations. As a result, discriminatory
genes based on the weighted ranking were obtained. The identified
genes were identified as being essential and non-essential using the da-
tabase of essential genes. A gene interaction and pathway analysis of the
potential non-essential genes was performed to identify the novel tar-
gets for type II diabetes (Fig. 1)
(Drosophila)
210452_x_at Cytochrome P450, family 4, subfamily F, polypeptide 2 0.001
201630_s_at Acid phosphatase 1, soluble 0.001
207955_at Chemokine (C-C motif) ligand 27 0.002
208507_at Olfactory receptor, family 7, subfamily C, member 2 0.002
210889_s_at Fc fragment of IgG, low affinity IIb, receptor (CD32) 0.002
207732_s_at Discs, large homolog 3 (neuroendocrine-dlg, Drosophila) 0.002
220636_at Dynein, axonemal, intermediate polypeptide 2 0.002
205863_at S100 calcium binding protein A12 0.002
205603_s_at Diaphanous homolog 2 (Drosophila) 0.003
3. Result and discussion

3.1. t-test analysis

For each of the T2D datasets, a t-test analysis was performed with a
significance level of 0.05. As a result, there was a high dimensionality
Table 2
Number of input and output genes from each dataset for t-test analysis.

Name of dataset No of
inputted
genes

No of genes
rejecting the
null hypothesis

Effect of insulin infusion on human skeletal muscle 1223 24
Human pancreatic islets from normal and type II
diabetic subjects (A)

1210 17

Human pancreatic islets from normal and type II
diabetic subjects (B)

803 21

Human skeletal muscle-type II diabetes 1238 28

220979_s_at ST6 (alpha-N-acetyl-neuraminy l-2, 3-beta-galactosy l-1,
3) -N-acetylgalactosaminide alpha-2, 6-sialyltransferase 5

0.003

206310_at Serine peptidase inhibitor, Kazal Type II (acrosin-trypsin
inhibitor)

0.004

210442_at Interleukin 1 receptor-like 1 0.004
201214_s_at Protein phosphatase 1, regulatory subunit 7 0.004
220385_at Junctophilin 2 0.004
205490_x_at Gap junction protein, beta 3, 31 kDa (connexin 31) 0.004
213772_s_at Golgi-associated, gamma adaptin ear containing, ARF

binding protein 2
0.004

213950_s_at Protein phosphatase 3 (formerly 2B), catalytic subunit,
gamma isoform (calcineurin A gamma)

0.004

201681_s_at Discs, large homolog 5 (Drosophila) 0.004
220782_x_at Kallikrein-related peptidase 12 0.004



Table 4
p-Value of genes following the alternative hypothesis for the dataset “human pancreatic
islets from normal and type II diabetic subjects (A)”.

Probe id Gene p-Value

207406_at Cytochrome P450, family 7, subfamily A, polypeptide 1 0.0003
214046_at Fucosyltransferase 9 (alpha (1,3) fucosyltransferase) 0.0004
213980_s_at C-terminal binding protein 1 0.0005
202854_at Hypoxanthine phosphoribosyltransferase 1 0.0005
215300_s_at Flavin containing monooxygenase 5 0.0007
212894_at Suppressor of var1, 3-like 1 (S. cerevisiae) 0.0012
202605_at Glucuronidase, beta 0.0017
203196_at ATP-binding cassette, sub-family C (CFTR/MRP), member 4 0.0021
205633_s_at Aminolevulinate, delta-, synthase 1 0.0022
207673_at Nephrosis 1, congenital, Finnish type (nephrin) 0.0027
209759_s_at Enoyl-CoA delta isomerase 1 0.003
208926_at Sialidase 1 (lysosomal sialidase) 0.003
205627_at Cytidine deaminase 0.004
210284_s_at TGF-beta activated kinase 1/MAP3K7 binding protein 2 0.004
213931_at Inhibitor of DNA binding 2, dominant negative

helix-loop-helix protein
0.0043

213426_s_at Caveolin 2 0.0047
221572_s_at Solute carrier family 26, member 6 0.0049

Table 6
p-Value of genes following the alternative hypothesis for the dataset “human skeletal
muscle-type II diabetes”.

Probe id Gene p-Value

219572_at Ca++-dependent secretion activator 2 0.0002
204447_at Leucine zipper, putative tumor suppressor family

member 3
0.0002

221410_x_at Protocadherin beta 3 0.0003
201764_at Transmembrane protein 106C 0.0005
201429_s_at Ribosomal protein L37a 0.0008
204761_at USP6 N-terminal like 0.001
219642_s_at Peroxisomal biogenesis factor 5-like 0.001
218592_s_at Cat eye syndrome chromosome region, candidate 5 0.001
210835_s_at C-terminal binding protein 2 0.001
216695_s_at Tankyrase, TRF1-interacting ankyrin-related ADP-ribose

polymerase
0.001

208067_x_at Ubiquitously transcribed tetratricopeptide repeat
containing, Y-linked

0.001

209400_at Solute carrier family 12 (potassium/chloride
transporters), member 4

0.001

201262_s_at Biglycan 0.001
203171_s_at Ribosomal RNA processing 8, methyltransferase, homolog

(yeast)
0.002

207131_x_at Gamma-glutamyltransferase 1 0.002
219464_at Carbonic anhydrase XIV 0.002
206345_s_at Paraoxonase 1 0.002
210907_s_at Programmed cell death 10 0.002
202641_at ADP-ribosylation factor-like 3 0.002
204969_s_at Radixin 0.003
222289_at Potassium voltage-gated channel, Shaw-related

subfamily, member 2
0.003

210318_at Retinol binding protein 3, interstitial 0.003
219301_s_at Contactin associated protein-like 2 0.004
203116_s_at Ferrochelatase 0.004
207242_s_at Glutamate receptor, ionotropic, kainate 1 0.004
214005_at Gamma-glutamyl carboxylase 0.004
215529_x_at DIP2 disco-interacting protein 2 homolog A (Drosophila) 0.004
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reduction in each dataset (Table 2). The genes rejecting the null hypoth-
esis were obtained for each of the data samples. Tables 3–6 show the
corresponding p-values of all the geneswhich have rejected the null hy-
pothesis at significance level of 0.05. The Figs. 2–5 represent graphically
the p-value of all the genes in the four datasets under consideration. The
p-value for most of the genes was above the significance level value of
0.05. This represents that these genes have almost the same expression
value in the normal and diseased and may not be involved in causing
the disease.
3.2. Identification of best-ranked genes from SVMRFE

The subsets of genes based on the p-value were given as an input to
the support vector machine. Recursive Feature Elimination (RFE) is an
Table 5
p-Value of genes following the alternative hypothesis for the dataset “human pancreatic
islets from normal and type II diabetic subjects (B)”.

Probe id Gene p-Value

227787_s_at Thyroid hormone receptor-associated protein 6 0.0001
222478_at Vacuolar protein sorting 36 (yeast) 0.0002
230329_s_at Nudix (nucleoside diphosphate linked moiety X) -type

motif 6
0.0003

226424_at Calcyphosine 0.0003
225491_at Solute carrier family 1 (glial high affinity glutamate

transporter), member 2
0.0004

225016_at Adenomatosis polyposis coli down-regulated 1 0.0005
243043_at RAD50 interactor 1 0.0008
224573_at Ribonuclease, RNase K 0.0012
228133_s_at Myosin, heavy polypeptide 11, smooth muscle 0.0013
225108_at Alkylglycerone phosphate synthase 0.0013
224865_at Male sterility domain containing 2 0.0024
231880_at Family with sequence similarity 40, member B 0.0026
241739_at 2-oxoglutarate and iron-dependent oxygenase domain

containing 1
0.003

228036_s_at F-box protein 2 0.0031
223978_s_at Cardiolipin synthase 1 0.0032
244706_at Protein-L-isoaspartate (D-aspartate) O-methyltransferase

domain containing 1
0.0033

237718_at Eukaryotic translation initiation factor 4E 0.0033
222999_s_at Cyclin L2 0.0038
230318_at Serpin peptidase inhibitor, clade A (alpha-1

antiproteinase, antitrypsin), member 1
0.0039

222408_s_at Yippee-like 5 (Drosophila) 0.004
224954_at Serine hydroxymethyltransferase 1 (soluble) 0.0046
iterative procedure for SVM classifier. The recursive feature elimination
algorithm of the support vector machine assigns a weight to each gene.
Theweightwas calculated based on the expression value of genes in the
disease and the normal sample for all the dataset. The algorithm classi-
fied the genes (with a classification accuracy of 83.9%) based on the de-
scending order of the weight. Then it generated the list of genes which
were found to be the most discriminatory in the normal and disease
samples (Tables 7–10). The outline for SVMRFE in the linear kernel is
presented below:

Inputs:
Training samples
X0 = [x1, x2,…, xn]T

Class labels (1 for normal or 0 for diseased)
y = [y1, y2,…, yn]T

Initialize:
Surviving genes
s = [1, 2,…n]
Gene-ranking list
r = []
Limit training samples to good genes
X = ×0 (:, s)
Train the classifier
α = SVM-train (X, y)
Compute the weight from each selected gene:
w = ∑

k
αkykxkwhere k indicates the kth training pattern

Compute the ranking criterion for the ith gene
R (i) = (wi) [2]
Mark the gene with the lowest ranking
g = arg min (R)
Renew the gene-ranking list
r = [s (g), r]



Fig. 2. p-Value corresponding to all the genes in the training set for dataset “GSE7146”.
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Eliminate the gene with the lowest ranking
s = s (1: g − 1, g + 1: length (s))
Repeat until s = []
Output:
A gene-ranking list r
3.3. Identification of degree of essentiality and non-essentiality of genes

To identify significant and reliable targets, thework was concentrat-
ed on non-essential genes. Essential genes were ruled out based on the
hits obtained from the Database of Essential Genes (DEG 10.9) (http://
tubic.tju.edu.cn/deg/) [46]. Essential genes sustain an organism. There-
fore, having them as a potential gene target may induce side effects of
the drugs. Hence, it is important to identify only the non-essential
genes which may be used as a potential drug target. Tables 11–14
show the non-essential genes from the microarray dataset which is
under study
Fig. 3. p-Value corresponding to all the genes in the training set for dataset “
3.4. Gene interaction studies

After obtaining the non-essential genes from the top ranked coding
genes for each of the datasets, gene regulatory networkwas constructed
using STRING (Search Tool for the Retrieval of Interacting Genes/Pro-
teins) database [40]. The study wasmainly done to observe the interac-
tion between non-essential protein-coding genes with other proteins
which are a result of biochemical events and/or electrostatic forces
[23]. The function and activity of a protein are often modulated by
other proteins with which it interacts.
3.4.1. Gene regulatory network of dataset “GSE7146”
In this dataset, out of the ten best coding genes obtained through the

SVMRFE approach, only 5 genes (ACP1, FCGR2B, SCNN1G, CCL27, and
DLG3) showed interaction with other protein coding genes (Fig. 6).
The ACP1 showed a direct interaction with EPHA2, which is reported
to increase the chance of myocardial infarction and reduce the survival
human pancreatic islets from normal and type II diabetic subjects (A)”.

http://tubic.tju.edu.cn/deg/
http://tubic.tju.edu.cn/deg/


Fig. 4. p-Value corresponding to all the genes in the training set for dataset “human pancreatic islets from normal and type II diabetic subjects (B)”.
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rate of hyperglycemic mice [12]. LYN showed indirect interaction with
ACP1 via EPHA2 and direct interaction with FCGR2B. Its kinase activa-
tionmodulation has been reported to be a novel insulin receptor-poten-
tiating agent. This potentiating agent produces a rapid-onset and a
durable blood glucose-lowering activity in diabetic animals [32].
FCGR2B also showed direct interaction with PTPN6 which is been re-
ported to negatively regulate insulin action on glucose homeostasis in
the liver andmuscle [44]. An analysis of DLG3 has shown its direct inter-
action with GRIN2A and GRIN2B. Both these genes have been reported
to play a potential role in diabetes [11,37,42]. UBC has been reported
to play a major role in the diabetes pathway [8,16,26] and its direct in-
teraction with SCNN1G shows that SCNN1Gmay also play a role in dia-
betes pathway. CCL27 interacts with CCL25, a protein whose expression
was shown to decrease significantly in diabetes [30].

3.4.2. Gene regulatory network of dataset “human pancreatic islets from
normal and type II diabetic subjects (A)”

Except for ABCC4 and FMO5, all the other four proteins showed a sig-
nificant and strong interaction with other neighboring proteins (Fig. 7).
Fig. 5. p-Value corresponding to all the genes in the training
Purine Nucleoside Phosphorylase (PNP) and Nucleoside Phosphate Ki-
nase (NPK) have reportedly played a major role in diabetes either by
positive or negative metabolic regulation [9]. These two molecules
also showed interaction with the HPRT1 and the CDA. Caveolin has al-
ready been reported to mediate insulin signaling thereby affecting the
glucose uptake [6]. In the other subgroup network FUT3 has three direct
neighbors: FUT1, FUT2, and B4GALT1 of which the B4GALT1 expression
level has been shown to be affected by hyperglycemia [25].

3.4.3. Gene regulatory network of the dataset “humanpancreatic islets from
normal and type II diabetic subjects (B)”

Both the protein coding genes in this dataset (RNASEK andAPCDD1)
have shown a significant interactionwith the neighboring proteins (Fig.
8). The involvement of RNASEK in diabetes is still an unanswered ques-
tion, but APCDD1 interactionwith its neighbors shows that itmay be in-
volved in the pathophysiology of diabetes. LPAR6 (Lysophosphatidic
Acid Receptor 6) interactingdirectlywithAPCCD1has shown its activity
with PPARγwhich is a potential target for diabetes [38]. Aranda et al., in
2012 also showed that the DM/HG (Diabetes mellitus/High Glucose)
set for dataset “human skeletal muscle-type II diabetes”.



Table 7
Best ranked genes for dataset “GSE7146”.

Gene name

G0/G1switch 2
Transducin-like enhancer of split 1 (E (sp1) homolog, Drosophila)
Acid phosphatase 1, soluble
DnaJ (Hsp40) homolog, subfamily C, member 1
Golgi-associated, gamma adaptin ear containing, ARF binding protein 2
Protein phosphatase 1, regulatory subunit 7
Interleukin 1 receptor-like 1
Discs, large homolog 5 (Drosophila)
Cytochrome P450, family 4, subfamily F, polypeptide 2
Protein phosphatase 3 (formerly 2B), catalytic subunit, gamma
isoform (calcineurin A gamma)

Gap junction protein, beta 3, 31 kDa (connexin 31)
Diaphanous homolog 2 (Drosophila)
Olfactory receptor, family 7, subfamily C, member 2
Solute carrier family 22 (organic anion transporter), member 6
Serine peptidase inhibitor, Kazal Type II (acrosin-trypsin inhibitor)
Chemokine (C-C motif) ligand 27
Dynein, axonemal, intermediate chain 2
Junctophilin 2
Kallikrein-related peptidase 12
S100 calcium binding protein A12
Discs, large homolog 3 (neuroendocrine-dlg, Drosophila)
Sodium channel, non-voltage-gated 1, gamma subunit
ST6 (alpha-N-acetyl-neuraminyl-2, 3-beta-galactosyl-1, 3)
-N- acetylgalactosaminide alpha-2, 6-sialyltransferase 5

Fc fragment of IgG, low affinity IIb, receptor (CD32)

Table 9
Best ranked genes for dataset “human pancreatic is-
lets from normal and type II diabetic subjects (B)”.

Gene name

Adenomatosis polyposis coli down-regulated 1
Ribonuclease, RNase K

Table 10
Best ranked genes for dataset “human skeletal muscle-type II diabetes”.

Gene name

Protocadherin beta 3
Leucine zipper, putative tumor suppressor family member 3
USP6 N-terminal like
Ubiquitously transcribed tetratricopeptide repeat containing, Y-linked
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reprograms signaling pathways in RECs (Retinal Endothelial Cells) to in-
duce a state of LPA (Lysophosphatidic Acid) resistance. In the year 2000,
Figueroa et al. [14] showed that alterations in LRP5 expression may be
responsible for diabetes susceptibility. Therefore it may be a potential
target for therapeutic intervention. It has been reported that Wnt/
LRP5 (lipoprotein receptor-related protein 5) signaling contributes to
the glucose-induced insulin secretion in the islets [15].
Table 11
Non-essential genes for dataset “GSE7146”.

Gene symbol Gene name

G0S2 G0/G1switch 2
3.4.4. Gene regulatory network of dataset “human skeletal muscle-type II
diabetes”

The two prominent protein coding genes (USP6NL and ProSAPiP1)
as per SVMRFE analysis showed interaction with a different set of
genes (Fig. 9). This selective network of ProSAPiP1 has not been report-
ed till now, for diabetes. The three genes (SOS1, EGFR, and EGF) in the
interaction network of USP6NL have shown its significance in connec-
tion with diabetes. SOS1 has shown its association with reference to
the insulin action [4], in differential expression of EGFR which is a
Table 8
Best ranked genes for dataset “human pancreatic islets from normal and type
II diabetic subjects (A)”.

Gene name

Glucuronidase, beta
Enoyl-CoA delta isomerase 1
C-terminal binding protein 1
Inhibitor of DNA binding 2, dominant negative helix-loop-helix protein
Hypoxanthine phosphoribosyltransferase 1
Sialidase 1 (lysosomal sialidase)
ATP-binding cassette, sub-family C (CFTR/MRP), member 4
Aminolevulinate, delta-, synthase 1
Suppressor of var1, 3-like 1 (S. cerevisiae)
Flavin-containing monooxygenase 5
Solute carrier family 26, member 6
TGF-beta activated kinase 1/MAP3K7 binding protein 2
Caveolin 2
Nephrosis 1, congenital, Finnish type (nephrin)
Fucosyltransferase 9 (alpha (1,3) fucosyltransferase)
Cytidine deaminase
Cytochrome P450, family 7, subfamily A, polypeptide 1
major impact on diabetes and associated diseases [1,5,27,28,41,45].
Kasayama et al. [19] long back in 1989 reported that EGF deficiency oc-
curs in diabetes mellitus hence insulin may be important in maintaining
the normal level of EGF in the submandibular gland and plasma.

3.5. Functional enrichment of significant genes implying pathway analysis

To further validate the involvement of the identified genes in type II
diabetes, pathway enrichment was considered. This was solely meant
for all the interacting proteins with the identified significant protein(s).
The study was carried out using Biointerpreter, a web-based biological
interpretation tool for Microarray data analysis (Genotypic Technology
Pvt. Ltd., Bangalore, India). The pathway analysis showed that some of
the interacting proteinswere involved in pathwayswhichwere directly
or indirectly associated with type II diabetes.

3.5.1. Pathway enrichment for the interacting proteins of the dataset “effect
of insulin infusion on human skeletal muscle”

GRIN2A (Glutamate [NMDA] receptor subunit epsilon-1) and
GRIN2B (Glutamate [NMDA] receptor subunit epsilon-2), the two
ACP1 Acid phosphatase 1, soluble
CCL27 Chemokine (C-C motif) ligand 27
JPH2 Junctophilin 2
KLK12 Kallikrein-related peptidase 12
S100A12 S100 calcium binding protein A12
DLG3 Discs, large homolog 3 (neuroendocrine-dlg, Drosophila)
SCNN1G Sodium channel, non-voltage-gated 1, gamma subunit
ST6GALNAC5 ST6 (alpha-N-acetyl-neuraminyl-2, 3-beta-galactosyl-1, 3)

-N-acetylgalactosaminide alpha-2, 6-sialyltransferase 5
FCGR2B Fc fragment of IgG, low-affinity IIb, receptor (CD32)

Table 12
Non-essential genes for dataset “human pancreatic islets from normal and type II diabetic
subjects (A)”.

Gene symbol Gene name

HPRT1 Hypoxanthine phosphoribosyltransferase 1
ABCC4 ATP-binding cassette, sub-family C (CFTR/MRP), member 4
FMO5 Flavin-containing monooxygenase 5
CAV2 Caveolin 2
FUT3 Fucosyltransferase 9 (alpha (1, 3) fucosyltransferase)
CDA Cytidine deaminase



Table 13
Non-essential genes for dataset “human pancreatic islets from normal and type II diabetic
subjects (B)”.

Gene symbol Gene name

APCDD1 Adenomatosis polyposis coli down-regulated 1
RNASEK Ribonuclease, RNase K

Table 14
Non-essential genes for dataset “human skeletal muscle-type II diabetes”.

Gene symbol Gene name

USP6NL Leucine zipper, putative tumor suppressor family member 3
PROSAPIP1 USP6 N-terminal like

Fig. 6. Gene regulatory netwo

Fig. 7. Gene regulatory network of dataset “human pancreat
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proteins interacting mainly with the identified protein DLG3 have been
shown to be involved in 3 different pathways viz. Neuroactive ligand-
receptor interaction, circadian entrainment and Long-term potentiation
(Fig. 10). The proteins present in the Neuroactive ligand-receptor inter-
action have shown a significant role in the pathobiology of obesity and
type II diabetes [10]. The second pathway, circadian entrainment is
the biological process that displays an endogenous oscillation of about
24 h. Studies show that exposure to light at night lowers glucose-stim-
ulated insulin secretion due to a decrease in insulin secretory pulse
mass. Potential mechanisms have been identified by which distur-
bances in the circadian rhythms due to modern lifestyle can lead to
islet failure in the type II diabetes [35]. It has also been reported that
the impaired energy utilization from insulin deficiency impairs a long-
term potentiation in diabetes [47].
rk of dataset “GSE7146”.

ic islets from normal and type II diabetic subjects (A)”.



Fig. 8. Gene regulatory network of dataset “human pancreatic islets from normal and type II diabetic subjects (B)”.
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3.5.2. Pathway enrichment for the interacting proteins of the dataset “hu-
man pancreatic islets from normal and type II diabetic subjects (A)”

The protein B4GALT1, interactingwith the identified protein FUT3 is
involved in several metabolic pathways, connected to type II diabetes
(Fig. 11). The protein B4GALT1 participates both in glycoconjugate
and lactose biosynthesis. It has shown to be a biomarker in hepatocellu-
lar carcinoma,mainly caused due to the insulin resistance syndrome. Fi-
nally, the ailment manifests as obesity and later as diabetes [17].
3.5.3. Pathway enrichment for the interacting proteins of the dataset “hu-
man pancreatic islets from normal and type II diabetic subjects (B)”

The protein PNPT1 interactingwith the RNASEK is reported to be in-
volved in pyrimidine and purine metabolism and the RNA degradation
(Fig. 12). Effects of the insulin regulation of purine and pyrimidine
Fig. 9. Gene regulatory network of dataset “h
metabolism had shown to cause some late complications of the diabetic
disease [34]. In 2009, Kocic et al. [20] reported that an impaired dsRNA
metabolismmay lead to increased levels of different sized RNAs in type
II diabetic patients and may have an influence on further ineffective re-
sponse against the different pathogens.
3.5.4. Pathway enrichment for the interacting proteins of dataset “human
skeletal muscle-type II diabetes”

EGFR protein interacting with the identified protein USP6NL has al-
ready been reported by many researchers to be involved in diabetes [1,
5,27,28,41,45].With the pathway studies, it was identified that themain
pathways in which EGFR is involved, is also leading directly to or indi-
rectly to diabetes (Fig. 13). Hypoxia-inducible factor 1 alpha (HIF-1α)
is regulated precisely by hypoxia and hyperglycemia. It had also been
uman skeletal muscle-type II diabetes”.



Fig. 10. Involvement of GRIN2A and GRIN2B in different pathways.

Fig. 11. Involvement of B4GALT1 in different pathways

Fig. 13. Involvement of EGFR in different pathways.
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shown that the HIF-1α and glucose can sometimes influence each other
[43]. It has been reported that the components of the MAPK/ERK path-
way act as modifiers of the cellular insulin responsiveness. The insulin
resistance was due to downregulation of the insulin-like receptor gene
expression following persistent MAPK/ERK inhibition. The mechanism
Fig. 12. Involvement of PNPT1 in different pathways.
permits physiological adjustment of insulin sensitivity and the subse-
quent maintenance of the circulating glucose at appropriate levels
[48]. MAPK and GnRh-Glp-1 pathways in the ileum have also been re-
ported to be involved in the improvement of the blood glucose level
[45].

4. Conclusion

Analysis of type II diabetes expression data from two different tissue
samples i.e. skeletal muscle and pancreatic islet has given a deep insight
into genes which may be possibly involved in the pathophysiology of
the disease. The most discriminatory genes obtained in each dataset
after complete analysis, have been found to be associated with diabetes
either directly or indirectly. However, themajority of the genes have not
been previously reported in associationwith diabetes. The genes identi-
fied in the current study viz. FCGR2B, DLG3, SCNN1G, FUT3, HPRT1,
APCDD1, USP6NL, ProSAPiP1 and RNASEKmay act as a potential drug tar-
get. The significant pathways identified through the overall approach
were Neuroactive ligand-receptor interaction, circadian entrainment,
Long-termpotentiation, pyrimidine and purinemetabolism, dsRNAme-
tabolism, MAPK/ERK pathway, and GnRh-Glp-1. This study gave the in-
sight to focus on these associated pathways with the above-reported
proteins to study in pathway models or mouse model to elucidate
them as drug targets or markers for type II diabetes.
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