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The notorious R.N.A. in the spotlight - drug or target for the treatment of disease
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ABSTRACT
mRNA is an attractive drug target for therapeutic interventions. In this review we highlight the current
state, clinical trials, and developments in antisense therapy, including the classical approaches like
RNaseH-dependent oligomers, splice-switching oligomers, aptamers, and therapeutic RNA interference.
Furthermore, we provide an overview on emerging concepts for using RNA in therapeutic settings
including protein replacement by in-vitro-transcribed mRNAs, mRNA as vaccines and anti-allergic drugs.
Finally, we give a brief outlook on early-stage RNA repair approaches that apply endogenous or
engineered proteins in combination with short RNAs or chemically stabilized oligomers for the re-
programming of point mutations, RNA modifications, and frame shift mutations directly on the
endogenous mRNA.

Abbreviations: ASO, Antisense oligonucleotide; CD, Cluster of differentiation; CFTR, Cystic fibrosis transmembrane
conductance regulator; CRISPR/Cas9, Clustered regularly interspaced short palindromic repeats/CRISPR-associated
9; FDA, US Food and Drug Administration; GalNAc, N-acetyl galactosamine; IVT-mRNA, In-vitro transcribed mRNA;
MHC, Major histocompatibility complex; miRNA, microRNA; MOE, 2�-O-methoxyethyl; mRNA, messenger RNA; c,
pseudouridine; PS, Phosphothioate; RNAi, RNA interference; siRNA, Short interfering RNA; SSO, Splice-switching oli-
gonucleotide; SMN2, Survival of motor neuron 2; TALEN, Transcription activator-like effector nuclease; TLR, Toll-like
receptor; TH1/2 cell, Type 1/2 T helper cell; TR1, Type 1 regulatory T cell; VEGF, Vascular endothelial growth factor;
VEGFR-1, Vascular endothelial growth factor receptor 1; ZFN, Zinc finger nuclease
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Introduction

During the last 15 y the diverse roles of RNA in regular but also
pathological cellular processes became increasingly clear. RNA
is not only a short-lived messenger and part of the translational
machinery but RNA contributes significantly to the regulation
and diversification of the genetic information. There is now
increasing insight into the mechanistic role of defective RNA
processing, including (alternative) splicing, modification, trans-
lation, and decay for the etiology of various diseases.1-4 How-
ever, not only mis-regulation and defective processing cause
disease, but even RNA species themselves can initiate disease
processes independent of their protein-coding function. Nucle-
otide repeat diseases are typical examples.5 To employ this new
mechanistic knowledge and to translate it into therapy requires
drugs that reliably target nucleic acids in a sequence-specific
manner. However, there are only few small molecule drugs that
target nucleic acids and those are limited in their capacity of
sequence addressing. In contrast, oligonucleotide analogs pro-
vide a basis for the rational design of highly sequence-specific
drugs to target virtually any cellular nucleic acid in a specific
manner.6 Classical drugs like small molecules target enzymes
and receptors to block or alter their specific functions. In con-
trast, the interference at the nucleic acid level would allow to
manipulate the transcriptome and the proteome itself. This is

not limited to the simple up- or down-regulation of target gene
expression. Most appealing is the possibility of actively creating
new transcript and protein isoforms with altered properties
and functions, for instance by re-programming a protein-cod-
ing stretch, or by altering splice sites, modification patterns,
polyadenylation states, miRNA binding sites, etc.7 Affecting the
cell by targeting its nucleic acids clearly enlarges the scope of
currently available therapeutic interventions including the
causal treatment of some genetic diseases.

However, already short oligonucleotides have unfavorable
pharmacological properties. They are hydrophilic, polyanionic
macromolecules that can hardly overcome cellular membranes,
are unstable against RNases, and suffer from rapid renal clear-
ance.8 This leads to short half-life and low bioavailability. Fur-
thermore, adverse toxic effects may appear that include
immune-reactions and off-target binding to non-targeted cellu-
lar nucleic acids. Together, oligonucleotide drugs are often
characterized by low efficacy and high toxicity which strongly
limits their clinical application.6 During the last decades,
medicinal chemists have put enormous effort into the develop-
ment of new chemistries that improve lifetime, delivery,
potency, and efficacy of the drugs while reducing their toxicity
and immunogenicity. These new chemistries are now
approaching clinical trials and will hopefully pave the way for
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the broad clinical application of oligonucleotide drugs. An
overview on recent developments in oligonucleotide medicinal
chemistry can be found elsewhere.6,7

In principle, interference with the genetic information could
be achieved permanently at the DNA- or transiently at the
RNA-level. In this review we will focus on the RNA-level. Even
though novel approaches for genome engineering are currently
keenly explored,9 we believe that it would be foolish to care-
lessly discard the RNA alternative. With respect to ethical
issues and safety aspects, the transient and thus reversible
nature of RNA manipulation could turn out as a blessing in dis-
guise. Both, the therapeutic effects and the potential adverse
effects, are likely to be tunable. Furthermore, manipulations are
conceivable that are inaccessible or difficult to realize on the
genome level per se. This includes amino acid changes or tran-
script level changes that would kill a cell if they are permanently
enforced. Potentially lethal interventions on kinases, apoptosis

factors, transcription or translation factors could be realized on
the RNA-level suddenly, transiently or partially to obtain a
therapeutic effect, for instance. Manipulation at the RNA-level
might also be much more efficient compared to HDR-depen-
dent genomic knock-in, which remained persistently inefficient
in vivo, in particular in postmitotic tissues like the brain.9 For
many genetic diseases, which are caused by loss-of-function
mutations, a patient would benefit more from a drug that can
restore a small fraction (like 5%) of functional gene product in
a large fraction of a the tissue than from a drug that can restore
full gene function (100%) but only in a small fraction of the tis-
sue. A typical example is cystic fibrosis.10

In this review we will first update on recent developments in
the classical approaches, like RNaseH-dependent decay, chemi-
cally stabilized oligonucleotides that target mRNAs to induce
splice-switching, aptamers, and the knock-down via RNAi
(Fig. 1). After painful years of repeated relapse one seems to

Figure 1. Chemically stabilized, short oligonucleotides can employ various mechanisms for their therapeutic effects ranging from blocking ligand – receptor binding, RNA
degradation via RISC or RNaseH(1) recruitment, and alteration of splicing. The classical modes of action are shown on the left panel, a small section of typically used chem-
ical backbone modifications are depicted on the right.
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have learned the lessons and have now substantially improved
the effectiveness of such drugs. For instance, in 2015 therapeu-
tic RNAi was demonstrated in a relevant monkey model by
subcutaneous administration of a chemically stabilized siRNA
that partially knocks down antithrombin in the monkey�s
liver.11 The problem of delivery and toxicity seems to be solved,
at least for simple oligonucleotide drugs and for some organs,
and allows therapeutic intervention with an affordable amount
of the drug under compliant administration routes. Conse-
quently, the number of promising clinical phase II and III stud-
ies has increased during the last few years (see Table 1).

Every new discovery in RNA function and regulation offers a
starting point to develop novel therapies. After its discovery in
1998 we now find numerous drug candidates in clinical studies
that apply the RNAi mechanism (Table 1).12 In the second part
of this review we highlight emerging concepts that are still in the
pre-clinical or very early clinical exploration stage but that have
the potential to become medicines of the future. This includes
therapeutic mRNAs, mRNAs as vaccine, and RNA repair
approaches. The latter apply endogenous or engineered enzymes
to repair, re-program, or modify a target RNA at a specific site
in order to provoke a therapeutically relevant effect (Fig. 2).

Update on established approaches

RNaseH-dependent antisense oligonucleotides

Oligonucleotides working through an RNaseH-dependent
cleavage mechanism are the oldest class of antisense oligonu-
cleotides (ASO). They are extensively explored and represent
the largest class of nucleic acid analog drugs in clinical trials.
RNaseH-dependent ASOs are short DNA oligomers targeting
mRNA. Once the DNA-oligo/mRNA heteroduplex is formed,
human RNaseH1 binds to it and catalyzes RNA cleavage under
release of the intact DNA oligomer.13

Medicinal chemists have undertaken great efforts to
improve ASO design regarding nuclease resistance, circulation
half-life, target affinity (potency), and tissue specificity. The
first ASOs tested in clinical trials, also referred to as 1st genera-
tion ASOs, have been modified by oxygen-to-sulfur substitu-
tions in the phosphate backbone. ASOs with such a
phosphothioate (PS) backbone show enhanced nuclease resis-
tance and prolonged plasma half-life due to non-specific bind-
ing to plasma proteins preventing them from rapid renal
filtration. However, numerous toxicities were also associated
with that type of modification.6 In 1998, fomivirsen was the
first FDA-approved ASO and was applied for the treatment of
human cytomegalovirus-induced retinitis in HIV patients.14-16

Marketed as Vitravene, the 21 nt PS-oligonucleotide was
administered by intravitreal injection to target the immediate
early region 2 of the viral mRNA. Since the approval of fomi-
virsen, several ASOs belonging to the 1st generation are under
clinical review. For instance, targeting the mRNA of intercellu-
lar adhesion molecule 1 and the insulin receptor substrate 1 are
advanced in the treatment of pouchitis17,18 and vascular disor-
ders in the eye,19-22 respectively. The RNaseH-mediated degra-
dation of Akt-1 mRNA to impede tumor proliferation23 is
currently tested for clinical application.24-26

Due to the early success with 1st generation ASO, further
medicinal chemistry was explored to improve half-life and
potency of the drugs in order to reduce the administered
dose, the application frequency, the costs, and to minimize
adverse effects.27 This resulted in the 2nd generation ASOs,
also referred to as gapmers. A typical gapmer is a 20 nt oli-
gonucleotide comprising a PS backbone and 5 flanking 20O-
methoxyethyl (MOE) groups at both termini. Due to the
unmodified internal DNA gap, such ASOs remain good sub-
strates for RNaseH, whereas the terminal MOE modifications
increase nuclease resistance and enhances the binding of the
ASO to the target mRNA.28 2nd generation ASOs entered
clinical trials for various therapeutic applications. The most
prominent representative of the 2nd generation is the MOE
gapmer mipomersen as the second FDA-approved RNaseH-
dependent ASO. The compound targets apolipoprotein B-
100 mRNA and is subcutaneously administered to treat
familiar hypercholesterolemia. The genetic disorder is caused
by the loss of low-density lipoprotein (LDL) receptor func-
tion leading to high LDL cholesterol plasma concentration
and early cardiovascular disease. Phase III trials had demon-
strated an efficient decrease of LDL cholesterol by lowering
ApoB-100 amount in patients obtaining mipomersen.29-31

The treatment obviously profited from the general pharma-
cokinetics of systemically administered ASOs which prefera-
bly accumulate in the liver where ApoB-100 synthesis takes
place.8 Recently, an RNase-dependent ASO32 has reached
clinical phase III to reduce transthyretin expression in
patients suffering from familial amyloid polyneuropathy.33-35

Chemotherapy combined with RNaseH-mediated degrada-
tion of clusterin mRNA is a potential therapeutic option in
the treatment of prostate36-38 and lung cancer.39,40

Generation 2.5 ASO are derived from the traditional
gapmer design. For this, the MOE modifications are replaced
by 20,40-constrained ethyl (cEt) bridges in the flanking
nucleotides. It was found that cEt-modified oligonucleotides
provide the same superior target affinity, but increased
nuclease resistance as compared to locked nucleic acid
(LNA)-containing oligonucleotides.41 One of the generation
2.5 ASOs targets the mRNA of signal transducer and activa-
tor of transcription 342 and is currently tested for the treat-
ment of various cancer types.43-46

Most recently, a new chemistry has been developed that
strongly increases the liver-specific uptake of oligonucleotide
drugs, including ASO and siRNA therapeutics. For this,
ASOs47 and siRNAs48 are conjugated with triantennary N-
acetyl galactosamine (GalNAc3). GalNAc3 mediates liver-spe-
cific uptake through the asialoglycoprotein receptor (ASGPR)
that is exclusively expressed on hepatocytes. Marketed as
ligand-conjugated antisense (LICA) technology (Ionis Pharma-
ceuticals), it could be shown that the conjugation increases the
potency of MOE gapmers up to 10-fold for inhibiting the
expression of hepatic genes in mice.49 When using a GalNAc3-
conjugated cEt gapmer, the RNaseH-mediated mRNA degrada-
tion was enhanced around 60-fold as compared to the
corresponding 2nd generation MOE ASO. Additionally, Ionis
Pharmaceuticals announced that its LICA drug targeting apoli-
poprotein(a) was 30-fold more potent in a phase I study than
the unconjugated MOE gapmer.50,51
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Splice-switching oligonucleotides

Pre-mRNA is matured during a complex nuclear process called
splicing that removes the introns (non-coding sequences) and
joins the exons (coding sequences). By applying alternative
splice sites and by occasional inclusion or exclusion of exons
and introns, multiple protein variants are derived from one
gene (alternative splicing). Several diseases are related to aber-
rant RNA-splicing leading to non-functional proteins, and
great efforts have been undertaken to develop antisense oligo-
nucleotides, referred to as splice-switching oligonucleotides
(SSOs) that manipulate splicing. Therapeutic SSOs promoting
exon skipping and exon retention for the treatment for Duch-
enne muscular dystrophy (DMD) and spinal muscular atrophy
(SMA) are currently evaluated in clinical trials.7

Dystrophin, the protein encoded by the DMD gene, is crucial
for the integrity of muscle tissue.52 In rare cases, newborn males
harbor a defect dystrophin gene on their X chromosome. The
patients suffer from successive muscle wasting resulting in a pre-
mature death due to respiratory or cardiac failure. In most cases,
the loss-of-protein-function results from exonic out-of-frame
deletions. In many cases the reading frame can be restored by
skipping the aberrant exon by addressing a SSO to an internal
exonic splicing enhancer.53 The resulting truncated dystrophin
protein retains partial function and gives the less severe Becker
muscular dystrophy phenotype.54 Several SSOs have been devel-
oped that are clinically evaluated for the skipping of exons 44, 45,
51, and 53, including drisapersen and eteplirsen (Table 1).
Recently, both companies submitted new drug applications for
their lead compounds drisapersen55-57 and eteplirsen,58,59, both
amenable to exon 51 skipping. In case of drisapersen, the FDA
rejected the application due to major concerns about the efficacy
and safety of the drug.60 The high dosage required led to severe
adverse effects including renal and vascular injury. To improve
efficacy and safety other SSO chemistries might be more success-
ful. Whereas drisapersen is a 20 nt 20O-methoxy phosphoro-
thioate RNA analog, eteplirsen is a 30 nt phosphorodiamidate
oligomer, a so-called morpholino. The final decision on the effi-
cacy and safety evaluation by the FDA is still pending for ete-
plirsen. Additionally, a new, morpholino-based SSO for exon 53
skipping is currently under clinical evaluation (NS-065/NCNP-
01).61,62 For the future, we can hope in new chemistries. A SSO
that relies on 20O,40C-ethylene-bridged nucleosides (ENA oligo-
nucleotides)63 which mediate nuclease resistance and improved
binding affinity to RNA has now entered a clinical phase I/II trial
for the treatment of DMD (DS-4151b).64,65

Spinal muscular atrophy (SMA) is a rare genetic disorder
caused by survival of motor neuron 1 (SMN1) gene mutations.66

Infant patients affected by this disease suffer from the loss of
motor neurons and associated muscle wasting. However, there is
a therapeutic approach by activating the SMN2 gene, which is
almost identical to SMN1, but a single mutation in a splicing
enhancer strongly prevents the inclusion of exon 7 resulting in an
unstable protein unable to replace the lost SMN1 function.67 In a
mouse model, a highly potent 20O-methoxyethyl PS SSO for exon
7 retention in SMN2 was identified (IONIS-SMNRx).

68 The drug
is injected in the spinal cord ensuring the direct delivery to the
affected motor neurons without the need to cross the blood-brain
barrier. After promising clinical phase II results regarding efficacy

and safety of the drug candidate,69 two phase III trials were
recently initiated for evaluating IONIS-SMNRx.

70,71

Although the SSO design remains challenging, several new
therapeutic applications were successfully validated in preclini-
cal studies.72 Possible drug approvals of eteplirsen or IONIS-
SMNRx in the near future could eventually proof the feasibility
of the splice-modulating antisense oligonucleotide approach.

Aptamers

Aptamers are 20 – 100 nt long oligomers that adopt complex
three dimensional structures that allow them to interact potently
and specifically with various proteins typically achieving nM- to
pM binding affinities.73 They are readily obtained in an iterative
laboratory evolution procedure called SELEX (systematic evolu-
tion of ligands by exponential enrichment).74 Currently,
aptamers are mainly targeting extracellular structures such as
plasma proteins and cell surface receptors thus avoiding the
problem of intracellular delivery. Hence, aptamers are compara-
ble in many aspects to antibodies, however, aptamers are much
smaller, can penetrate tissues deeper, are chemically synthesized
to highest purity and homogeneity and differ in their toxicity
and immunogenicity profile. To improve their plasma life-time
and to adjust their toxicity, aptamers are typically chemically
stabilized (20-OMe, 20-F, 30 inverted dT) and PEGylated.

In 2004, the first (and until today the only) aptamer, Macu-
gen, was approved by the FDA for clinical therapy of AMD
(age-related macular degeneration). The 27-nt chemically stabi-
lized RNA oligomer is directed against the vascular endothelial
growth factor (isoform 165) and blocks VEGF-receptor-induced
neovascularization.75,76 After achieving its highest sales in 2010,
it has now almost entirely been displaced by antibodies (Ranibi-
zumab and Bevacizumab, for instance) which can bind addi-
tional VEGF isoforms besides VEGF-165 and thus benefit for
their poorer specificity compared to the aptamer. After this early
breakthrough with Macugen, numerous aptamers have been
explored in clinical settings. However, some programs suffered
very unfortunate setbacks at late clinical trial states, like the
aptamer-containing anticoagulation system REG1 which was
terminated in 2014 in a phase III study due to unexpected toxic-
ity / immunogenicity issues (Table 1).77,78

Currently, several aptamers for the local treatment of eye dis-
eases are in late clinic trials (II and III), for instance the aptamers
Fovista79-81 and Zimura,82,83 which target PDFG (it is a growth fac-
tor) and C5, respectively. In combination with VEGF inhibitors
they might find application in the treatment of AMD in the near
future. To overcome the prevalent problems with toxicity and
immunogenicity, NOXXON Pharma develops so-called Spie-
gelmer therapeutics.84 These drugs apply stereochemically inverted
nucleotides based on L-ribose instead of the natural D-ribose, can
be evolved via SELEX, and are suggested to be resistant against
nucleases85 and invisible for the immune system.86 Currently, 3
Spiegelmer aptamers86-92 are in clinical phase II studies (Table 1).

Therapeutic RNAi

RNA interference (RNAi) is a mechanism of posttranscrip-
tional gene regulation that was discovered in 1998.12 RNAi can
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interfere with gene expression in various ways including the
degradation of a specific mRNA target via endonucleolytic
cleavage, or via recruitment of deadenylation / decapping
enzymes, but it can also positively affect the stability and trans-
lation of a specific mRNA. The mechanistic details that lead to
the respective responses are still under exploration. In princi-
ple, a dsRNA that is introduced into the cytoplasm is processed
by the RNase dicer into »22 bp RNA duplexes and loaded
onto the endonuclease Argonaut-2 (Ago-2). Ago-2 slices the
passenger strand of the RNA-duplex and applies the remaining
guide strand for sequence-specific mRNA-targeting.93 While
short interfering RNAs (siRNAs) are fully complementary to
their target mRNA and promote cleavage (knock-down), micro
RNAs (miRNAs) contain bulges and loops that prohibit slicing
by Ago-2, but alter the stability and translational activity of the
target.94

Allowing the selective knock-down of genes in cell culture
and animal-models, RNAi quickly became a valuable tool in
basic biology.95-97 In parallel a race started to exploit the RNAi
mechanism for therapeutic purposes and several big pharma
companies, like Merck, Roche, and Pfizer made large invest-
ments that resulted in the first clinical trials in 2004, already 6 y
after the discovery of RNAi.98,99 However, in the aftermath
those early trials mostly failed due to strong innate immune
reactions and/or lack of patients� benefit, and in the conse-
quence big pharma left RNAi again.100-104 In the 18 y since its
discovery the field of therapeutic RNAi went from enthusiastic
interest over despondence and back again, resulting in a re-
assessment of the technological obstacles and more realistic
expectations for clinical trials. This has been accompanied by
commentary elsewhere.105,106

However, after recent successes in clinical trials, showing the
efficacy of RNAi therapeutics to reduce transthyretin107 and
PCSK9108 in patients, the interest in RNAi is currently growing
and even big pharma including Sanofi and Roche started to
invest again.98 The initial drawbacks in clinical trials were
mostly related to the low efficacy of the drugs, off-target issues
and immune-related toxicity.109 Off-target effects include
immune-reactions induced by the siRNA/miRNA precursors,
and up- and downregulation of non-target mRNAs due to satu-
ration of the RNAi machinery and off-target binding of the
siRNA.110 There is now increasing success in tackling all those
issues. Current innovations include chemical modification /
sequence optimization of siRNAs and its precursors, and new
solutions to the delivery problem. The latter include various
forms of (lipid) nanoparticles and bioconjugates. The details of
this progress are comprehensively reviewed elsewhere.110-113

Briefly, clinical trials seem more successful when they are con-
fined to readily accessible organs like the liver, cancer, and
immune-privileged areas like the eye.114-122 Whereas the eye is
a good target for naked siRNAs, treatment of the liver benefited
from lipid-based nanoparticles and the above-mentioned Gal-
NAc3 conjugates.116 In particular the GalNAc3 approach has
significantly improved the efficacy of siRNA-conjugates, allow-
ing now the weekly administration of liver-targeting siRNA via
subcutaneous injection in non-human primates to knock-down
antithrombin to clinically relevant levels.11 Notable in this
approach is that it allows to knockdown an essential protein
(like antithrombin) in a tunable and reversible manner,

whereas the permanent knock-out of antithrombin (for
instance at the DNA-level) is lethal.11 Overall, more than 20
siRNA drugs in various formulations are in clinical trials now
(up to phase III, Table 1).123 RNAi-therapy clearly has the
potential to tackle currently undruggable diseases and to appear
in the clinics soon.

The therapeutic use of the miRNA-related mechanism (not
applying the slicing activity of Ago2) is still in its infancy. Attrac-
tive is the possibility of manipulating larger networks of genes
simultaneously in both, a negative and positive manner.124 This
might become interesting for the treatment of complex diseases
like cancer. On the other hand, endogenous miRNAs are
involved in many cellular processes and their manipulation
could also be disease-relevant. The knockdown of miRNA 122
with antisense oligonucleotides was shown to interfere with hep-
atitis C virus progression and is currently in phase II clinical
studies.125 As the hepatitis virus seems to require the endoge-
nous miRNA for its functioning the knockdown of this host-
specific factor is particularly promising as the virus cannot adapt
easily by evolution.126 Other miRNAs that are linked to cancer
like miRNA 16 and 34a are also targeted with ASOs and are cur-
rently in clinical trials phase I.127,128

Emerging concepts for therapy

Therapeutic mRNA

For a long time it has been believed that only short, chemically
stabilized oligonucleotides are suitable as drugs. However, long
(protein-encoding) mRNAs haven recently proven their enor-
mous therapeutic potential. Protein replacement experiments
were first performed in the early 1990ties with naked mRNA in
mice and rats.129,130 Even though replacement experiments
were successful to some degree, there have been massive prob-
lems related to the well-known RNA-dependent immune-
stimulation through interferon-I (IFN-I) and a generally low
translation efficiency.131,132

However, during the last 15 years, our mechanistic under-
standing of the immune-stimulatory effect of RNA has substan-
tially improved. This was due to the discovery of RNA sensors
including the Toll-like receptors (TLR) 3, 7, 8, Melanoma dif-
ferentiation-associated protein 5 (MDA-5), Retinoic acid
inducible gene I (RIG-I), as well as various RNA helicases.133

Besides the activation of the innate immune response under
release of the respective signaling molecules we have also
learned how these RNA-sensing events are directly linked to
the general repression of mRNA translation in the affected
cells. Among others, general translation repression is mediated
by phosphorylation of translation initiation factor 2a via pro-
tein kinase R activation.134,135 In the worst case, IFN-I activates
20–50-adenylate synthase and RNaseL and leads to apoptosis.136

RNA replacement strategies aim to achieve high translation
levels under minimal immune stimulation. Both can be
achieved by designing mRNAs that evade RNA-sensing. The
following strategies turned out as particularly successful.

a) Chemically modified pyrimide nucleotides like pseu-
douridine (c), 2-thiouridine (s2U), and 5-methylcytidine
(m5C) are incorporated into mRNAs during in-vitro-
transcription to minimize recognition by RNA
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sensors.137 Substitution of uridine by pseudouridine was
shown to diminish recognition by TLR-3, -7, -8, and
RIG-I.137,138 To fine-tune effects on translation efficiency,
nucleotide analogs are often mixed with their natural
counterparts. The extent to which these modifications
may induce mistranslation is yet unknown.139

b) Rigorous purification of the mRNA product from unin-
corporated nucleoside triphosphates, small abortive tran-
scripts, remaining DNA templates, and in particular
dsRNA via HPLC (High performance liquid chromatogra-
phy) was shown to dramatically reduce immunogenicity
of the transcripts and can increase the translation 10- to
1000-fold.140,141

c) Synthetic cap analog structures like ARCA (anti-reverse-
cap-analog) can further decrease immune response and
improve translation. In contrast to older cap analogs,
ARCA is always incorporated in correct orienta-
tion.142,143 A new ARCA variant contains a phospho-
thioate that resists enzymatic decapping and can increase
the half-life of the mRNA.144

d) Computational sequence design allows to reduce the
number of particularly immune-stimulatory nucleotides
and combinations (like UW, with W = A or U). 145-147

Furthermore, transcript stability can be optimized by the
introduction of 30-UTRs (or some elements) taken from
other mammalian or viral genes as well as addition of
Poly(A)-tails.148-153

The RNA replacement strategy is particularly advantageous
when a transient, burst-like expression of a protein is desired.
Typical examples for the latter are the epigenetic re-program-
ming (induced pluripotency), wound healing, and genome edit-
ing. In this sense, in-vitro transcribed mRNA (IVT-mRNAs)
has been used to deliver a) human bone morphogenetic protein
2 (hBMP-2) to support bone regeneration in rats; to deliver b)
the transcription factor mix that induces pluripotency; and to
deliver c) vascular endothelial growth factor-A (VEGF-A) into
a mouse model for myocardial infarction resulting in an
improved heart function and enhanced survival.154-160 Further-
more, IVT-mRNAs have been successful in the delivery of sur-
factant protein B in deficient mice, and in the delivery of
murine erythropoietin to increase the hematocrit.138,161

IVT-mRNA could turn out as a valuable tool for genome
editing. Genome editing holds great promise for the treatment
of various diseases by a permanent repair of a gene via a site-
directed knock-in or knockout.162 However, the respective
nucleases that induce the required double-strand DNA breaks
including ZFNs, Talens, and CRISPR/Cas, should not be persis-
tently expressed as this would dramatically increase the chance
of off-target genome editing.9 Consequently, its delivery as an
mRNA is beneficial compared to a DNA vector and also cir-
cumvents the typical safety risks of viral and non-viral DNA-
based methods like genomic insertion and antivector immuno-
genicity. Encoding of genome editing tools via IVT-mRNAs
has already been widely used to generate transgenic ani-
mals.163-169 In a proof-of-concept study, gene function was
restored via homology-directed promotor exchange in a surfac-
tant-B-deficient mouse model by in-vivo-delivery of the ZFN
in form of an IVT-mRNA. However, this required the addi-
tional delivery of the repair template (with the promotor) in

form of an AAV6 (Adeno-associated-virus serotype 6).170 Suc-
cessful promoter exchange was demonstrated and resulted in a
prolonged life of the treated mice. IVT-mRNA encoded Talen
have been used successfully to disrupt the CCR5 (CC chemo-
kine receptor type 5) gene via non-homologous-end-joining in
the T-cell line PM1. As the loss of CCR5 function confers resis-
tance toward R5-tropic HIV-1 infection, side-directed nucle-
ases are promising to target this infectious disease.171 An initial
clinical phase I study is currently starting.172 As IVT-mRNA is
a young field, this study represents the first clinical study that
uses IVT-mRNAs, but more are likely to follow soon.

mRNA can have many advantages over DNA vectors to
deliver therapeutic proteins. Besides its transient nature, we
want note that mRNA is very well and quickly translated in
postmitotic cells that are difficult to transfect with DNA vec-
tors. mRNA also works independent of a promotor, but this
can potentially limit its application if tissue-specificity is
required. However, we know from various studies that there is
a large number of regulatory elements, typically in the 3�-UTR,
including miRNA binding sites, stabilizing and destabilizing
elements that could allow to manipulate the expression of an
IVT-mRNA in a tissue-specific manner in the future.94,173

Oligonucleotides for vaccination and desensitization

As indicated above, very successful strategies haven’t been
developed to evade the RNA-sensing event and to trick the
innate immune system. However, inducing a specific immune
response can be highly desired. Thus the recent knowledge on
the immune stimulation by RNA can be used for the latter.
Currently, the classical vaccination is based on the delivery of
inactivated or living viruses, virus-like particles, or antigenic
peptides. While the antigenic peptides require additional vacci-
nation adjuvants like alum salts, the other entities contain suffi-
cient pathogen-associated-molecular-patterns (PAMPs) in
form of proteins, nucleic-acids, and lipopolysaccharides. These
PAMPs are detected by pattern-recognition-receptors (includ-
ing the above-mentioned RNA sensors) and induce the release
of type-I interferons, pro-inflammatory cytokines, and chemo-
kines. This is reviewed in-depth elsewhere.174,175 Short peptide
fragments are then presented to the immune system via MHC-
complexes on dendritic cells and other antigen presenting
cells.176 This process finally induces a humoral as well as cellu-
lar immune response of the adaptive immune system.

The presented antigens are mainly protein-derived peptides.
This opens the intriguing possibility to deliver antigens for
MHC-presentation encoded as IVT-mRNAs under simulta-
neous induction of the necessary innate and adaptive immune
stimulation as the IVT-mRNA itself can function as PAMP. By
doing so, it is well conceivable to create specific immune
responses not only against viruses and bacteria, but also against
cancer cells or for allergy treatment.177-181 The design of such
mRNA-based vaccines would be highly rational, fast, cheap,
and could be done in a personalized manner, for instance
against the specific transcriptome of a patient-specific can-
cer.182 IVT-mRNA vaccines would be faster available as the
generation of virus-particles (and similar entities) would be cir-
cumvented. Lyophilized mRNA vaccines can be stored at 37 �C
for several weeks.183 This allows the transport of vaccines into
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regions that cannot provide an uninterrupted cold chain. The
safety-profile could also be better compared to DNA-based
methods (insertion mutagenesis, low efficiency) or virus-like
entities (therapy-induced virus-specific humoral immune
response).184-186 Again, also for vaccination, the transient
nature of RNA expression is beneficial, as a low-level, long-
term expression of an antigen might induce tolerance.187

Two major IVT-mRNA-based vaccination strategies are
currently explored: the ex-vivo and the in-vivo approach. The
first, which was earlier developed, is based on the ex-vivo
pulsing of allogenic (= patient-derived) dendritic cells with
antigen-encoding mRNA, which allows the redirection of the
adaptive immune system to target cancer or virus-infected
cells. The feasibility and safety of this method was proven in
pre- and clinical trials focused on HIV and various cancer
types. However, personalized ex-vivo therapies require time-
consuming and expensive individualized manufacturing
processes which currently limit their broad clinical applica-
tion.188-195 Nevertheless, further clinical trials up to phase III
are currently running.196-202

Even though cumbersome, the ex-vivo strategy allows to
optimize and control mRNA transfection and immune stimula-
tion more carefully. The in-vivo approach, however, is poten-
tially more simple and elegant, but encounters additional
problems. Whereas all IVT-mRNA strategies require stable and
highly translatable transcripts, the in-vivo strategy requires
additionally the immune-stimulatory effect that counteracts
translation. It was found that complexation of IVT-mRNA
with protamine enhances immunogenicity via TLR-7 activation
and simultaneously improves stability, however, with the
downside of low antigen expression.203 Anyway, a combination
of protamine-complexed IVT-mRNA together with naked
IVT-mRNA of the same sequence turned out to satisfy both
needs at the same time: high translation efficiency and immune
stimulation. Those self-adjuvanting mRNAs are currently in
phase I and II clinical trials against prostate cancer, late stage

lung cancer, and rabies; pre-clinical trials against influenza
have been performed.183,186,204-209 We wish to mention that
also other approaches that apply naked or formulated IVT-
mRNAs are in clinical trials, for instance for targeting other
cancer entities.172,210 Furthermore, non-coding RNA can also
be used as a vaccination adjuvant replacing the classical alum
salts as adjuvant of protein- or peptide-based vaccines.211

Currently, IVT-mRNA are expensive therapies. On one
hand, the GMP (Good manufacturing practice) production of
IVT-mRNA in large scale is not yet fully established, but
CureVac has announced significant progress here.212 On the
other hand the potency of IVT-mRNA could be further
improved by assisted delivery via lipid-nanoparticels, polymeric
nanoparticles, gold nanoparticles, among others, as reviewed
elsewhere.213 Furthermore, there are promising attempts to
develop self-replicating RNA-vaccines that apply viral RNA-
dependent RNA-polymerases (from a-virus) to produce the
RNA vaccine from a dilute IVT-mRNA template.214-216 How-
ever, there are safety concerns related to the control of the
replication process and the tolerance against the viral RNA-
polymerase, but the strategy is still in the pre-clinical explora-
tion phase.217

Finally, mRNA vaccines could also be used in allergy treatment
to desensitize the immune system against a specific antigen. Desen-
sitization against type-I allergies is typically accomplished through
repeated intra-dermal, intra-nodal, or sub-lingual application of
allergens. Whereas a strong Immunglobuline E and CD8C T-cell
responses is intended during vaccination, desensitization aims to
change the TH1/TR1 to TH2 cell ratio toward TH1/TR1 to fine-tune
the immune response and to induce tolerance.178 Application of
low-dose IVT-mRNA could be used for that purpose, and there is
pre-clinical data that prove efficacy and suggest a long-term protec-
tive effect.218 One can expect first clinical trials to start within the
next few years. ApplyingmRNA as an anti-allergic vaccine has sev-
eral advantages compared to the classical allergen extract (like stan-
dardized cat extract) or DNA-based vaccines.219,220 IVT-mRNA is

Figure 2. Overview on selected enzymatic processes that could be harnessed to restore gene function by repairing or re-programming mRNA site-specifically. Site-
directed A-to-I editing, 2�-O-methylation, pseudouridylation, and frameshift correction via expression or administration of short guideRNAs has already been demon-
strated. Many other processes are conceivable and currently under exploration.
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obtained in a defined and highly pure state thus avoiding unin-
tended antigens that can be included in allergen extracts.221,222

DNA-based allergy treatment on the other hand suffers from the
abovementioned safety concerns and thus harbors disproportional
risk in the context of a preventative therapy.

RNA repair

Besides the manipulation of splicing, most interventions on the
RNA-level aim to destroy or block their endogenous targets.
Strategies to restore the function of an RNA that is corrupted
by missense, nonsense or frameshift mutation, or by defective
processing are rare. In case of loss-of-function mutations, the
administration of a therapeutic mRNA to replace the non-
functional variant might solve the problem, as discussed above.
However, this is only feasible with a small number of therapeu-
tic mRNAs that can be translated under low control of transla-
tion level and tissues specificity. Indeed, many transcripts are
tightly regulated with respect to their dose and tissue specificity
and come as a mixture of various isoforms due to alternative
promotor usage, alternative splicing, alternative polyadenyla-
tion and alternative posttranscriptional modification. Such
transcript variants may differ in their function, localization, sta-
bility, etc. To address this variety in an mRNA replacement
strategy seems impractical. A better alternative would be the
repair of the endogenously expressed but defective RNA tran-
script, a strategy, we call RNA repair.

Very recently, we and others have engineered artificial
RNA-guided editing machineries that allow to re-program
genetic information at the RNA level.223-225 For this, adeno-
sine-to-inosine (A-to-I) RNA editing enzymes226,227 are
directed toward specific sites on selected transcripts and
allow for the precise posttranscriptional manipulation of the
genetic information. The manipulation results from the fact
that inosine is biochemically interpreted as guanosine. Thus,
formal A-to-G conversions become accessible, in a highly
site-specific manner. The specificity comes from the guide-
RNA that addresses the editing enzymes and can be readily
programmed in rational way, simply by applying Watson-
Crick pairing rules.228 Even though only A-to-G mutations
are accessible the scope of manipulations is large. Twelve out
of the 20 canonical amino acids can be manipulated, com-
prising almost all of the polar ones which are essential for
protein function.223 Furthermore, START and STOP codon,
splice elements, polyadenylation signals, and viral RNA are
potential targets.226,227 We and others have shown that such
strategies work inside mammalian cell culture229 and even in
a simple organism230 and allow the repair of disease-relevant
genes, like the CFTR mRNA.225

Other people have recently shown the possibility of re-
directing snoRNA-guided RNA modification machineries, like
the 2�-O-methylation231 and the pseudouridylation machin-
ery.139 The first modification allows interference with splicing,
the second allows the read-through of premature STOP codons.
Mammalian cells harbor a plethora of RNA modifying and
processing enzymes. There is no need to restrict ourselves to
the usage of nucleases, like RISC, RNaseH, and RNaseP.232 Just
to give a few examples, there are RNA editing and modifying
enzymes inside the cell that can change nucleotides (A-to-I, C-

to-U233, U-to-c, A-to-m6A,234 and many more for the
tRNAs235), that add the cap236 and the poly(A)-tail,237 RNAs
can be precisely processed, for instance by the CCA-adding
enzymes,238,239 TUTases,240 etc.241 Thus, even complex repair
processes are conceivable, including the repair of insertion and
deletion mutations at the RNA-level. In this respect, we want to
recall a largely overseen work from 2004, done by Paul Zamec-
nik, the pioneer of antisense therapy, in his early nineties
shortly before he passed away. He demonstrated the possibility
of repairing the terrible D508 deletion mutation in the CFTR
gene, the main cause of cystic fibrosis, simply by administration
of 2 chemically stabilized RNA oligomers.242 In cell culture, the
efficiency of mRNA repair was sufficient to restore the chloride
channel function. Unfortunately, he was unable to elucidate the
mechanism, but he could clearly demonstrate the repair to take
place at the mRNA. Such a complex repair requires a concerted
nuclease, ligase (and polymerase) activity at a specific site on an
mRNA molecule. In summary, it seems that numerous endoge-
nous enzymes stand ready inside the cell for RNA repair pro-
cesses. We just have to learn how to make use of them.243,244 If
successful, one can establish novel platforms for therapeutic
intervention.

Conclusions

While splice-switching oligomers and aptamers are still strug-
gling on their ways to the clinic, major progress has been made
for RNaseH-dependent ASOs and for therapeutic RNAi with
chemically stabilized siRNAs. This is due to the development of
new chemistries that improve efficacy and delivery of the drugs
to some specific organs. An impressive example is the develop-
ment of the GalNAc3 conjugation that clearly improves liver
targeting and might allow for the administration of siRNA and
ASO by subcutaneous administration in the future. However,
overcoming problems with delivery and efficacy remains elu-
sive for many organs and will require massive basic research in
the future.

Among the emerging approaches, the usage of in-vitro-tran-
scribed mRNA for protein replacement and vaccination has
made impressive progress. This was mainly due to the tailored
suppression or harnessing of the RNA-induced immune
response by chemical modification and formulation. The
approach has the potential to find wide application in the clin-
ics whenever a transient, burst-like expression is advantageous.
The RNA repair approach is still in its infancy, but we believe
that the harnessing of artificial and in particular endogenous
RNA repair proteins might enable new therapies, complement-
ing the above-mentioned classical RNA-based and the
approaching genome editing methods, and being superior to
the latter with respect to safety and ethical issues.

Overall, the progress during last years is impressive. The
increasing number of clinical trials for various approaches
makes us feel optimistic that numerous nucleic-acid-based
drugs will soon find their ways to the patients to enable novel
therapies.
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