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Some directly transmitted human pathogens, such as influenza
and measles, generate sustained exponential growth in inci-
dence and have a high peak incidence consistent with the rapid
depletion of susceptible individuals. Many do not. While a pro-
longed exponential phase typically arises in traditional disease-
dynamic models, current quantitative descriptions of nonstan-
dard epidemic profiles are either abstract, phenomenological,
or rely on highly skewed offspring distributions in network
models. Here, we create large socio-spatial networks to repre-
sent contact behavior using human population-density data, a
previously developed fitting algorithm, and gravity-like mobil-
ity kernels. We define a basic reproductive number R0 for this
system, analogous to that used for compartmental models. Con-
trolling for R0, we then explore networks with a household–
workplace structure in which between-household contacts can
be formed with varying degrees of spatial correlation, deter-
mined by a single parameter from the gravity-like kernel. By
varying this single parameter and simulating epidemic spread,
we are able to identify how more frequent local movement
can lead to strong spatial correlation and, thus, induce subex-
ponential outbreak dynamics with lower, later epidemic peaks.
Also, the ratio of peak height to final size was much smaller
when movement was highly spatially correlated. We investigate
the topological properties of our networks via a generalized
clustering coefficient that extends beyond immediate neighbor-
hoods, identifying very strong correlations between fourth-order
clustering and nonstandard epidemic dynamics. Our results moti-
vate the observation of both incidence and socio-spatial human
behavior during epidemics that exhibit nonstandard incidence
patterns.
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Epidemics are frequently conceptualized as resulting from
the transmission of a pathogen across a network. Directly

transmitted pathogens propagate through susceptible human
populations and create directed infection trees with an offspring-
like process (1). Each node may be a different type [e.g., children
may be more infectious than adults (2)], and individuals with
many contacts are more likely to cause infection than those
with fewer contacts (3). Although difficult to observe, infection
trees describe a real biological process: These pathogens do not
reproduce outside of a human host, so the founding pathogen
population for an infectee comes directly from their infector.
Further, we can conceptualize that infection trees occur when
a true offspring process is constrained to pass through a social
network (4, 5), with infection occurring according to a specified
probability when an edge exists between a susceptible and an
infectious individual.

The properties of different contact network types can be
described by distributions associated with their topology (5).
First-order network properties are associated with first-order
connections, as defined by the degree distribution. For finite

random networks of reasonable size, the degree distribution
is well-approximated by a Poisson in which variance is equal
to the square of the mean. In contrast, for finite, scale-free
networks, the offspring distribution is power-law-like, with a
much higher variance. Further, distributions of second-order
phenomena describe connections of length two. For exam-
ple, the local clustering coefficient is a second-order property,
defined to be the neighborhood density of a given node (5).
For a limited set of network types, we can use analytical
expressions for higher moments of the degree distribution to
calculate key properties of their potential epidemics, such as
the probability of epidemic establishment and cumulative inci-
dence (6, 7). Although these higher-order moments are tractable
for some special cases, they are seldom the primary target
of theoretical studies. Semi-empirical networks that arise from
detailed simulations (8) may have complex higher moments;
however, their impact on epidemic dynamics is obscured by
the variance of their offspring distribution (e.g., ref. 9). Here,
we explicitly control our network-generation algorithm so as
to have nontrivial higher-order structure, while maintaining
a Poisson degree distribution and a prespecified clustering
coefficient.

Epidemics can also be understood in terms of compartmental
models, which are more tractable mathematically and are equiv-
alent to large network models with very simple topologies (10).
Key features of epidemic incidence curves are often explained
by dynamics associated with these models (11, 12). Numerical
solutions to multitype susceptible–infectious–removed-like com-
partmental models are easier to obtain than for many topologies
of network and can explain the initial growth phase (13), the
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timing and amplitude of the peak (14), the epidemic duration
(15), and the total number of cases (16). These models can
efficiently describe many different types of complexity, such as
age-specific susceptibility and transmissibility (17), behavioral
risk groups (18), and, with increasing frequency, geographical
location (19).

The basic reproductive number has been defined for both
compartmental models and network models. For compartmental
models, the reproduction number is conditional on the system
having a well-defined period of exponential growth (20) and
is defined as the average number of new infections generated
by a typically infectious individual in an otherwise infectious
population (20). The word “typically” is somewhat overloaded
in this definition: During the exponential phase, a system with
heterogeneous population will reach a steady-state distribution
of infectives, corresponding to the eigenstate of the renewal
process.

For network models, the basic reproduction number is most
frequently defined as the expected ratio of cases between the
first (seed) and second generations of infection. In homogeneous
networks, this is equal to the product of the average degree and
the probability of transmission per link per generation. However,
many studies of epidemics on networks involve high-variance
degree distributions (9, 21), and so this quantity must be mod-
ified to account for excess degree (21, 22). Here, we use R∗ to
denote the expected first-generation ratio if a network is homo-
geneous, defined to be the expected number of cases in the
second generation divided by the number in the first genera-
tion. Our R∗ is therefore consistent with ρ0, as defined in ref. 21,
although we choose not to adjust for overdispersion, because we
condition our network construction on this distribution having
low variance.

The reproduction number for networks has also been defined
to be more consistent with its definition for compartmental mod-
els. In ref. 23, R∗ was defined as an asymptotic property of
epidemics that were guaranteed to have an exponential phase
when they occurred on infinitely large networks. We define
our R0 to be a finite-network approximation to this R∗ in
ref. 23. This R0 is well-defined during periods of exponential
growth.

Both compartmental and network models can be embedded
in space (19). Each node can have a location in space, while
each compartment can refer to a single unit of space. Node
density can be assigned according to known population densi-
ties, and compartments can be assigned equal spatial areas, but
different numbers of hosts. In general, the risk of infection pass-
ing between two people decreases as the distance between their
home location increases. The propensity of nodes to form links
across space or for infection to spread between compartments
can be quantified by using mobility models borrowed from geog-
raphy (24), such as the gravity and radiation models. Here, we are
specifically interested in how the overall topology of a spatially
embedded network model can be driven by different movement
assumptions and, thus, drive the gross features of the epidemics
that occur on the network.

Results
We used an existing variant of the Metropolis–Hastings algo-
rithm (10) to create a spatially embedded bipartite network of
homes and workplaces consistent with the population density of
Monrovia, Liberia, and with three illustrative movement scenar-
ios (SI Appendix, Fig. S1). An individual’s propensity to choose
a given workplace was determined by the distance between
their home and workplace and parameters of a gravity-like ker-
nel. The kernel was inversely proportional to distance raised
to the power α, with movement scenarios generated solely by
changing the value of α: a control value α=0 that removed
the embedding and produced a nonspatial model; a wide ker-

nel with α=3 typical of developed populations (10, 25); and a
highly local kernel with α=6 representing less-developed popu-
lations (SI Appendix, Fig. S1C compared with rural Huangshan
in ref. 26). The resulting distributions of distances from home
to work were driven strongly by our choice of α, with 95% of

Fig. 1. For each set of parameters drawn from the Latin hypercube, and for
α= 0, 3, 6, we show relationships between R∗ and peak size (A), peak size
and final size (B), and R∗ and R0 (C) (with the line R0 = R∗ shown in black).
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journeys less than 24.12 km for α=0; less than 12.91 km for
α=3; and less than 6.68 km for α=6. Workplace links were
dissolved into links between individuals in different households,
resulting in a network of cliques (households) that were linked
according to α.

The choice of movement kernel used to create the household–
workplace networks affected gross features of simulated epi-
demics, even when controlling for other aspects of the net-
work topology (Fig. 1). Unipartite contact networks between
households were obtained from the bipartite network of house-
holds and workplaces and were dependent on three parameters:
mean household size h , mean number of workplace links v ,
and probability of forming a link in the workplace pw . The
mean workplace size w and mean degree of the network were
determined by these parameters: w = v/pw +1, 〈k〉= h − 1+ v .
Across a broad range of plausible values for h , v , and pw ,
very local movement (α=6) produced later epidemics than
did typical developed-population movement (α=3) or spatially
random mixing (α=0; Fig. 1A). Similarly, time to extinction

was later for very local movement (α=6) compared with more
frequent, longer-distance movement (α=3) or the absence of
spatial embedding (α=0). We calculated the coefficient of vari-
ation of the degree distribution C 2

V = 〈k2〉/〈k〉− 1∼ 0.1 for each
network, independently of α (21).

Each simulation was assigned a value of R∗, the average
number of cases in the first generation per seed infection. For
moderate to high values of the first-generation ratio R∗, there
was very little difference in the final size of the outbreak for
the different movement assumptions. However, for low values of
R∗< 1.8, the average final size of the outbreak was substantially
smaller for more local kernels. This was driven by a higher proba-
bility of extinction when more local movement was assumed. The
difference in final size driven by α was no longer present when
we controlled for extinction (SI Appendix, Fig. S2).

The choice of movement scenario had a substantial impact
on peak incidence, even when R∗ was high and there was lit-
tle difference in the final sizes (Figs. 1B and 2, rows 1 and 2).
For example, for parameters with first-generation ratios in the

Fig. 2. Columns correspond to network structures with α= 0, 3, and 6 and simulations with R0 ∈ (2, 2.2]. Exponential growth in real time is indicated by
straight lines (second row) and horizontal lines (third row); horizontal lines in the bottom row indicate exponential growth by generation. SI Appendix,
Figs. S3–S5 show results for a wider range of R0 values for α= 0, 3, 6.
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Fig. 3. A schematic showing the generalization of clustering coefficient
CC1 to higher orders CCm: CCm

i measures the density of paths of length
d≤m between the up-to-m neighbors of node i (where node i is shown in
gray).

range [1.8, 2.2], average peak daily incidence as a fraction of
the total population was 6.5× 10−3 for random spatial move-
ment, 5.4× 10−3 for movement assumptions typical of devel-
oped populations, and 3.0× 10−3 when highly local movement
was assumed. The relationship between peak height and first-
generation ratio appeared to be strongly linear, with correlation
coefficients 0.9778, 0.9826, and 0.9806 for α=0, 3, and 6,
respectively.

The relationship between peak incidence and final size for
the three movement scenarios illustrates further how clustering
within the network directly affects gross features of an epi-
demic. Peak incidence was observed prior to final size during
an epidemic. For the same peak height, local movement gave
substantially larger final sizes. For peak daily incidences in the
range [3× 10−3, 6.5× 10−3], the final size of the outbreak was
68% when random spatial movement was assumed, 74% when
movement was assumed to be typical of developed populations,
and 84% when highly local movement was assumed.

For all movement scenarios, the basic reproductive number
R0 was smaller than the first-generation ratio R∗ and different
from the expected number of secondary cases generated by a sin-
gle seed in an otherwise-susceptible population. The duration of
the exponential phase can be seen when incidence is plotted on
a log scale: A constant gradient of log incidence is evidence of
exponential growth (Fig. 2, third row). However, in a network
model with clearly defined generations, the generation ratio can
also be used to define exponential growth: If the ratio of inci-
dence between generation n +1 and n is the same as the ratio
between generations n and n − 1, then we can claim to have
identified a period of exponential growth (Materials and Meth-
ods and Fig. 2). The value of that constant observed ratio is the
basic reproductive number R0 (20).

Incidence grew exponentially for a much shorter time for
highly local movement than it did for a wider movement ker-
nel, or for nonspatial networks, even when we controlled for
R0 to be within a narrow range (e.g., (2, 2.2]; Fig. 2). Despite
this being a relatively large population, there was no obvious
period of exponential growth when we assumed highly local
movement. Therefore, given that the basic reproductive num-
ber is defined for a genuine renewal process—and its implied
exponential growth (20)—it could be argued that R0 does not
exist for some of these networks for our model parameters. How-
ever, we did assign a value of R0 for all simulations based on the
most similar subset of consecutive early generations (Materials
and Methods). The amplitude of the difference was not driven in
any obvious way by the underlying assumptions used to create the
networks. These patterns were not specific to the range of values
for R0 (SI Appendix, Figs. S3–S5).

Analysis of the higher-order structure of the networks sug-
gests that movement scenarios were driving the observed

Fig. 4. (A) The 25th, 50th, and 75th percentiles of order-m clustering CCm

on networks constructed with different values of α and h = 5, w = 50, pw =

0.14, 〈k〉= 10 and R0 ∈ [2, 2.2). Plot shows mean values over three differ-
ent networks for each parameter set. (B) Using peak size as a crude metric
for subexponential growth (given a fixed range for R0), we see linear
trends emerging with higher orders of clustering. Plot shows one point
per network, with three networks generated for each parameter set, and
the mean peak size over 10 independently simulated epidemics. All points
are numbered with the corresponding value of α. (C) Similarly for the
household-only networks. Solid lines show linear fits to data, and dotted
lines show 95% CIs. Values of linear correlation coefficient and gradient of
fits are given in SI Appendix, Table S2.
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Fig. 5. Mean-field approximation with R0 = 2.2, 〈k〉= 10, h = 4, using a
100× 100 grid of uniformly spaced households. (A) Seeding in 10 randomly
selected households (the same households are used in each simulation). (B)
Seeding in the center only. Incidence is given as a proportion of the total
population for α ranging from two to six. SI Appendix, Fig. S10 shows time
of peak incidence in the case α= 6 seeded as above.

characteristics of epidemics, such as peak timing and attack
rate via increased fourth-order clustering. We use the term
first-order clustering for the quantity typically described as the
local clustering coefficient (5): the link density of the imme-
diate neighborhood of a given node. By extension, we defined
order-m clustering coefficient to be the expected proportion
of neighbors within m steps on the network who were also
neighbors of each other within m steps (Fig. 3). We found no
relationship between our assumed pattern of movement (α)
and first- or second-order clustering coefficients. There was a
weak relationship between α and third-order clustering and then
a very strong relationship between α and fourth-order clus-
tering. Patterns between epidemic properties and fourth-order
clustering for individuals were similar to those between epi-
demic properties and second-order clustering of households, as
would be expected, given the bipartite algorithm used to create
individual-level networks.

Final size increased with spatial correlation, despite peak size
displaying the opposite trend for controlled R∗ or R0. There was
a strong linear relationship between order-m clustering and peak

size/final size that could be explained by α, the strength of spatial
embedding, when we control for R0 (Fig. 4B). The gradient of
the relationship decreased with order of clustering. Second-order
household clustering showed the same relationship with peak
size as did fourth-order individual clustering (Fig. 4C). These
strong linear relationships only existed when we effectively con-
trolled for R0, rather than R∗, and became less noisy when we
reduced the interval used to define R0.

We conducted a number of sensitivity analyses for these
network-simulation results. Analytic approximations for degree
distribution P(K = k) and expected first-order clustering 〈CC 1〉
in our networks are given in SI Appendix, Protocol S1 and
are independent of α. We confirmed these relationships in SI
Appendix, Fig. S6 by computing these quantities on a set of net-
works that differ in α. SI Appendix, Fig. S7 shows the relationship
between α and clustering order 1 to 4 on networks generated by
using a uniform population density. SI Appendix, Fig. S8 shows
the relationship between order-m clustering CCm and peak size
for different values of R0. SI Appendix, Fig. S9 shows cluster-
ing orders 1 to 4 on networks with different h, w and pw , and
SI Appendix, Fig. S10 provides an illustration of the relation-
ship between higher-order clustering and rewiring probability on
a commonly used network model with spatial embedding: the
Watts–Strogatz Small World Network (5).

Finally, we mapped our network model onto a deterministic
metapopulation framework so as to relate our simulations of
incidence to prior analytic approximations of traveling spatial
waves (see SI Appendix, Protocol S1 for analytic construction).
Fig. 5 shows the results of simulating on a grid of evenly spaced
households of size h =4, where a single continuous variable
describes prevalence in each household, and spatial coupling
between households used in the force of infection is exactly the
kernel used in the construction of our spatially embedded net-
works. We simulate with randomly spaced seeds (as above) and
with a central seed (the center-most four households), tracking
global incidence and local time of peak incidence. The former
case yielded global incidence curves similar to those generated
in our network model (which was seeded similarly). The latter
case allowed us to identify four distinct stages in the propaga-
tion of spatial waves that contribute to observed subexponential
outbreak dynamics in more complex, network-based systems. SI
Appendix, Fig. S11 shows local peak timing in each case, and SI
Appendix, Fig. S12 shows simulation results in one spatial dimen-
sion with α=6 and α=12, alongside statistical properties of
prevalence, which further clarify these growth phases (cf. figure
legends for details and SI Appendix, Protocol S1 for mathematical
analysis).

Discussion
We have shown that nonstandard epidemic dynamics can arise
from strongly spatially embedded social networks. Using a flex-
ible algorithm of assigning individuals to households and then
creating social networks with widely varying topologies, we
can explain the absence of exponential growth and increased
attack rate for a given peak height in terms of higher-order
social structure, while maintaining a standard low-variance off-
spring distribution. We observed consistent patterns when we
controlled for the basic reproductive number, as measured as
directly as possible from a constant ratio of incidence between
generations.

The algorithm we used (10) captures the key social contexts
of home and workplace while using few parameters, which has
allowed us to isolate specific relationships within the epidemic
dynamics, across a broad range of network topologies. However,
its simplicity is a potential limitation. Specifically, an individ-
ual only belongs to a single workplace (which may represent a
school or social club). In reality, people will gather nonhouse-
hold contacts from a variety of sources. Also, our networks are
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not dynamic, which may limit the generalizability of the results
to short-generation-time pathogens.

Accurate empirical data about higher-order social contacts
would allow us to address some of these issues. There are
a number of different approaches to gathering social-contact
data, including contact diaries, mobile phone applications, and
tag-based location tracking (27). Diary methods and current
analytical approaches can provide accurate estimates of first-
order moments [degree distribution (28)] and valuable insights
into second-order moments [clustering (29)]. However, these
data and current analytical approaches are limited for the esti-
mation of higher-order moments. It seems likely that either
high-resolution mobile-phone location data (30) or very-high-
coverage tag-based studies will be needed to reveal these pat-
terns (31). In addition, further work is needed on the use of
algorithms similar to that used here to explicitly fit fully enumer-
ated social networks to egocentric sample data from a subset of
the population (or low-coverage nonegocentric data) (32).

Our results can be compared with other disease-dynamic
models that produce nonstandard incidence profiles. Different
functional forms have been suggested for the force-of-infection
term in compartmental models that give polynomial growth in
the early stages of an epidemic (20, 33). However, the key fea-
tures of these model structures may be captured by a more
straightforward underlying process (34). Faster-than-exponential
growth can be achieved with very-high-variance offspring dis-
tributions, which have been inferred by diary studies of social
contacts (9). There is also an extensive literature of much more
abstract grid-based models of infectious disease that produce
nonstandard epidemic dynamic because of very local spatial pro-
cesses [cellular automata (35)]. We note that short periods of
super-exponential growth were observed in our results for the
simplified two-dimensional metapopulation example (Fig. 5B),
arising from accelerating spatial waves of incidence, not driven
by the variance of the offspring distribution.

Prospective forecasting of infectious-disease incidence during
outbreaks (36) and seasonal epidemics (37) is an active area of
public health research. Although nonmechanistic (38) and sim-
ple compartmental models (39, 40) have proven most reliable up
to now, modern computing capacity enables studies to explore
the possibility that incidence forecasts can be improved by the
incorporation of realistic social-network topology (41, 42). For
example, incidence of Ebola in West Africa in 2013 to 2016
and currently in Central Africa exhibits strong spatial clustering
and highly nonstandard incidence dynamic, with short periods of
exponential growth followed by low sustained peaks in incidence
(43). Future forecasting studies should explore the possibilitythat

that sparse population density and short distances between con-
tacts result in higher-order clustering in the social networks and
the resulting nonstandard incidence profiles.

Materials and Methods
The Model. We simulated 10 independent epidemics for each of 200 param-
eter sets (h, v, pw , R∗) drawn from a Latin hypercube, each seeded in 10
randomly selected individuals, and for each α= 0, 3, 6. The ranges of values
used in the Latin hypercube are given in SI Appendix, Table S1, and com-
plete parameter sets for all networks are given in SI Appendix, Table S1. Our
simulations allowed us to track disease incidence and disease generation of
each infection.

We simulated an epidemic on the network to reflect the natural history
of Ebola, with a latent period of 9.7 d and a serial interval of 15.3 d. The
generation time was calibrated by varying the relative infectiousness of a
short period before the onset of symptoms. Global transmissibility β was
tuned to the value of R∗ drawn from the Latin hypercube. For each time
step, the probability of infection was calculated for each edge in the net-
work. The algorithm progresses in real time with small time steps, so that
it can be compared with results from compartmental models. Details of the
network-simulation algorithm are given in ref. 10.
Assigning R0 to each Simulation. For each simulation output, we calculated
the mean reproductive ratio for each generation. For generations one to
nine and for each possible consecutive string of three, four, or five values,
we performed a linear regression fit. We defined R0 as the mean reproduc-
tive ratio over the set of values for which the gradient of this fit was closest
to zero (and all values that remained larger than one). This allowed us to
assign a value R0 to every simulation output.

Higher-Order Clustering. We computed our higher-order clustering coeffi-
cients on a subset of 1,000 nodes in each network, chosen at random. The
algorithm involved storing the network structure as lists of neighbors for
each node and performing an effective contact-tracing procedure. Though
it is possible to compute these metrics for all nodes via successive multi-
plication of adjacency matrices, this procedure becomes computationally
expensive in higher orders as networks become large.

Data Availability. The code to produce networks, the networks them-
selves, and code to analyze the networks have been deposited at Zenodo,
https://doi.org/10.5281/zenodo.3999974 (44), with more recent versions of
the code available at GitHub, https://github.com/c97sr/id spatial sim.
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