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Abstract

Changes of synaptic connections between neurons are thought to be the physiological basis of learning. These changes can
be gated by neuromodulators that encode the presence of reward. We study a family of reward-modulated synaptic
learning rules for spiking neurons on a learning task in continuous space inspired by the Morris Water maze. The synaptic
update rule modifies the release probability of synaptic transmission and depends on the timing of presynaptic spike arrival,
postsynaptic action potentials, as well as the membrane potential of the postsynaptic neuron. The family of learning rules
includes an optimal rule derived from policy gradient methods as well as reward modulated Hebbian learning. The synaptic
update rule is implemented in a population of spiking neurons using a network architecture that combines feedforward
input with lateral connections. Actions are represented by a population of hypothetical action cells with strong mexican-hat
connectivity and are read out at theta frequency. We show that in this architecture, a standard policy gradient rule fails to
solve the Morris watermaze task, whereas a variant with a Hebbian bias can learn the task within 20 trials, consistent with
experiments. This result does not depend on implementation details such as the size of the neuronal populations. Our
theoretical approach shows how learning new behaviors can be linked to reward-modulated plasticity at the level of single
synapses and makes predictions about the voltage and spike-timing dependence of synaptic plasticity and the influence of
neuromodulators such as dopamine. It is an important step towards connecting formal theories of reinforcement learning
with neuronal and synaptic properties.
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Introduction

Animals can learn new behaviors by exploring available actions

in the presence of reward signals. Typical conditioning exper-

iments are structured so that animals learn by trial and error,

either by reinforcing a desired behavior with a positive reward

(finding food, escaping from a stressful situation), or by penalizing

undesired actions by a negative reward signal (electric shock or

uncomfortable water temperature). Learning by reward is known

in the field of machine learning as reinforcement learning [1] but

has roots in behavioral psychology that can be traced back at least

to Thorndike’s law of effect [2]. These early ideas have influenced

the mathematical description of classical conditioning in the

theories of Rescorla and Wagner [3], the ‘hedonistic neuron’ of

Klopf [4,5], or the early psychological theories of animal learning

and conditioning by Sutton and Barto [6–8]. Before we turn to the

specific learning paradigm that we consider in the present paper,

we devote some space in this introduction section to an extensive

review of three-factor rules in spiking neuron models and their

relation to unsupervised Hebbian models and classical reinforce-

ment learning models. The contributions of the present paper are

sketched on the background of this earlier work.

Didactic Review of three-factor rules. On the cellular

level, learning and memory is thought to be implemented by

changes in the strength of the synaptic connection between pairs of

neurons [9,10]. Many of the classical experiments on Long-Term

Potentiation and Depression (LTP and LTD) have been inspired

by the ideas of Hebb that the co-activation of two neurons should

lead to a strengthening of the connection between them [11].

Thus, according the Hebb’s principle the change of a weight wij

from a presynaptic neuron j to a postsynaptic neuron i depends

only on the state of the presynaptic and postsynaptic neurons

Dwij~a(wij) f1(prej)f2(posti) ð1Þ

with some learning rate aw0. Even without specifying the functions

f1 and f2 and the exact nature of the states prej and posti of the two

neurons, the equation (1) captures the essence of a Hebb rule, i.e.,

the weight change depends only on the state of the two neurons, and

possibly on the current value of the weight itself, but not on that of

other neurons or other signals. Such a ‘2-factor’ Hebb rule is the

basis of classical models of unsupervised [12,13] and developmental

learning [14,15]. In these classical models the functions f1 and f2 are

linear or quadratic functions of the firing rates of pre- and

postsynaptic neurons, respectively. Modern models of Spike-Timing

Dependent Plasticity (STDP) can be considered as an imple-

mentation of Hebb’s rule on the level of spikes [16–21].

However, a Hebbian two-factor rule, be it formulated on the

level of spikes or on the level of rates, cannot take into account the
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presence or absence of a reward signal. Rewarding situations are

thought to be represented in the brain by changes in the

concentration of neuromodulators that is available to and shared

by large populations of neurons. More precisely, in some brain

areas, dopamine has been identified as candidate molecule

signaling unexpected rewarding situation [22]. It is therefore

tempting to extend the ‘local’ Hebbian rule in Eq. (1) by a third

factor R{b, where R represents a ‘global’ neuromodulatory signal

characterizing rewarding situations and b a baseline

Dwij~a(wij) R(t){bð Þ f1(prej) f2(posti) ð2Þ

Suppose for the moment that R~1 if the animal has recently

received a reward and 0 otherwise and b~0. The consequence of

the 3-factor rule (2) is that a weight change predicted by the

Hebbian rule (1) is implemented only in the presence of a reward.

In the absence of reward, a weight change cannot occur.

Experimentally, three-factor rules such as (2) have been studied

extensively in the cortico-striatal synapse [23–26] using a classical

firing rate-based protocol. A different line of research around

synaptic tagging [27] in the hippocampus has shown that synaptic

changes induced by tetanic protocols of Long-Term-Potentiation

can be stabilized only in the presence of neuromodulators such as

dopamine [28–30] suggesting that the Hebbian changes need

neuromodulators as a third factor for stabilization. More recently

the timing-dependence of the three factor rule in cortical-striatal

synapses has been studied on the level of spikes, yielding a form of

dopamine-dependent STDP [31].

Theories of three-factor rules on the time scale of milliseconds

have been addressed by a number of different groups [32–37].

Three different theoretical approaches can be distinguished. The

first one consists in deriving a learning rule from reward

optimization by gradient descent [32–34,38], an approach that

can be linked to policy gradient methods in machine learning

[39,40]; the second one postulates a form of STDP that is

modulated by reward [33,35,36,41], an approach that can be

considered an extension of classical STDP models [16,17,42]; the

third one translates the framework of Temporal-Difference

learning (TD) models [1,43], in particular actor-critic models

[1,7,44], to spiking neuronal networks [37,45]. As an aside,

gradient rules can be also formulated in the context of node and

weight perturbation where the postsynaptic activity does not

explicitly enter, yielding a modified two-factor rule rather than a

three-factor rule [46,47]. We would also like to mention the

sensitivity of STDP to the derivative of the postsynaptic activity

which has been related to TD-learning [48–50].

In this paper we study a network of spiking neurons that has to

solve a navigation problem to a hidden target. Rewards are

delayed, i.e., the animal has to perform a sequence of action before

it receives a positive or negative reward signal. Our approach can

be related to policy gradient methods for spiking neurons [32–34],

but goes beyond these earlier studies for two reasons: First, we

consider a more general class of learning rules that contain policy

gradient rules and a naive reward modulated Hebbian rule as

a special case. Second, we consider the case of strong lateral

interaction between action neurons, that lead to the spontaneous

formation of activity bumps in the layer where the action selection

takes place.

The resulting synaptic update rules can be formulated as a

differential equation in continuous time that has the form of a

three-factor rule

dwij

dt
(t)~a(wij) R{bð Þd(t{thit) eij(t) ð3Þ

eij(t)~

ð?
0

c(t{t’) f1(prej(t’))f2(posti(t’))dt’ ð4Þ

The term eij , called eligibility trace, picks up the correlations

between pre- and postsynaptic activity just as in a Hebbian

learning rule and convolves these with a low-pass filter c.

However, the final weight change is implemented only in the

presence of a reward signal R{b which is delivered at the time thit

when the animal hits the target. The choices of b considered in this

paper are: b~0 and b~R, where R is the reward signal averaged

over many trials.

In contrast to earlier work of Xie and Seung [32] but similar to

[33–35] our approach takes into account spiking neurons with

refractoriness and includes examples such as the standard

integrate-and-fire model. Under certain conditions on the

refractoriness [34], our learning rule can be identified with a

standard STDP model, but modulated by a third factor [33–36].

In contrast to most earlier work [33,34,36], our learning rule is

applied to a network of neurons that combines feed-forward input

with lateral interactions.
Learning paradigm. In order to show the potential of the

family of spike-timing dependent three-factor rules studied in this

paper, we apply it to the Morris water maze paradigm [51]. It is a

standard paradigm of behavioral learning and navigation, and has

also already been used as a challenging paradigm for TD-learning

models [52–55]. In this behavioral paradigm, a rat (or mouse) is

placed in a pool of milky (non-transparent) water. In order to

escape from the water, it has to find an invisible platform hidden

just below the water surface. Climbing on the hidden platform

can be considered as rewarding, since it ends a disagreeable

experience. During the first trial of the experiment, the rat

discovers the platform by chance. In subsequent trials the rat is

each time placed at a different starting location. Nevertheless,

across several trials the rat learns to navigate towards the hidden

platform based on distal surrounding cues [52,56]. In contrast to a

variant of the task with fixed initial condition [57], the Morris

Watermaze task with variable starting condition considered in this

paper depends on the hippocampus [51].

In this paper we model the Morris Watermaze paradigm using a

minimal hippocampal model of spiking neurons. The model we

propose has the following features:

1. The position of the rat is a continuous quantity represented by

an ensemble of place cells with overlapping place fields (coarse

coding). These place cells have feedforward connections to

action cells.

2. Actions are represented by a population of action cells

representing different direction of movements in a coarse

coding paradigm. New actions, defined as the population

Author Summary

Humans and animals learn if they receive reward. Such
reward is likely to be communicated throughout the brain
by neuromodulatory signals. In this paper we present a
network of model neurons, which communicate by short
electrical pulses (spikes). Learning is achieved by modify-
ing the input connections depending on the signals they
emit and receive, if a sequence of action is followed by
reward. With such a learning rule, a simulated animal
learns to find (starting from arbitrary initial conditions) a
target location where reward has occurred in the past.

Navigation: When Policy Gradient Methods Fail
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vector activity across action cells, are chosen periodically at

theta frequency.

3. The action cells are organized on a ring with lateral

connectivity showing local excitation and long-range inhibi-

tion. As a result, the population of action cells respond to input

from place cells with a bump-like activity profile.

4. The feedforward connections of place cells to action cells

change according to a three factor learning rule on the level of

spikes, that can be considered reward modulated form of

Hebbian plasticity derived from reward maximization.

5. Synaptic transmission in the feedforward connections is

stochastic and learning takes place through the modification

of the release probability.

6. The problem of learning a sequence of actions when reward is

given at only the end of the sequence is solved by an eligibility

trace that appears naturally in the derivation of the learning

rule. The eligibility trace is implemented as a local memory at

the site of the synapse.

A large fraction of classical reinforcement models have been

developed for artificial systems with a finite number of (discrete)

states and a small number of actions. However, real animals move

in a continuous space and, in some paradigms, also have a large

choice of actions that is best described as a continuum. Classical

TD models such as Q-learning [1,43], are ill adapted to this

situation: if a continuous state is approximated by a discretized

state-space of increasing resolution (larger number of states)

learning slows down, unless an eligibility trace is introduced into

the algorithm and/or function approximation is used [1]. On the

contrary, the architecture we adopt here allows the animal to

move in a continuous arena, without a significant reduction in

performance.

Moreover, while convergence of TD models is guaranteed in

the presence of an eligibility trace [58,59], the addition of an

eligibility trace in these algorithm is somewhat ad hoc, whereas

eligibility traces appear naturally in the policy gradient framework.

Surprisingly, the standard policy gradient method for spiking

neurons [32,34] does not work for the scenario where action

choices are decided by the formation of an activity bump in the

layer of action cells. However, we will show that our model

network with a modified learning rule with a ‘Hebbian bias’ does

learn navigation to an invisible goal within 20 trials, similar to the

performance of rats in the Morris Water Maze task [52]. Because

of the coarse coding of states and actions by cells with overlapping

place fields and ‘action fields’, the model allows to encode position

and action in continuous state and action spaces. We will show

that with our coarse coding approach the learning performance is

independent of the number of cells. Thus performance is stable

and does not depend on implementation details. We argue that on

one hand, a crucial ingredient of this structural stability are the

lateral interactions in the ring of action cells; on the other hand

it is exactly the fact that actions are chosen based on the location

of a stable activity bump that makes standard policy gradient

methods fail.

Results

The results section is organized in three main parts. First, we

discuss the main features of our three-factor learning rule for

spiking neurons. To test this learning rule in a realistic paradigm,

we introduce in the second part the Morris water-maze learning

task and the model architecture with place cells and action cells

suitable for solving the task. Finally, the performance of the

learning rule in this task is presented.

Three-factor learning rule for spiking neurons
We consider a Spike Response Model neuron with index i that

receives input from other neurons j. The f -th input spike from

neuron j arrives at time t
f
j at a synapses onto neuron i and causes

there an excitatory (or inhibitory) postsynaptic potential (EPSP or

IPSP) of time course e(t{t
f
j ) and amplitude wij . The EPSPs and

IPSPs of all incoming spikes are added to the membrane potential

ui of neuron i. Spikes are generated stochastically with an

instantaneous rate (or stochastic intensity)

ri(t)~g(ui(t)) ð5Þ

where g(ui) is a positive function that increases with the

membrane potential ui, see also Eq. (24). Immediately after a

spike of neuron i at time t
f
i , the neuron enters into a state of

relative refractoriness, which is implemented by a hyperpolarizing

spike afterpotential g(t{t
f
i ). Thus the total membrane potential of

the Spike Response Model neuron is [20]:

ui(t)~urestz
XN

j~1

wij

X
t
f

j
[xj

e(t{t
f
j )z

X
t
f

i
[yi,t

g(t{t
f
i ) ð6Þ

where urest is the resting potential, xj is the set of presynaptic

spikes, yi,t~ft1
i ,t2

i , . . . ,tF
i vtg is the set of postsynaptic spikes up to

time t.

Using this neuron model, we can calculate the probability that

neuron i generates a specific spike train with firing times

t1
i ,t2

i ,t3
i , . . . during a trial of duration T [34], see Methods, Eq.

(25). Some of the spikes of neurons i occur just before a reward is

delivered, others not. The aim of learning is to change the synaptic

weights wij so that the probability of receiving a reward R
increases. We consider learning rules of the form

dwij

dt
(t)~a R{bð Þd(t{thit)eij(t) ð7Þ

where a is the learning rate (controlling the amplitude of weight

updates), thit the moment when the animal hits the target or the

wall, R~1 is the positive reward for finding the target, R~{1 the

(negative) reward for bumping into a wall and b a reward baseline,

for instance an estimate of the positive reward based on past

experience. The eligibility trace eij(t) evolves according

deij

dt
(t)~{

eij

te

z
g’
g

Yi(t){
ri(t)

1ztcri(t)

� � X
t
f

j
[xj,t

e(t{t
f
j ) ð8Þ

where Yi(t)~
P

f d(t{t
f
i ) is the spike train of the postsynaptic

neuron, d(t) the Dirac function, te the eligibility trace time

constant, tc a parameter with units of time, and g’~dg=du the

derivative of the function g(u).

Because of the parameter tc, the learning equations (9) and (8)

define a family of learning rules, rather than one single instance of a

rule. The parameter tcw0 is a specific feature of our model which

allows to turn the model from a strict policy gradient method

(tc~0, [33,34] see methods) to a naive Hebbian model (tc??,

see below the discussion of the postsynaptic factor). Thus we are

able to link and compare these conceptually different rules via the

modification of tc. We note that for small firing rates r(t)tc%1,

Eq. (9) approximates the optimal policy gradient rule of [33,34],

while for larger firing rates, it enhances the Hebbian component of

Navigation: When Policy Gradient Methods Fail
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the rule. For r(t)tc&1, the term in the square brackets goes

to ½Yi(t){(1=tc)� so that for tc?? learning is driven by the

Hebbian correlation term Yi(t)e(t{t
f
j ). In the main body

of the simulation results, we pick a fixed value of tc~5ms which

implies that we use a policy gradient method with a Hebbian

bias.

The estimate of the positive reward is calculated as a running

mean updated at the end of the trial according the following equation:

�R(n)~ 1{
1

mr

� �
�R(n{1)z

1

mr

RT (n), with n being the number of

the trial and RT (n) being the reward at the end of the n-th trial

(1 or 0) and mr the width of the averaging window.

We will now show that Eqs. (7) and (8) can be interpreted as a

three-factor learning rule for spiking neurons, within the general

framework outlined in the introduction.

Presynaptic factor. Presynaptic spike arrival causes an

EPSP. The time course of the EPSP e(t{t
f
j ) represents the

effect of presynaptic activity at the location of the synapse. We

emphasize that the term presynaptic factor does not imply that this

factor is implemented presynaptically - rather it refers to a term

causes by the activity of the presynaptic neuron j.
Postsynaptic factor. Postsynaptic activity is represented by

both the timing t
f
i of postsynaptic action potentials and the

postsynaptic membrane potential ui(t). The membrane potential

enters in the function g(ui) that determines the instantaneous

firing rate ri(t)~g(ui(t)). Postsynaptic spikes are treated as

events and described by the function Y (t)~
P

f d(t{t
f
i ). The

postsynaptic factor, denoted by Di, is encapsulated by the square

brackets in Eq. (8) and visualized as a function of membrane

potential in Figure 1. For the case of tc?? the postsynaptic factor

depends only on spike timing, but not on the membrane potential

of the postsynaptic neuron.

The presynaptic and postsynaptic factors both enter into the

eligibility trace eij of Eq. (8) which is a quantity that must be stored

locally at the synapses from neuron j to neuron i. The eligibility trace

of the synapse from j to i is updated by a finite positive amount

whenever a postsynaptic action potential occurs within the time span

of an EPSP at this synapse. Hence the eligibility trace picks up

(potentially causal) correlations between presynaptic spike arrival

and postsynaptic spike firing. If an EPSP occurs without a

postsynaptic spike, the eligibility trace decays smoothly at a rate

proportional to ri=½1ztcri�. In particular, if the membrane

potential is high, but no postsynaptic spike is triggered, the eligibility

trace decreases strongly. However, in the limit tc?? such a

depression of the synapse does not occur. Thus, for tc?? the

eligibility trace is naive Hebbian in the sense that it is increased if

postsynpatic spikes occur shortly after (and potentially triggered by)

presynaptic spike arrival. If a synapse is not active (that is, in the

absence of an EPSP at the synapse), the eligibility always decays with

a slow time constant te in the range of seconds. Whatever the choice

of tc, the eligibility trace uses only local quantities that are available

at the site of the synapse and stores locally the correlations between

pre- and postsynaptic activity averaged over several seconds. In the

limit of tc?0 these correlations are zero on average because spikes

Y (t) are generated at the rate r(t) so that the expectation

SY (t){r(t)T vanishes. However, in a single trial the correlations

stored by the eligibility trace are typically nonzero.

Global factor. The third factor in our synaptic learning

rule is the global reward term described by the expression

R(t)~½R{b�d(t{thit). It represents in our theory the time course

of the (external) reward delivery. Neuromodulators such as

dopamine represent a diffusive reward-related signal across large

brain regions [22]. In our theory, the synapse calculates and stores

locally the eligibility trace. However, changes at the weights are

implemented only, if the change ‘proposed’ by the eligibility trace

is ‘confirmed’ by a global neuromodulatory signal.

Stochastic binary synapses. Transmission of information

across the synapse is not a deterministic event, but has a stochastic

component. Changes in the synaptic ‘weight’ wij discussed above,

are likely to correspond to changes in the probability qij of

releasing a fixed amount of neurotransmitter across the synaptic

cleft [60]. Let us suppose that the synapse transmits either a fixed

amount b of neurotransmitter or nothing at all. Learning affects

the neurotransmitter release so that increasing the weight wij of the

synapse by the above update rule will increase the release

probability such that the mean weight can be expressed as

wij~qijb. Thus, for stochastic binary synapses, as used in our

simulations, we arrive at the following learning rule

dqij

dt
~l(qij) R(t){bð Þd(t{thit)eij(t) ð9Þ

where the eligibility trace is the same as in Eq. (8). Since qij is a

probability it is bounded to a maximum of 1. We also impose a

lower bound qijw0:15. We implement these contraints by a

learning rate l(qij)~a=b for 0:15vqijv1 and zero otherwise.

Learning rule parameters. Free parameters are: the

learning rate l, the eligibility trace time constant te, parameter

tc, which tunes the Hebbian bias of the learning rule, and the

noise level of the neuronal response (controlled by parameter Du,

Figure 1. Postsynaptic factors of the learning rule. A model neuron
receives constant strong input making it fire at about 50Hz. A:Time course

of the voltage. B: The postsynaptic factor Di~ Yi(t){
ri(t)

1ztcri(t)

� �
of the

rule evaluated in time steps of 1 ms (see Eq. 8). The postsynaptic factor
decreases with voltage, but has a sharp positive peak during a spike. The
case tc~0 (blue line) and tc~5ms are nearly indistinguishable. C: The
accumulated term

Ð t

0 Di(t’)dt’ as a function of time t shows a clear
difference between the two cases. For the model with tc~0 (blue line) it
fluctuates around 0 while for the model with tc~5ms (red line) it exhibits
a positive drift. D: The postsynaptic factor as a function of voltage is
extracted from the data in graphs A and B by plotting the momentary
value of Di from graph B as a function of the voltage in graph A in the
same time step. For voltages above 60 mV the neuron models always
spikes for this input scenario, so that the postsynaptic factor is positive.
doi:10.1371/journal.pcbi.1000586.g001

Navigation: When Policy Gradient Methods Fail
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see Model architecture, Action Cells). Other parameters are fixed

a priory [34,61].

Model architecture
The learning rules discussed in the previous subsection (with

tc~0, tc~5ms and tc~?) are tested on a simulated Morris

Watermaze task with variable start condition, a task known to

involve hippocampus [51]. Hippocampus is represented as a

population of place cells, with place cells centers organized on a

rectangular grid. These model place cells project onto ‘action’

cells, putatively placed in the nucleus accumbens. The population

of action cells represents the next action to be chosen by the model

rat and is organized in a ring-like topology with lateral

connectivity of the Mexican-hat type; see Figure 2.

Hippocampal place cells (HPC). Hippocampal place cells

are modeled as Poisson neurons with a firing rate nf that is a

Gaussian function of the animal position in the environment:

nf
i (x,y)~n0 exp {

(x{xi)
2z(y{yi)

2

2s2

 !
ð10Þ

where (x,y) is the current position of the animal, (xi,yi) is the

position at which the i-th place cell gives the strongest response,

n0~110Hz is the maximum firing rate of the place cell. Unless

marked otherwise, we consider in our simulations 100 such neurons

placed on a grid of 10610 cells, with a distance of 10cm between two

neighboring cells and with s~12cm being the width of each place

field. The environment is a box of 1006100 cm. The ensemble

activity of place cells encodes the position (x,y) of the animal.

Action cells (AC). Action cells are modeled as Leaky

Integrate and Fire units [62], which are a special case of the

Spike Response Model [20]. The change of the membrane

potential of neuron i is given by

dui(t)

dt
~{

1

tm

(ui{urest)z
X

j

X
t
f

j

jf
ija(t{t

f
j ){

X
t
f

i

g0d(t{t
f
i )z

z
X

k

wlc
ik

X
t
f

k

a(t{t
f
k{e)

ð11Þ

where tm~10ms the membrane time constant, urest~{70mV

the resting potential, j
f
ij is a stochastic variable that takes the value

1 with probability qij if the presynaptic place cell i elicited a spike,

and otherwise jij~0, wlc
ij the synaptic strength of the lateral

connections between neurons i and j, t
f
j and t

f
k the spikes of the

presynaptic neuron j and k correspondingly, t
f
i the postsynaptic

spikes before time t and e a small positive number. We note that

the term t
f
j in the second term on the right-hand side refers to

place cell firing whereas t
f
k in the fourth term refers to action cell

firing. We assume that the postsynaptic current is a short pulse:

a tð Þ~e0d(t{tf ) ð12Þ

with e0~1mV and d(t) being the Dirac d function. If neuron i
emits a spike, its membrane potential is reset by an amount

g0~5mV. We note that with these definitions, our model is

equivalent to a standard leaky integrate-and-fire model with pulse

input and also a general case of the spike response model defined

in Eq. (6).

In order to account for intrinsic noise or synaptic noise

generated by additional presynaptic neurons that are not part of

the model, we use a stochastic firing threshold [20,63], also known

as escape noise. Action potentials of the postsynaptic neuron i are

generated by a point process with stochastic intensity ri~g(ui)
where ui is an exponential function of the membrane potential

[20,64]

ri~g(ui)~r0 exp
ui{uh

Du

� �
ð13Þ

where r0~1/ms is the stochastic intensity at threshold,

uh~{50mV the formal firing threshold and Du~5mV the width

of the threshold region. We note that for the choice (13) the factor

g’=g in the eligibility trace of Eq. (8) is a constant that can be

absorbed in the learning rate. Unless stated otherwise, we use

NAC~360 action cells for our simulations.

Lateral connections. The action neurons are connected in a

ring with ‘‘Mexican hat’’-type lateral connections. A weakly

localized feedforward input to action cell i is sufficient, to cause

within 25–200ms the formation of an activity blob. The location of

the activity blob represents the next action of the rat. Because of

the broad activity profile, not only the one neuron that is

maximally active, but also neighboring active neurons can be

reinforced during learning. For the sake of simplicity, we keep in

our model the lateral connections fixed (i.e. they do not undergo

synaptic plasticity) and use the equation:

wlc
ij ~wE exp {

jhi{hj j2

2s2

 !
{wI{w0 ð14Þ

with wlc
ij being the connection between neurons i and j, hi and hj

their corresponding preferred directions (the difference taken

modulo 360o), s~17o, wE~1:5 (weak connections) or wE§2
(strong connections) and wI~0:9. Local connections, i.e.

jhi{hj jvs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ln wI

wE

� �r
, are excitatory with w0~0 while connec-

tions over a longer distance are inhibitory, Eq. (14) with w0~0:5.

We have chosen parameters such that blob formation takes

place already at the beginning of the learning procedure. The

effect of the lateral connections is similar to a Winner-Take-All

mechanism.

Figure 2. Hippocampal model. A: Schematic overview. Place cells
are connected via all-to-all feedforward connections (red) to the action
cells, which in addition receive lateral input (light blue) via connections
with a mexican hat profile (not all connections shown). B: Rasterplot of
action cells, showing activity of the cells encoding for the chosen
direction. The spiking activity of action cells starts with stochastic firing
at low rates until an activity bump is formed after 25ms. C: Spike train of
neurons labeled 1 and 2, corresponding to the schema on the left,
when the rodent is placed in the receptive field of neuron 1.
doi:10.1371/journal.pcbi.1000586.g002
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Decision making. At each location in the maze, the rat has

to choose the direction of its next move. The decision is taken after

a bump-like activity profile has been formed in the action layer.

We suppose that the population of action cells is modulated by

inhibitory background input in the theta-frequency range. If

inhibition is strong, no activity profile is formed and neurons are

inactive. While background inhibition drops to zero an activity

profile develops, centered around the action neurons with

strongest feedforward input - and these represent the action the

rat is going to choose next.

In order to keep the model as simple as possible, we mimic the

modulation of inhibition at theta-frequency algorithmically, by

resetting every 200 milliseconds the activity of all action cells to

zero. Otherwise, the dynamics is evolving freely according to the

dynamical equations above. After 200 milliseconds, the rat takes

its decision about the next action based on the population vector of

the action cell firing rates. More specifically, the firing rate of

action cells 1ƒiƒNAC is estimated from a low-pass of the spiking

activity

_ri~{
ri

td

zYi(t) ð15Þ

where td is a time constant set at 10ms (or 200ms) and Y (t) the

entire postsynaptic train of the action cell defined as

Y (t)~
P

i d(t{t
f
i ), with t

f
i the f th firing time of the i-th action

cell. The direction that the rat will follow is described by the angle

h in an allocentric coordinate system, i.e. relative to room

coordinates and calculated from the population vector:

h~ arctan

P
i

ri cos (2pi=NAC)P
i

ri sin (2pi=NAC)

0@ 1A ð16Þ

where NAC is the total number of action cells (typically 360 unless

otherwise stated), and 2pi=NAC the direction of the i-th action

cell. h is calculated after a decision time Tƒ200ms. In Figure 3

C–E, T is the moment when the total activity of all action cellsP
i riwH, with H~200Hz, which is achieved if, e.g. 10 cells fire

at more than 20Hz, a good indicator of when a decision (an

activity bump) is formed. For all other simulations, T~200ms, but

in general any of these conditions are possible for each case.

Watermaze performance
We perform simulations of a model rat navigating in a square

maze of 1m2, with a constant speed of 20cm/s. The rat performs a

number of trials, with each trial consisting of an attempt to find the

goal within a time limit of 90 seconds. At the beginning of each

trial, the rat is placed near one of the walls of the maze. Actions

are chosen at theta frequency (every 200ms). Between two action

choices, the simulated rat moves by about 4cm. The rewarded

position (target) is at a random position near the central region of

the maze and remains fixed at the same position within a set of

trials whereas the initial position of the rat varies, as in the

experimental paradigm [51,65,66]. Positive reward (R~1) is only

given if the rat reaches its target and negative reward (R~{1) if

it hits the wall. Thus, synaptic modifications take place either at

the time the rat reaches the platform, tgoal , or at the time the rat

hits a wall, twall . For an overview of the algorithm see Figure 4.

When a new set of trials starts, the positions of both the rat and

the goal are reinitialized as well as the synaptic release of all plastic

synapses in the model. Thus each new set of trials corresponds to a

different animal.

Speed of learning. The performance of the rat is measured by

the time it takes to reach the target, corresponding to the escape

latency in the experimental literature [51,65,66]. In the panels of

Figure 3 A–E we plot the escape latency versus trials for three values

of the parameter tc and three conditions of the mexican hat

connections, zero (wE~0, wI~0 and w0~0), weak (wE~1:5,

wI~0:5 and w0~0) and strong (wE~2, wI~0:9 and w0~0:5). For

zero or weak lateral connections learning takes place within 20 trials

with any value of tc (Figure 3 A,B). The performance is similar to that

seen in experimental data [51] and previous models [52,55]. The

standard deviation of the performance extracted from 10 repetitions

of the learning experiment decreases while the task is learned.

Surprisingly, for lateral connections strong enough to form an

an activity bump in the action cell layer, only the versions of the

rule with a dominant Hebbian component (tcw0) are able to

learn the task (Figure 3 D,E), but not the standard policy gradient

rule for spiking neurons (tc~0, Figure 3 C). We believe that the

critical parameter for a good performance of the policy gradient

rule is neither the lateral connectivity nor the total input. Rather, it

is a subtle interplay between the rule for the action choice (here:

population vector based on firing rates) and the information

encoded in the eligibility trace (see Discussion for more details).

In our model, actions depend on the population vector of the

Action Cells calculated from the spike count about 200ms from each

cell. Action cells, that have emitted most spikes, are most likely to

dominate the action choice at a given place. Therefore, a standard

Hebbian learning rule, that increases weights when

pre- and postsynaptic neurons are jointly active, will set an eligibilty

Figure 3. Learning performance for different variants of the
learning rule. A. Left: Evolution of escape latency as a function of
trials, without lateral connections (wlc

ij ~0) and Du~3mV. Right:
Navigation map after 20 trials visualized in the water maze by a set
of direction vectors. At each grid point (defined by the center of a place
cell j) in the graph, we plot the normalized stochastic release
probability qij for fixed j in the form of a population vector denoting
the direction the animal would most likely take at this location. The red
circle marks the position of the hidden platform. The navigation map is
less smooth than with the standard choice of parameters of tc~5ms or
tc~?, see D and E, Right. B. As in A with weak lateral connections,
tc~0 and Du~5mV. C. As in A with strong lateral connections, tc~0
and Du~5mV. D. As in A with strong lateral connections, tc~5ms and
Du~5mV. E. As in A with strong lateral connections, tc~? and
Du~5mV. Initial release probabilities are set to 0.2; all other parameters
as in Model architecture, Methods and Tables 1, 2.
doi:10.1371/journal.pcbi.1000586.g003

Navigation: When Policy Gradient Methods Fail

PLoS Computational Biology | www.ploscompbiol.org 6 December 2009 | Volume 5 | Issue 12 | e1000586



trace that is strongest for the action neurons that have most likely

determined the action at this location. If that action led to a reward,

those weights would be strengthened. Thus, it is not surprising that

the model with tc?? does work. What would be the situation for

the standard policy gradient rule with tc~0? As long as the

expected number of spikes riT within the decision period of

duration T is smaller than one, the term yi(t){ri(t) in the eligibility

trace is positive for all neurons that have fired a spike – and these are

exactly the neurons that determine the next action via the

population vector. However, if the firing rates are higher, such a

match between the memory kept in the eligibility trace and the

chosen action is not guaranteed for in single trials of the standard

policy gradient rule (see Discussion for more details). We report that

the average instantaneous firing rate for the network without lateral

connections, calculated as an average value among all action cells

between the 20th and the 30th trial, is r~0:002 Spikes/ms. For the

same network but with weak lateral connections is r~0:006
Spikes/ms (three times more) and with strong lateral connections an

order of magnitude higher, i.e. r~0:032 Spikes/ms. More

importantly, the neurons inside the activity bump fire in Figure 3

C–D at a rate of r~80 Hz yielding rT&16 spikes, T~200ms.

Thus, the eligibility trace of the most active synapses accumulates

about 16 spikes of the postsynaptic neuron.

For the case of tc~5ms we compared the situation without

baseline subtraction b~0 and with a baseline subtraction b~�R,

and the results are similar (data not shown). However, if we follow

Figure 4. Learning algorithm. The decision time T can be either 200ms, as in most cases, or can be based on a flexible criterion (Figure 3 C–E), see
Results.
doi:10.1371/journal.pcbi.1000586.g004
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learning for more than 100 trials, the factor R{�R
� 	

increases

long-term stability, as expected.

Navigation map. Given the rat’s location, the direction of

the next move is decided by the population vector of the action

cells. Suppose that the rat is in the center of the place field of cell j.

Then the population activity of the action cells is, to a large degree,

controlled by the strength of the synapses connecting place cell j to

the different action cells: the stronger the synaptic weight wij to an

action cell i, the more likely that the action represented by i would

be chosen. We therefore use the population vector of the synaptic

strength of the feedforward connections from a given place cell to

visualize the direction of motion starting at that location. The

combination of vectors gives a flow map, corresponding to the

navigation map of the rat. In Figure 3 A–E right hand side we

show the navigation map after the 20th trial for different tc values

and lateral connections. It is noteworthy that the quality of the

navigation map is increased under the presence of strong

connections (and tcw0). Figure 5 shows the evolution of the

navigation map of the rat for tc~5ms after 1, 10 and 50 and 100,

with A–C depicting preferred directions as normalized vectors and

D–F as non-normalized vectors. A–C show that already within 10

trials the simulated animal has developed a strategy for reaching

the goal, and D–F show the relative strength of the population

activity, which increases as the animal moves closer to the target.

Adequate learning has been achieved, if for any starting condition

the flow is towards the target zone. We find that already after 10

trials, a rough strategy for the Morris watermaze task has been

developed, which is refined during subsequent trials. Figure 6

confirms that trajectories become smoother during learning. A

sequence of 3 action choices has a strong random component at

the beginning but is nearly continuous after 100 trials.

Performance vs number of place and action cells. How

does the performance depend on the number of place and action

cells? For place cells, we require that the surface of the water maze

will be sufficiently covered by neurons with overlapping receptive

fields. This continuous space representation (due to overlapping

receptive fields) leads to simultaneous learning of nearby neurons,

resulting in no significant change in performance even when

doubling the number of neurons in each dimension, see Figure 7

left. Similarly, a minimum number of action cells is required such

that the activity profile will be created, but increasing the number of

cells beyond 300 cells or so does not change the performance. The

reason is that the activity profile has always roughly the same width

(about 30 degrees) in action space. Adding more cells just increases

the number of cells in the activity bump. In Figure 7 right we plot

the average time it takes the rat to reach the hidden platform at the

5th, 25th and 50th trial versus number of action cells. We note that

the performance does not significantly change. This is in contrast to

standard reinforcement learning in discrete state and action spaces

where increasing the number of states or actions increases the

number of free parameters, so that learning becomes slower [1].

Discussion

We presented a spike-based reinforcement rule which combines a

global reward signal with two local factors available at the site of the

synapse. The first local component is a contribution generated by

presynaptic spike arrival and enters the update rule in the form of

the EPSP. The second local component depends positively on

postsynaptic spike firing and negatively on the postsynaptic

membrane potential. The relevance of the membrane potential

decreases with tc and vanishes for tc??. The third factor of the

learning rule is the global reward signal that can be associated with

neuromodulators such as dopamine [22]. Thus the eligibility trace

which combines the two local factors marks the synapse that can

undergo LTP or LTD. The actual weight change is implemented

only after confirmation by a global reward signal that may arise with

a significant delay. Such a picture has interesting relations to the

model of synaptic tagging and capture [27] where synaptic

connections undergo preliminary changes into early LTP or LTD

that decay unless they are stabilized if plasticity related protein is

available. Synthesis of these plasticity related protein can occur with

a delay and requires neuromodulators such as dopamine [28,61].

Global factors, neuromodulators, and TD-learning
In the introduction we mentioned two classes of theoretical

reinforcement learning algorithms, that is, temporal difference

Figure 5. Navigation map of the rat visualized in the water maze
by a set of direction vectors, for tc~~~~~~~~~~~~~~~~~5ms. Panel A depicts the map
formation after 1 trial, B after 10 trials and C after 50 trials. The simulated
animal has developed a rough strategy to reach its goal already within 10
trials. For details on how the navigation map is calculated, see Figure 3.
Learning rate decays as a function of mean reward. Preferred directions
are plotted as normalized vectors. In D–F we plot the same navigation
maps with non normalized vectors. While F seems to contain no
information about preferred directions near the wall (due to scaling of
arrows), the normalized version C confirms that the simulated animal has
developed a strategy for all positions in the maze.
doi:10.1371/journal.pcbi.1000586.g005

Figure 6. Sequential formation of actions. Spiking activity (dots) of
the population of action cells as a function of time during three theta-
cycles. A: Before learning, the moves of the simulated animal reflect
random exploration of the space leading to a B: discontinuous
trajectory. C: After learning, the three consecutive actions exhibit
similar direction choices leading to D: a continuous movement.
doi:10.1371/journal.pcbi.1000586.g006
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(TD) learning methods on one side [1,43] and policy gradient

methods on the other side [39,40]. Our model task and model

architecture would allow to test both types of algorithm in the form

of a three-factor rule (see [45,52–54] for examples of a TD

algorithm for this task). One major difference between the TD

algorithms and the algorithm in this paper lies in how the global

factor encodes neuromodulatory feedback about the reward. In

the case of TD-learning, the global factor expresses the difference

between the reward received and the expected reward (where the

expected reward is calculated from the temporal difference

between reward expectations of subsequent states [1]), whereas

in the case of the gradient learning algorithm of this paper the

global factor correspond to reward itself, possibly after subtraction

of a baseline. Here we used a variant of the idea of a baseline, since

we subtracted the mean reward averaged over order m previous

trials, see also [41]. Subtracting the expected reward should help

rapid re-learning in case of the change of the learning task (e.g., by

moving the escape platform to a different location) [67]. Similar to

TD learning the global factor can be interpreted in this case as

reward minus expected reward. In contrast to TD learning, the

expected reward arises from a running average, rather than a

difference in reward expectation across different states as in spike-

based TD algorithms [37,45]. Experiments on dopaminergic

neurons suggest that the phasic dopamine signal indeed encodes a

TD-like error signal [22] although other interpretations of the

dopamine signal [68] and the involvement of other neuromodu-

lators is also possible [69].

Our spike-based navigation model features a continuous

description of state and action. Unlike traditional TD models

with discrete state and action space, increasing the number of

neurons while keeping the width of place fields and the width of

lateral interactions between action cells constant) does not change

the performance of our model. In addition, the model provides

insight in studying decision making in the context of navigation.

We hypothesized that activity is modulated at theta frequency.

Note that we implemented an extreme situation where the action

choice is taken at the end of each theta cycle. However, it is easily

possible to have the rat take an action as soon as the activity profile

is formed. The time necessary to create an activity profile

determines then a minimal time for deciding a new action. If

this is so, then our model predicts that the time it takes to choose

the next action is much faster after learning than before learning,

because activity profiles are more rapidly formed with strong

feedforward input - as it would occur after learning.

Morris water maze task
To test the potential of our spike-based reinforcement rule, we

have applied it to a biologically relevant navigation problem, i.e.,

the Morris water maze task with variable start condition [51]. Our

model which is based on a simplified model of place cells and

action cells reproduces behavioral data of real rats in terms of

escape latency versus learning time. The model consists of about

700 spiking neurons, in two layers and includes both feedforward

and lateral connections. In the first trial, the model rat moves in a

random trajectory and finds the hidden platform by exploration.

Across several trials, approach paths towards the platform are

reinforced, so that the escape latency is reduced.

A positive reward is delivered when the model rat reaches the

target location. In the model, we also use negative reward at the

boundaries of the maze so that the simulated rat will learn to avoid

the walls. This aspect does not reflect the fact that, normally,

during development (or even because of reflexes present at birth)

we could assume that the rat already knows how to avoid obstacles

prior to the start of the watermaze task. However, since we did not

want to include into the model prior knowledge about obstacle

avoidance, we let the simulated rat ‘discover’ the effect of the walls.

Since our model assumes the existence of place cells, we must

assume, however, that the rat has had some pre-exposure to the

environment long enough to establish place fields. Experiments

have shown that place fields are established during a first

exploration of the environment, so that during the learning task,

they can be considered as given. Moreover, typical experiments

require prior habituation of the animal to the environment, so that

place cells may be formed. A model where place cells are learned

from visual input and path integration is also possible [53].

While in our model place cells can be easily linked to cells in

hippocampus, a direct identification of the action cells with the

biological substrate is more problematic. In rodents, navigation in

water maze task involves two competing pathways [70–72]. The

first one is involved in taxon navigation (e.g., approaching a visible

target, which could be achieved with stimulus-response habits [73]

Figure 7. Scaling properties of the network. A: Average time it
takes the rat to reach the hidden platform at the 5th, 25th and 50th trial
versus number of place cells. B: Average time it takes the rat to reach
the hidden platform at the 5th, 25th and 50th trial versus number of
action cells. Error bars show standard error for the mean. Note the
improvement as the number of place cells is increased. This is due to
the systematic formation of an activity bump in the presence of
stronger input. The same parameters were used in producing all sets of
these simulations: l~0:0008, tc~5ms, mr~20, te~60s, td~10ms,
e0~1mV, Du~5mV, wE~2:4, wI~0:9 and w0~0:5, see also Results.
For B, place cells are located every 5cm, with a gaussian receptive field
of s~8cm, and maximum firing rate 120Hz. To reduce CPU time, for
this set of simulations we do not implement the stochastic release.
doi:10.1371/journal.pcbi.1000586.g007
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also called response learning [71]) and associates visual input

directly with motor actions. It is independent of hippocampus and

the action choice for this navigation strategy can presumably be

linked to the the dorsal striatum of the basal ganglia (caudate-

putamen in the rat). The second one is concerned with locale

navigation (also called place learning [71] or cognitive map [74])

and this is the relevant pathway in the context of the present

model. It relies on hippocampus [51,70,71] where the activity of

place cells presumably encodes the location of simulated animal.

The choice of motor actions is presumably encoded in the nucleus

accumbens (NA) of the ventral striatum where our hypothetical

action cells could be located. The Mexican hat connectivity

between action cells is a simplification of a more complex wiring

scheme, where excitatory neurons project to inhibitory neurons,

which in turn inhibit other action cells that encode for ‘‘different’’

directions, see for example a biologically plausible winner-take-all

[75]. However, to reduce the connectivity in our network, we

chose to simulate the equivalent but simpler Mexican hat scheme.

One limitation of the model is that learning only takes place in

the presence of a reward signal with the consequence that learning

can only occur in a limited radius around a reward. The radius is

related to the time scale of the eligibility trace, governed by the

time scale te. In a large environment where at a fixed speed v0 it

takes much longer than te to traverse the environment,

information about the target falls off exponentially with a spatial

scale r~tev0. In our case we would encounter this limit only if the

environment were scaled by a factor significantly larger than two.

In a TD framework, the situation would be different: even

without an eligibility trace, information about the presence of the

reward can slowly diffuse across the landscape of estimated reward

expectation values V (x) where x is the position, even beyond the

radius r discussed above. This slow diffusion of reward information

is possible because the update is not proportional to the reward

itself, but to a factor d~RzcV (x’){V (x) where V (x’){V (x)
gives the difference between the reward estimation at location x’
and that of the previous location x and 0vcv1 is the discount

factor. An implementation of a TD learning structure in spiking

neurons is possible using the actor-critic scheme [37,45]. If a TD

algorithm is implemented in discrete time with time steps D, and if

the rat runs as before at a constant speed v0, the distance travelled

between two time steps is Dx~v0D. After convergence, the value

function decreases exponentially with the distance from the target

on a lenght scale r’~{v0D=lnc&v0D=(1{c). (In other words,

once the exponentially decaying V dependence is reached, the d in

the update rule vanishes). A comparison with the result in the

previous paragraph shows that the time scale te of the eligibility

trace in our model plays a role similar to D=(1{c) in the TD

model. The role of the eligibility trace has been extensively

discussed in [35]; in our interpretation the eligibility trace is

implemented in the synapse and its time constant te corresponds

to the decay time of some biochemical substance.

The parameter tc is an ad-hoc parameter that allows us to vary

the behavior of the learning rule from pure Hebbian to optimal in

the sense of policy gradient theory. We do not wish to explicitly

associate it with a biological substrate, but in our model it would

be closely related to the voltage dependence of LTD.

Recently, the influence of neuromodulators on spike-timing

dependent synaptic plasticity has been investigated in a small

number of studies [31,76]. These studies show that dopamine acts

on the temporal profile of STDP, rather than a simple scaling of

STDP. This result is in contrast to some of the assumptions of

standard reward-modulated STDP [35,36], but also in disagree-

ment with policy gradient rules [33,34,38] and the learning rule

discussed in this paper. For plasticity in the cortico-striatal synapse

[31], but not for glutamatergic synapses in hippocampal neurons

[76], dopamine is necessary for synaptic plasticity. In other words,

learning is gated by the presence of dopamine. The plasticity rule

in the cortico-striatal synapse is in that respect similar to the

reward-gated plasticity rules in the present paper. Interestingly, the

striatum is potentially involved in action selection.

It should be noted that in standard cortical STDP experiments

[77,78] the level of dopamine and other neuromodulators is not

explicitly controlled and a background level of dopamine cannot

be excluded. Therefore, it is unclear whether cortical STDP is

unsupervised or shows a, possibly weak, dependence upon

neuromodulators.

Limitations of policy gradient methods
An important parameter in our family of learning rules is the

parameter tc, that tunes the learning rate such that for neurons

that fire at high learning rates LTD is reduced. To see this,

consider an instantaneous firing rate ri(t)&1=tc. Then the term

ri(t)=½1ztcri(t)� converges to 1=tcvri. Hence, the decrease of

the eligibility trace in the absence of spikes is limited. Note that

because of r~g(u) high rates correspond to large depolarizations

of the membrane potential. For tc??, the term ri(t)=½1ztcri(t)�
vanishes, and the membrane potential u no longer enters the

update of the eligibility trace. In this case the eligibility trace pick

up Hebbian correlations Y (t)e(t{t
f
j ) between EPSPs caused by

presynaptic spike arrival and postsynpatic firing.

The case tc~0 corresponds to the learning rule derived from

the reward maximization as shown in the methods section, i.e.,

ri(t)=½1ztcri(t)�~ri(t). For tc~0 the two postsynaptic terms,

i.e., spike firing and voltage dependence cancel each other on

average, because spikes are generated with the stochastic intensity

ri~g(ui), hence SYi(t){ri(t)T~0 where angular brackets

denote expectation values. However, a specific realisation of a

spike train (e.g., one with more spikes than expected) may lead to a

reward whereas another one (with less spikes than expected) does

not. In this case only the rewarded one is learned, making it more

likely that the same spike train is reproduced again for the same

input [34]. In fact, a large class of learning rules for conditioning

can be explained as a reinforcement of the covariance between

reward and a noise-induced variation of the output [79].

There are three reasons why the standard policy gradient rule

with tc~0 derived from reward maximization is not applicable in

our scenario.

(i) Large learning rate. The learning rule derived from reward

optimization is a batch rule, i.e., it assumes averaging across

several realisations and many inputs. For the transition to the

online rule we had to assume a very small learning rate so as to

make the learning self-averaging. If learning is slow, then

thousands of trials are needed before the weights change

significantly, so that online and batch have nearly the same effect.

In order to explain biological learning paradigms, we need,

however, to achieve learning after as few as ten trials. If we work

with a large learning rate l, then terms of the form Yi(t){ri(t)
that average away in the batch rule, can make a big contribution

in the eligibility trace of each single trial and can cause weight

changes that are not causally linked to the reward. Thus the

eligibility trace encodes noise, rather than relevant correlations.

With small learning rate, these correlations would average away

(and only those systematically linked to the reward would survive),

but with a big learning rate these changes act like a diffusion

process. Moreover, the effect of the diffusion increases with the

number of spikes in the decision window and therefore is highest

for neurons having a large firing rate ri. Large firing rates ri

appear in particular after learning for neurons inside the activity
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bump, because strong lateral input is added to strong feedforward

input. Hence the eligibility trace is most noisy in the center of the

bump, as shown in Figure 8 B.

(ii) Decision by firing rates, not by spikes. The close relation

between reward-maximisation by policy gradient rules and

supervised learning shows that the spike-based rule with tc~0 is

optimal to learn a specific spatio-temporal spike pattern [34].

However, what counts for the action choice in our simulations is

the firing rate accumulated over 200ms. To understand the

importance of this distinction let us consider two Poisson neurons

coding for actions ‘left’ and ‘right’, respectively. The action ‘right’

is the rewarded one. Suppose the neurons receive inputs that

drives the neurons coding for ‘left’ at an intensity rleft~5Hz and

the other at rright~50Hz. Suppose, because of intrinsic noise, the

neuron coding for ‘left’ fires 2 spikes in a decision interval of

T~200ms, while the neuron coding for ‘right’ fires 9 spikes in the

same time interval. If actions are chosen according to maximal

firing rates, the neuron coding for right wins, the system performs

the ‘right’ action and receives reward. However, the termÐ T

0
½Y (t){r(t)�dt is negative for the neuron coding for ‘right’

and ‘positive’ for the neuron coding for ‘left’. Hence, after reward

is received action ‘right’ is weakened, while action ‘left’ is

reinforced, in contradiction to the fact that action ‘right’ is the

correct one that should be reinforced. To put it differently, action

neurons have to learn that (a) precise spike timing is irrelevant and

that (b) even the absolute rates are irrelevant because all that

matters is the firing rate relative to those of the other neurons.

Since the policy gradient rule is desigend to learn precise spatio-

temporal spike patterns, it is not ideally suited for our paradigm. In

contrast, reward-modulated Hebbian learning just make the

neurons that fired at high rate (and influenced the action) fire at

even higher rates. In the specific task we are considering this

happens to be a viable strategy.

(iii) Populations of neurons, not single neurons. Furthermore,

because of the formation of an activity bump and the readout by a

population vector the decision about actions is taken by a population

of neurons rather than individual neurons. Learning in popula-

tions suffers from the problem that firing of individual neurons

may differ from the majority vote that led to the actions, so that

giving appropriate feedback is nontrivial [80].

Figure 8 illustrates the detrimental interaction of points (i)–(iii)

for the standard policy gradient rule. We focus on a presynaptic

neuron j which codes for the current location of the rat so that

synapses from j to all action neurons i are active. The

instantaneous firing rate ri represents the activity bump (Figure 8

A). Despite the fact that the term Yi(t){ri(t) has an expectation

value of zero, the term Yi(t){ri(t) gives a non-neglibible

contribution in each trial, see also Figure 1 C – as it should be

since policy gradient rules need to exploit fluctuations. However,

we would like to emphasize two aspects. First, the standard

deviation of jYi(t){ri(t)j grows with time, similar to a diffusion

process. Second the diffusion constant increases with the

instantaneous rate r. Therefore the deviation from the expected

value SYi(t){ri(t)T~0 increases with the expected number of

spikes riT the neuron emits during the decision interval of length

T . The eligibility trace is sensitive to this deviation. In the case of

our action learning model, the consequence of the above argument

is that the set of significantly positive eligibility traces eij for fixed

presynaptic neuron j includes not just action neurons within the

activity bump, but also those representing other directions; see

Figure 8 B. Moreover, the variation of eligibility traces between

neighboring neurons inside the activity bump is big, because the

expected number of spikes is higher for neurons inside the activity

bump. In particular, several synapses from a fixed presynaptic

neuron onto neurons in the bump have eligibility traces that are

significantly negative (corresponding to the fact that some neurons

in the bump fire less spikes than expected from the firing rate ri,

see point (ii) above). This leads to the problem that eligibility traces

of individual neurons do not reflect the action choice represented

by the population of active neurons [80]. Simply speaking,

neurons inside the bump are those that determine the action even

though their eligibity trace can be negative.

The parameter tc in our learning rule gives a systematic positive

bias of the postsynaptic term for those postsynaptic neurons that

have a large firing rate. Thus the eligibity trace is maximal for

neurons within the bump of activity, i.e. for those representing the

action that is actually chosen; see Figure 8C. Hence, if the sequence

of actions leads to a reward later on, the synpatic weights between

those presynaptic place cells and postsynaptic action cells that

actually led to the sequence of actions are maximally strengthened.

Because of the bounds on the weight dynamics, these weights will

eventually converge towards a release probability of qij~1. We note

that all neurons outside that activity bump have very low activity, so

that Yi(t){½ri(t)=(1ztcri(t))�&Yi(t){ri(t) has a zero average

and only small fluctuations. Hence, a learning rule with tcw0 is

expected to work better in the case of large learning rates l, and

high firing rates r, and a decision criterion based on a population

vector calculated over a long time period.

In a general spike-based learning problem where the aim is to learn

a spatio-temporal spike pattern, the high variability of eligibility traces

would allow to explore a large space of firing patterns. However, in

our case with lateral interactions and decisions based not on detailed

firing patterns, but only on population vector data integated over

200ms, the bias towards high activities identifies neurons in the bump

that participate in the action choice.

Figure 8. Action cell activity and eligibility trace. A: Snapshot of
mean firing rate of action cells during one of the trials while the
simulated rat is in the center of the place field of cell j. The chosen
action is a movement in direction 200o . B and C. At this instance, the
momentary value of the eligibility eij is plotted as a function of i for
fixed j (fixed presynaptic location). B: For the rule with tc~0 the profile
of eligibility traces is stochastic with zero mean and maximum variance
inside the activity bump. C: For tc~5ms the profile of eligibility traces
reflects the activity profile shown in A.
doi:10.1371/journal.pcbi.1000586.g008
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Indeed, a learning rule with tc~0 does work in the situation

where (a) there are no lateral interactions between the action cells

or (b) decisions are based on less than one spike per neuron on

average. In the latter case, every spike is unexpected, and basing a

decision on the population vector chooses an action that is indeed

caused by a fluctuation.

In principle four action neurons would be sufficient to encode the

direction of the next action (e.g., [45,53]). In this case, learning rules

based on either policy gradient [45] or naive Hebb [53] work.

However, it is likely that in biological brains actions are encoded by

large populations of neurons. In order to achieve fast learning despite a

large population of action neurons, action neurons must share

information during learning – and this can be achieved by the

formation of activity bumps. The results of this paper show that in the

presence of activity bumps and population vector read-out based on

spike counts, the spike based policy gradient rule no longer works,

whereas a rule with a bias towards Hebbian correlation does.

From a technical point of view, neither stochastic synapses nor

voltage dependent plasticity is critical for the function of the model,

however they are both desirable properties for the biophysical

plausibility of the rule. In our model, the stochastic release probability

of the synapses is hard-bounded in order to maintain reasonable values,

for a biophysical implementation of such bounds see [46].

Also a reset it is not necessary to take place exactly every 200msec; in

principle may occur at any point that the activity bump is formed. We

require to reset the activity in the action neurons layer only (or

equivalently we could clamp the AC activity for say 10ms) so that the

activity profile will not become ‘‘sticky’’, but in no other way the

learning would be affected. Without reset, the rat will end up again

learning the position of the platform, but its movements will become

more curved. A negative input would be desirable after a decision is

formed so that at the beginning of the learning the next action will not

depend on the previous one. This negative input may arrive at any

point after a decision (activity bump) has been formed. We chose

200ms so that this could coincide with the theta rhythms, but it could

have been 150ms or 300ms, or a random interval (as we demonstrate

in simulations).

Methods

Policy gradient methods [39,40] have been applied to spiking

neurons several times and result in spike-based formulations of

reward-based learning [32–34,38]. In the following subsection we

derive again the same rule, but with the aim to show that the

derivation holds even in a network of spiking neurons with strong

lateral connectivity (see also a comment in [40]). In the following two

subsection we make the transition to an online formulation with

eligibility traces and stochastic synaptic transmission. In subsection we

leave the policy gradient framework by introducing the parameter tc

in order to enable a smooth transition between the standard policy

gradient rule and a naive Hebbian rule that measures directly

correlations between presynaptic spike arrival and postsynaptic firing

on the time scale of the EPSP. The rule used in the main body of the

paper is a mixture between policy gradient and naive Hebbian rules.

Derivation of the learning rule
To derive a learning rule for a highly connected network with action

cells i with lateral connections receiving from input from place cells j,
we shall first consider a restricted scenario where the rat always starts a

trial in the same initial location and is left to move around for a fixed

duration T . We shall denote by xT (yT ) the spatio-temporal spike

pattern generated during this time by all place (action) cells. The

reward, administered at the end of each trial, depends on the trajectory

of the rat in the water maze. Given the fixed initial location, this

trajectory is determined by the firings of the action cells. So we write

reward as a function R(yT ){b, where b is the reinforcement baseline

[39], without explictly noting the dependence on the initial position of

the rat. Expected reward then is [32,34]

SRT~

ð
dxT dyT R(yT ){bð ÞPw(xT ,yT ) , ð17Þ

here w denote the strengths of the synapses connecting the action to the

place cells, and Pw(xT ,yT ) is the probability that the network

generates the total spike pattern (xT ,yT ).

In our model Pw(xT ,yT ) can be decomposed as (see also

Decomposition of probability):

Pw(xT ,yT )~ P
j

gj(xT ,yT )

� �
P
i

hi,wi
(xT ,yT )

� �
: ð18Þ

Here hi,wi
(xT ,yT ) is the function giving for the action cell i the

single neuron probability that it generates its spike train

yi,T~ft1
i ,t2

i , . . .g with an input consisting of all the other spikes

produced by the network. Similarly, gj(xT ,yT ) is the single neuron

probability function for the spike train produced by the j-th place

cell given its input (determined by the other spikes in the network).

Note that the above product form does not imply that the spike

trains are statistically independent. This is obviously not the case: First,

due to the lateral connections between the action cells, and, more

importantly, due to the simple fact that the action cells decide on the

rats trajectory and thus influence the firing of the place cells. The

product form simply represents the fact that the internal stochastic

processes which modulate the translation of presynaptic input to

postsynaptic output are assumed to be independent between different

cells. In other words, given the input spikes from all other neurons and its

own previous spikes up to time t, the neuron i decides locally whether it

fires between t and tzDt or not (i.e., we activate an independent

random process for each neuron in each time step of the simulation),

see section Decomposition of probability.

An explicit form for gj(xT ,yT ) would be rather complicated, due to

the involved calculations mapping the action cell firings to the

trajectory of the rat. Luckily, we just explicitly need hi,wi
(xT ,yT ). Note,

and this is in fact the crucial feature of the decomposition, that hi,wi

does not depend on all feed-forward weights, but only on the weight

vector wi of the synapses actually projecting onto neuron i.

To calculate the gradient of the expected reward (17), we first

rewrite the probability Pw(xT ,yT ) as

Pw(xT ,yT )~
Pw(xT ,yT )

hi,wi
(xT ,yT )

� �
hi,wi

(xT ,yT ) ð19Þ

and note that in view of (18) the term in square brackets in fact

does not depend on wi (even if this is not apparent from the

notation). Now, for the synapse connecting place cell j to action

cell i the gradient calculation is

L
Lwij

SRT~

ð
dxT dyT R(yT ){bð Þ L

Lwij

Pw(xT ,yT )

hi,wi
(xT ,yT )

hi,wi
(xT ,yT )

� �
~

ð
dxT dyT R(yT ){bð Þ Pw(xT ,yT )

hi,wi
(xT ,yT )

� �
L

Lwij

hi,wi
(xT ,yT )

~

ð
dxT dyT Pw(xT ,yT ) R(yT ){bð Þ L

Lwij

log hi,wi
(xT ,yT )

ð20Þ

The last line yields a batch rule for synaptic changes. We first

average
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R(yT ){bð Þ L
Lwij

log hi,wi
(xT ,yT ) ð21Þ

over many trials and then use the result to update the synaptic

strength. The biologically reasonable online version of this is to

already update after each single trial, i.e.

Dwij~l0(R(yT ){b)
L

Lwij

log hi,wi
(xT ,yT ) : ð22Þ

Often we replace the reinforcement baseline b with the estimate of

upcoming reinforcement based on past experience �RR [39]. In the

context of on-line learning, our initial requirement of a fixed initial

position is no longer necessary since we calculate the expected

reward by averaging not just over trials with the same but also over

trials with different initial positions.

The crucial element of the learning rule is the conditional

probability of creating certain outputs yT (and hence taking certain

actions) given an input xT. In order to calculate the conditional

probability hi,wi
(xT ,yT ) that neuron i fires a spike given the past,

we need to introduce a neuronal model. Following the approach of

Pfister et al [34], we assume that neuronal activity can be

described by the Spike Response Model (SRM) [20]:

ui(tjxT ,yT )~urestz
XN

j~1

wij

X
t
f

j
[xj

e(t{t
f
j )z

X
t
f

i
[yi,t

g(t{t
f
i ) ð23Þ

where ui(t) is the membrane potential of the neuron i,
urest~{70mV is the resting potential, xj is the set of postsynaptic

spikes, yi,t~ft1
i ,t2

i , . . . ,tF
i vtg is the set of postsynaptic spikes up to

time t, wij the synaptic strength between the presynaptic neuron j and

the postsynaptic neuron i, t
f
j is the f th firing time of the presynaptic

neuron j and t
f
i the f th firing time of the postsynaptic neuron i. The

sum is restricted to firing times before time t. The kernel e(t) describes

the time course on an excitatory postsynaptic potential (EPSP) and

g(t) the spike-afterpotential. We would like to emphasize that for an

exponential kernel e(t)~e0 exp ({t=tm) and exponential spike-

afterpotential g(t)~g0 exp ({t=tm), the SRM becomes identical to

a leaky integrate-and-fire model with membrane time constant tm

[20] as used in Eq. (11) in the results section.

Given a membrane potential ui, action potentials are generated by

a point process with stochastic intensity ri(tjxt,yt)~g(ui(tjxt,yt)),
where g(u) is some positive nonlinear function. To be specific, we

take an exponential function

g(ui(tjxt,yt))~r0
: exp (

u{uh

Du
), ð24Þ

where uh the formal firing threshold, and r0, Duw0 parameters.

Thus the higher the membrane potential, the more likely is the

neuron model to fire.

With the above neuron model, the probability of neuron i to emit a

particular set of postsynaptic spikes yi,T in the period T given the input

xT and yT from all neurons in the network except neuron i is given by:

hi,wi
(xT ,yT )~ exp

ðT

0

log (ri(sjxs,ys))Yi(s){ri(sjxs,ys)ds,

� �
ð25Þ

with Yi(s) representing the postsynaptic spike train of the neuron i up

to time s as a sum of the Dirac d functions, i.e

Yi(t)~
P

t
f
i
[yi,s

d(t{t
f
i ). Taking the partial derivative in respect to

the synaptic weight wij , we have the following equation [34]:

L log hi,wi
(xT ,yT )

Lwij

~

ðT

0

ri
0(sjxs,ys)

ri(sjxs,ys)
Yi(s){ri(sjxs,ys)½ �

X
t
f
j
[xj

e(s{t
f
j )ds, ð26Þ

where ri
0(sjxs,ys)~

dg

du
ju~ui(tjxs,ys), yi(s) being the set of postsynaptic

spikes that occurred before s, and e(s) the EPSP kernel. Note that for

the exponential function g(ui(tjx,y))~r0
:exp(

u{uh

Du
), we have

ri
0(sjxs,ys)

ri(sjxs,ys)
~

1

Du
, so the learning rule becomes:

Dwij(T)~
l0

Du
RT{bð Þ

ðT

0

Yi(s){ri(sjxs,ys)½ �
X
t
f

j
[xj

e(s{t
f
j )ds: ð27Þ

Here RT is the total reward received during or after a trial of total

duration T .

Eligibility trace
In order to illustrate the mathematical structure of Eq. (27), we

consider the time point t~T at the end of the trial and integrate

backwards in time

dwij(t)

dt
~

l0 R(t){bð Þ
Duð?

0

c(t{s’) Yi(t{s’){ri(t{s’jxs,ys)½ �
X
t
f
j
[xj

e(t{s’{t
f
j )ds’:

ð28Þ

where R(t) is the momentary reward at time t. Here c(t{s) is a

weighting function that allows us to give different weights to events in the

past. If we take c(t{s’)~1 for 0vt{s’vT and zero otherwise, and

evaluate at time point t~T , we retrieve exactly Eq. (27) under the

assumption that the reward is given according to one of the following two

schedules: (a) all the reward R(t) is delivered at time T , i.e.,

R(t)~RT d(t{T) and a negative b is applied at every time step; this

is the scenario we have in mind with our notation R(t){b that we use

throughout the rest of the methods section, since it simplifies the

development of the theory. Or, (b) no reward is given in the interval

(0,T) and an effective reward RT{b is applied at time T , i.e.,

R(t)~(RT{b)d(t{T). This is the scenario we used in the simulations

in the main body of the paper. The baseline is either b~0 or b~�RR.

Starting from the interpretation (a) we can turn to an online rule in

continuous time where rewards can be delivered at arbitrary moments.

To arrive at a more elegant representation of the rule, we replace the

step function c by an exponential kernel c(x)~(T=te) exp½{x=te�
for x~t{s’w0 and zero otherwise. Then we have

dwij

dt
(t)~a R(t){bð Þeij(t) ð29Þ

a~
Tl0

teDu
is a learning rate and eij is called an eligibility trace [1,32].

For our specific model we have

eij(t)~

ð?
0

e{t{s’
te Yi(t{s’){ri(t{s’jxs,ys)½ �

X
t
f

j
[xj

e(t{s’{t
f
j )ds’: ð30Þ

Because of the exponential in the integral the eligibility trace

can be rewritten as a differential equation
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deij

dt
(t)~{

eij

te

z Yi(t){ri(tjxt,yt)½ �
X

t
f

j
[xj,t

e(t{t
f
j ) ð31Þ

Stochastic versus continuous synapses
We consider stochastic binary synapses Jij with Jij[f0,bg. Synaptic

transmission is stochastic with a release probability qij . Learning affects

the release property so that increasing the weight wij of the synapse by

the above update rule will increase the release probability. We choose

proportionality factors so that the expectation of the binary synaptic

transmission over time is equal to the continuous synaptic weight

wij , i.e. wij~E½Jij �~qij
:bz(1{qij):0~qij

:b. and thus, with

Dwij~bDqij , we have for binary synapses instead of Eq. 29 the

following learning rule

dqij

dt
~

a

b
R(t){bð Þeij(t) ð32Þ

We impose a hard bound qijv1 that reflect the interpretation of qij as

a probability of transmitter release. In order to guarantee sufficient

exploration, we also impose a non-zero lower bound qijw0:15

The factor a=b~
Tl0

tebDu
can be absorbed by a learning rate l

yielding the final online-rule

dqij

dt
~l R(t){bð Þeij(t) in the range 0:15ƒqijƒ1 ð33Þ

deij

dt
(t)~{

eij

te

z Yi(t){ri(tjxt,yt)½ �
X
t
f

j
[xj

e(t{t
f
j )

We note the typical structure of a three-factor learning rule. The

eligibility trace picks up correlations between EPSPs e caused by

presynaptic spike arrivals t
f
j and postsynaptic firing times

Yi~
P

d(t{tk
i ) as in a STDP learning rule [34] which is then

combined with the reward signal [33–35].

From a single rule to a family of rules
We extended our rule by introducing ad hoc a variant with a

parameter tc:

dqij

dt
~l R(t){bð Þeij(t) in the range 0:15ƒqijƒ1 ð34Þ

deij

dt
(t)~{

eij

te

z Yi(t){
ri(tjxt,yt)

1ztcri(tjxt,yt)

� �X
t
f
j
[xj

e(t{t
f
j )

In the limit of tc?0 this reduces to the rule derived above.

Eq. (34) in discrete form becomes:

eij(tk)~ 1{
Dt

te

� �
eij (tk{1)z ŷyi(tk){

PF
i (tkjx̂xtk

,ŷytk
)

1z
tc

Dt
PF

i (tk jx̂xtk
,ŷytk

)

264
375X

t̂t
f

j
[x̂xj

e(tk{t̂t
f
j ) ð35Þ

with Dt being the time step, ŷyi(tk) being 1 if a spike is emitted in the

interval ½tk,tkz1� and 0 otherwise and the hat (b) operator denoting

discrete firing times. The quantity PF
i is the probability that the

postsynaptic neuron emits a spike in the interval ½tk,tkz1� given the

input spike trains (denoted x̂x,ŷy in discrete time) and is computed as

PF
i (tkjx̂xtk

,ŷytk
)~1{ exp {ri(tkjx̂xtk

,ŷytk
)Dt

� 	
ð36Þ

which computationally advantageous for large timesteps, see also [20].

In Figure 1 we plot the factor

D(tk)~ŷyi(tk){
PF

i (tkjx̂xtk
,ŷytk

)

1z
tc

Dt
PF

i (tkjx̂xtk
,ŷytk

)
: ð37Þ

The voltage trace is obtained by integrating Eq. (11) for constant

input, i.e. presynaptic spike arrival is replaced by a positive

constant.

Relationship to other rules
Interestingly the rule developed by [34] as well as the variation

presented here can be mapped to Associative Reward Inaction

(ARI) [39,81] in discrete time. With Eq. (27), and ignoring the

baseline subtraction, we have

Dwij! R{bð Þ ŷyi(tk){PF
i (tk)


 �X
f

e(tk{t̂t
f
j ) ð38Þ

Let us assume a rectangular EPSP of duration of one time step

and unit amplitude. Hence, the EPSP e can be replace by a binary

variable x̂xj(tk)~1 if a spike has arrived at the synapse j at time tk,

and with x̂xj(tk)~0 in the absence of a spike. We then have:

Dwij! R{bð Þ ŷyi(tk){PF
i (tk)


 �
x̂xj ð39Þ

We note that according to the above derivation

PF (tk)~P(ŷyi~1jui) is a sigmoidal function of the membrane

potential u. Hence, dropping the hats (that we used to denote

discrete time) we have exactly the update rule of the ARI:

Dwij! R{bð Þ yi{P(yi~1jui)½ � xj ð40Þ

Similarly the learning rules of [32,33] also correspond to ARI or its

modern forms of policy gradient. In fact the rule in [33] is derived

from the framework of [40]. The rule of [32] is a special case of the

rules by [33,34], since it makes use of a memoryless Poisson neural

model, wheres our derivation here includes refractoriness via the

kernel g.

Decomposition of probability
Here we show that the probability Pw(xT ,yT ) of the place cell

spike pattern xT and the action cell spike pattern yT to occur can

be decomposed into the product

Pw(xT ,yT )~ P
j

gj(xT ,yT )

� �
P
i

hi,wi
(xT ,yT )

� �
, ð41Þ

as mentioned in the Methods of the main text, Eq.(18). The

argument is similar to the unfolding in time used by Williams [39],

except that networks of spiking neurons are not Markovian. We

claim that the above decomposition holds for an arbitrary network

architecture including recurrent connections.

Let zi,t be a collection of discrete random variables, i~1, . . . ,n a

location index, t~1, . . . ,? a time index. Denote by zT the whole

collection up to time T . In our example, the index i encompasses

both the place and action cells. Moreover, zi,t~1 (~0) if the
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corresponding cell did (did not) emit a spike at time t. We assume

that the sequence is generated by choosing at time Tz1 the value

zi,Tz1 with a probability P(zi,Tz1 jzT ). For spiking neurons the

sequence zT determines the internal states (membrane potentials)

at time Tz1 and this modulates the probability of firing at time

Tz1 given the previous spike history, P(zi,zz1~1 jzT ). We

further assume that the internal stochastic processes which trigger

the spikes are independent given the membranes potentials.

Hence,

P(z1,Tz1, . . . ,zn,Tz1jzT )~ P
n

i~1
P(zi,Tz1 jzT ) ð42Þ

for T~1, . . . ,?.

Because we can always write P(zTz1)~P(z1,Tz1, . . . ,
zn,Tz1 jzT )P(zT )~Pn

i~1 P(zi,Tz1 jzT )P(zT ) with a factor P(zT ),
we can iteratively apply an analogous multiplicative decomposi-

tion for P(zT ), P(zT{1), . . ., and receive a product representation

of P(zTz1). To anchor the product we assume that (42) also holds

at T~0, and take this to mean that the initial values z1,1, . . . ,zn,1

are statistically independent with probabilities given by P(zi,1 j1).
While consecutively applying (42) at each step of the decompo-

sition we arrive at

P(zT )~ P
T

t~1
P
n

i~1
P(zi,t jzt{1) : ð43Þ

Setting fi(zT )~PT
t~1 P(zi,t jzt{1) and reordering the product

terms we can write (43) as

P(zT )~ P
n

i~1
fi(zT ) ,

and this is just the decomposition into the product across the place

and action cells expressed in (41).

Implementation
Model and Figures are produced with Matlab R2008b (Linux

version), developed by Mathworks. The model is implemented

with custom-made code. For implementation details see Figures 4

and 9. Parameter values are summarized in Tables 1 and 2. The

Euler method is used for integration. We discretize the learning

rule equation according to the method in paragraph ‘From a single

rule to a family of rules’, in order to allow for large time steps. The

standard time step in our simulation is Dt~1ms. We have checked

in additional simulations with smaller time steps of Dt~0:1ms that

the results do not depend on the step size (data not shown).

Figure 9. Network description and implementation of neuron models according to [82]. Parameters as in Model architecture, Methods,
and Tables 1, 2 (unless otherwise stated in Figure captions).
doi:10.1371/journal.pcbi.1000586.g009
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