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Background: Recent studies identified a great diversity of cell types in precise number
and position to create the architectural features of the lung that ventilation and respiration
at birth depend on. With damaged respiratory function at birth, congenital diaphragmatic
hernia (CDH) is one of the more severe causes of fetal lung hypoplasia with unspecified
cellular dynamics.

Objectives: To characterize the epithelial cell tissue in hypoplastic lungs, a
careful analysis regarding pulmonary morphology and epithelial cell profile was
conducted from pseudoglandular-to-saccular phases in normal versus nitrofen-
induced CDH rat lungs.

Design: Our analysis comprises three experimental groups, control, nitrofen (NF) and
CDH, in which the relative expression levels (western blot) by group and developmental
stage were analyzed in whole lung. Spatiotemporal distribution (immunohistochemistry)
was revealed by pulmonary structure during normal and hypoplastic fetal lung
development. Surfactant protein-C (SP-C), calcitonin gene-related peptide (CGRP),
clara cell secretory protein (CCSP), and forkhead box J1 (FOXJ1) were the used
molecular markers for alveolar epithelial cell type 2 (AEC2), pulmonary neuroendocrine,
clara, and ciliated cell profiles, respectively.

Results: Generally, we identified an aberrant expression of SP-C, CGRP, CCSP, and
FOXJ1 in nitrofen-exposed lungs. For instance, the overexpression of FOXJ1 and CGRP
in primordia of bronchiole defined the pseudoglandular stage in CDH lungs, whereas
the increased expression of CGRP in bronchi; FOXJ1 and CGRP in terminal bronchiole;
and SP-C in BADJ classified the canalicular and saccular stages in hypoplastic lungs.
We also described higher expression levels in NF than CDH or control groups for
both FOXJ1 in bronchi, terminal bronchiole and BADJ at canalicular stage, and SP-
C in bronchi and terminal bronchiole at canalicular and saccular stages. Finally, we
report an unexpected expression of FOXJ1 in BADJ at canalicular and saccular stages,
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whereas the multi cilia observed in bronchi were notably absent at embryonic day 21.5
in induced-CDH lungs.

Conclusion: The recognized alterations in the epithelial cell profile contribute to a better
understanding of neonatal respiratory insufficiency in induced-CDH lungs and indicate a
problem in the epithelial cell differentiation in hypoplastic lungs.

Keywords: alveolar type 2 cell (AEC2), CDH, ciliated cell, clara cell, PNECs

INTRODUCTION

Respiratory function is dependent on lung architecture, created
and maintained by interactions of myriad cells during gestational
life. Importantly, the traditional view of fetal lung development
subdivides the lung morphogenesis into five distinct periods
based on structure: embryonic, pseudoglandular, canalicular,
saccular, and alveolar periods, which are shared among
mammalian species [reviewed in Refs. (1, 2)]. At the molecular
level, it is the expression of Nkx2-1 in the endoderm of
the ventral wall of the anterior foregut that first identified
the lung at the embryonic stage (3). Afterward, mesodermal-
endodermal interactions support branching morphogenesis and
the specification of multipotent progenitor cells into proximal
(SOX2) versus distal (SOX9) profiles (4–11), reviewed in Ref.
(12). Interestingly, the differentiation of proximodistal patterning
at the time of conducting and respiratory airways formation
contribute for normal respiratory function at birth. More
relevant, the current knowledge of epithelial cell differentiation
admits distinct models for bronchiolar (SOX2+) versus alveolar
(SOX9+) lineages, in which the bronchiolar differentiation gives
rise to goblet, clara, ciliated, and neuroendocrine cells under
mechanisms dependent on Notch signaling (13–18), whereas
SOX9 or a region just proximal to SOX9+ cells at early or a
bipotent progenitor at later developmental stage form alveolar
epithelial cell type 1 and 2 (AEC1 and AEC2) [Frank et al. (19),
Desai et al. (20), and Treutlein et al. (21)]. AEC1 cells constitute
about 95% of the surface area and are located immediately
adjacent to the capillaries, which allows efficient O2 and CO2
diffusion, while AEC2 cells secrete surfactants to prevent alveolar
collapse (20, 22).

Reaching its maximum severity in the congenital
diaphragmatic hernia (CDH), fetal lung hypoplasia remains
as one of the most common causes of morbidity and mortality
for neonates. CDH is defined as a diaphragmatic defect that
allows the herniation of abdominal organs into the thorax and
impairs the normal fetal lung development (23, 24). Hypoplastic
lungs have reduced surface area for gas exchange, with a decrease
in distal branching and alveoli. The alveoli that do exist have
thicker walls, impairing the close association of the airspaces
to the capillaries (25–27). A recent publication has shown the
proximodistal patterning impaired in induced-CDH lungs
from pseudoglandular-to-saccular stages (28), whereas the
epithelial cell dynamics, resulting from those differentiation
continues uncertain. In this context, taking advantage of the
nitrofen-induced CDH rat model that mimics the in vivo human
CDH in terms of the disrupted signal pathways in branching

morphogenesis and alveolar differentiation (29), we performed
a careful analysis regarding the pulmonary morphology and
the epithelial cell profiles during normal versus hypoplastic
pulmonary development.

MATERIALS AND METHODS

This study was carried out in strict accordance with FELASA
guidelines (30) and European regulations (European Union
Directive 86/609/EEC). All animal experiments were approved
by the Life and Health Sciences Research Institute (ICVS),
University of Minho, and by the Direção Geral de Alimentação
e Veterinária (approval No. DGAV 021328).

Animal Model and Experimental Design
Sprague-Dawley female rats (225 g; Charles-River, Spain) were
maintained in appropriate cages under temperature-controlled
room (22–23◦C) on 12 h light: 12 h dark cycle, with commercial
solid food and water ad libitum. The rats were mated and
checked daily for vaginal plug. The day of plugging was
defined as embryonic day (E) 0.5 for time dating purposes.
According to the nitrofen-induced CDH rat model (31, 32), at
E9.5, randomly selected pregnant rats were exposed to 100 mg
nitrofen (2,4-dichlorophenyl-p-nitrophenylether). At different
time points (E17.5, E19.5, and E21.5), fetuses were harvested by
cesarean section. After fetal decapitation, a thoracic laparotomy
was performed under a binocular surgical microscope (Leica
Biosystems, Wild M651.MSD, Washington, United States) to
inspect the diaphragm and harvest the organs. Fetuses were
divided into three groups, namely the control (Ctrl), fetuses
exposed to olive oil alone; nitrofen (NF), fetuses exposed to
nitrofen without diaphragmatic defect; and CDH group, fetuses
exposed to nitrofen with diaphragmatic defect. Lungs were either
fixed in 4% paraformaldehyde for immunohistochemistry or
snap-frozen in liquid nitrogen for protein extraction. GPower
3.1.9.4 (Franz Faul, Universitat Kiel, Germany) was used for
sample size calculation. In total, 18 dams and 124 embryonic rats
were used in this study.

Immunohistochemistry
As previously described (33), immunostaining was performed
in formalin-fixed and paraffin-embedded sections at different
gestational ages (E17.5–E21.5) for the three groups, control,
NF, and CDH. Primary antibodies for alveolar epithelial cell
type 2 (AEC2, Anti-Prosurfactant Protein C, SP-C, 1:1,000,
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Cat No. AB3786, Merck Millipore, Germany); Clara (Anti-
Clara Cell Secretory Protein, CCSP, 1:1,000, Cat No. 07-623,
Merck Millipore, Germany); ciliated (FOXJ1, 1:200, Cat
No. PA5-36210, ThermoFisher Scientific, Massachusetts,
United States); pulmonary neuroendocrine cells/neuroepithelial
bodies (PNECs/NEBs; 1:100, CGRP, Cat No. ab91007, Abcam,
Cambridge, United Kingdom) were used. Negative control
reactions included omission of primary antibody, in which
immunoreactivity was not observed. Tissue sections were
incubated with a streptavidin-biotin immunoenzymatic antigen
detection system (Cat No. TL-125-QHD, Thermo Scientific,
Massachusetts, United States) according to the manufacturer’s
instructions and visualized with a diaminobenzidine
tetrahydrochloride solution (DAB, Cat No. TA-125-QHDX,
Thermo Scientific, Massachusetts, United States) (33). The time
expended in DAB solution was dependent on the developmental
stage, but equally between normal, NF and CDH slides,
allowing the quantification of immunohistochemical signals.
The percentage of stained cells per microscopic field was
scored as follows: 0, 0–1% cells/pulmonary structure; 1, 1–
25% cells/pulmonary structure; 2, 25–50% cells/pulmonary
structure; 3, 50–75% cells/pulmonary structure; 4, 75–100%
cells/pulmonary structure in accordance with (28). At least three
independent experiments were performed for each antibody
tested, comprising different and unrepeated animal samples by
group (gestational age). Six different animals were examined for
each group per studied antibody. All sections were scanned with
Olympus BX61 Upright Microscope (Olympus Corporation,
Tokyo, Japan) and independently evaluated by two investigators.

Western Blot Analysis
Normal and nitrofen-exposed lungs from different gestational
ages (E17.5–E21.5) were processed for western blot analysis.
Proteins were obtained according to Ref. (34), and the protocol
performed as previously described (28). Blots were blocked
in 5% bovine serum albumin and probed with primary
antibodies for AEC2 (Anti-Prosurfactant protein-C, SP-C, 1:500,
Cat No. AB3786); clara (clara cell secretory protein, CCSP,
1:500, Cat No. 07-623); ciliated (FOXJ1, 1: 100, Cat No.
PA5-36210); PNECs/NEBs (CGRP, 1:250, Cat No. ab91007)
according to the manufacturer’s instructions. For loading control,
blots were probed with β-tubulin (1:200,000, Cat No. ab6046
Abcam, Cambridge, United Kingdom). Membranes were then
incubated with anti-rabbit secondary horseradish peroxidase-
conjugate (1:5,000, Cat No. 7074, Cell Signaling, Technology,
Massachusetts, United States), developed with Clarity West ECL
subtract, and the chemiluminescent signal was captured using the
Chemidoc XRS. The quantitative analysis was performed with
Quantity One 4.6.5 1-D Analysis Software. Three independent
experiments were performed (n = 3). In total, nine animals were
used in each group (gestational age/condition) per antibody.

Statistical Analysis
All quantitative data are presented as the mean ± standard
deviation (SD). The statistical analysis was performed by two-
way ANOVA for lung condition (normal, NF and CDH) and
embryonic day (E17.5, E19.5, and E21.5) in protein expression

level. The parametric test assumptions were previously verified,
and an additional Fisher’s Least Significant Difference (LSD)
test was used for post-test analysis. T-test for independent
samples was performed to compare the molecular spatiotemporal
distribution by pulmonary structure and developmental stage.
Statistical analysis was performed using the statistical software
IBM SPSS Statistics 24.0. Statistical significance was set at
αp < 0.05.

RESULTS

To reveal the epithelial cell profile in hypoplastic lungs, we
selected the teratogenic model to induce fetal lung hypoplasia.
Nitrofen-induced CDH rat model cause lung hypoplasia with
and without CDH; though its severity was greater in those
with CDH. As such, a careful analysis regarding the distinct
epithelial cells in terms of relative expression levels (Figures 1A–
E) and spatiotemporal distribution was performed from E17.5
to E21.5, in which CCSP, FOXJ1, CGRP, and SP-C were used
to distinguish Clara, Ciliated, PNECs/NEBs, and AEC2 cellular
profiles, respectively.

Experimental-Congenital Diaphragmatic
Hernia Change the Relative Expression
Levels of Bronchiolar and Alveolar
Markers
In the normal whole lung, quantification of the relative
expression levels reveals a consistent increase in CCSP, FOXJ1,
and SP-C expression as fetal lung development progresses
(Figures 1A–E). Comparing with normal lungs, nitrofen-exposed
lungs were characterized by the overexpression of FOXJ1
(Figure 1C) and CGRP (Figure 1D) from pseudoglandular-
to-saccular stages. Unchanged expression levels for CCSP
(Figure 1B) and SP-C (Figure 1E) were visualized at E17.5,
whereas at canalicular stage we identified an increased expression
of CCSP and SP-C in hypoplastic (NF and CDH) versus
normal lungs. At E21.5, CCSP remains overexpressed, while a
slight depletion on SP-C was observed in induced-CDH lungs
(Figures 1B,E).

These molecular changes were further explored in terms of
spatiotemporal distribution in NF and CDH versus normal lungs.
Concomitant with the developmental stage, this analysis also
reveals the expression profile by pulmonary structure.

Similar Spatiotemporal Distribution for
Clara Cell Secretory Protein in Nitrofen
and Congenital Diaphragmatic Hernia
Lungs at E21.5
Clara cell secretory protein (CCSP) was expressed in all
pulmonary structures from pseudoglandular-to-saccular stages
in normal and hypoplastic fetal lungs (Figures 2AA–F,a–l).
Specifically, CCSP was observed in bronchi and primordia of
bronchiole at E17.5 (Figures 2AA,B,a,b,g,h); and in bronchi,
terminal bronchiole, and bronchioalveolar duct junction (BADJ)
at canalicular (Figures 2AC,D,c,d,i,j) and saccular stages
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FIGURE 1 | Altered relative expression levels for clara cell secretory protein (CCSP), forkhead box J1 (FOXJ1), calcitonin gene-related peptide (CGRP), and
surfactant protein-C (SP-C) in hypoplastic rat lungs. Western blot analysis for CCSP, FOXJ1, CGRP, and SP-C protein levels in normal (ctrl) and CDH lungs at
embryonic day (E)17.5-to-E21.5. (A) Representative immunoblots are shown. Each lane represents a pooled tissue sample, and relative expression was determined
against β-tubulin. Semi-quantitative analysis of three independent experiments is plotted (n = 9 per timepoint and experimental groups, respectively). Protein
expression levels of (B) CCSP, (C) FOXJ1, (D) CGRP, and (E) SP-C are shown at the distinct developmental stages of normal, nitrofen (NF), and congenital
diaphragmatic hernia (CDH) fetal lungs. Results are presented as mean ± SD. Symbols indicate the main effects and non-redundant interactions of the two-way
ANOVA. p < 0.05: αvs ctrl; 9vs E17.5-ctrl; &vs E17.5-CDH and E19.5-CDH.

(Figures 2AE,F,e,f,k,l). CCSP + cells were also detected
in alveolar duct at E21.5 in normal (Figures 2AE,F), NF
(Figures 2Ae,f) and CDH lungs (Figures 2Ak,l).

Quantification of IHC signals by pulmonary structure and
developmental stage demonstrated CCSP to be downregulated in
bronchi at E17.5 and terminal bronchiole at E19.5 in NF versus
control group. In contrast, CCSP was decreased in bronchi and
overexpressed in BADJ at E19.5 in CDH versus normal lungs
(Figure 2B). A similar expression profile for NF and CDH versus
control lungs was observed at E21.5 with the overexpression of
CCSP in bronchi, terminal bronchiole, and BADJ (Figure 2B).

Forkhead Box J1 Expressed in
Bronchioalveolar Duct Junction at
Canalicular and Saccular Stages After
Congenital Diaphragmatic Hernia
Induction
Forkhead box J1 (FOXJ1) was used to distinguish the ciliated
profile in normal and hypoplastic fetal lungs. FOXJ1 was
expressed in bronchi (Figures 3AA–F) at all gestational ages; in
primordia of bronchiole at E17.5 (Figures 3AA,B); and terminal
bronchiole at E19.5 (Figures 3AC,D) and E21.5 (Figures 3AE,F).
In hypoplastic (NF and CDH) lungs, FOXJ1 was observed in
BADJ at E19.5 (Figures 3Ac,d,i,j) and E21.5 (Figures 3Ae,f,k,l)

that contrast with their absence in normal lungs (Figures 3AC–
F). In addition, the multi cilia cells observed in bronchi at E21.5
in healthy lungs was demonstrated to be (near) absence in CDH
lungs (Figures 3CA,a).

Quantification of IHC signals established FOXJ1
overexpressed in primordia of bronchiole at E17.5 in CDH
and bronchi at E19.5 in NF versus normal lungs. Both NF
and CDH lungs had increased FOXJ1 expression in terminal
bronchiole at E19.5 and E21.5, when compared with normal
lungs (Figure 3B). At E19.5, the molecular levels of FOXJ1 in
bronchi, terminal bronchiole, and BADJ were higher in NF than
CDH or control groups (Figure 3B).

The Size of Neuroepithelial Bodies
Increased in Induced-Congenital
Diaphragmatic Hernia Lungs at
Canalicular and Saccular Stages
Punctual (PNECs) or aggregated (NEBs) expression of CGRP
characterize the neuroendocrine profile in the developing lung.
Immunohistochemistry analysis showed CGRP expressed in
bronchi at E17.5–E21.5; primordia of bronchiole at E17.5
(Figures 4AA,B,a,b,g,h); and terminal bronchiole at E19.5
(Figures 4AC,D,c,d,i,j) and E21.5 (Figures 4AE,F,e,f,k,l) in
normal and hypoplastic fetal lungs.
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FIGURE 2 | Clara cell secretory protein (CCSP) expression pattern during normal and hypoplastic fetal lung development. Representative immunohistochemical
evidence for CCSP expression at (AA,B,a,b,g,h) pseudoglandular, (AC,D,c,d,i,j) canalicular, and (AE,F,e,f,k,l) saccular stages in normal (ctrl), nitrofen (NF), and
congenital diaphragmatic hernia (CDH) lungs, respectively. *Bronchiole; ¤primordia of bronchiole; yenterminal bronchiole; [bronchioalveolar duct junction; &alveolar
duct. Scale bar 50 µM. (B) Semi-quantitative analysis of CCSP expression from embryonic day (E)17.5-to-E21.5 in normal, NF, and CDH lungs. Data are presented
as mean ± SD. Symbols indicate the main effects and non-redundant interactions of T-test for independent samples. αp < 0.05.

Comparing NF and CDH with normal lungs, CGRP was
overexpressed in bronchi and terminal bronchiole at E19.5
and E21.5 in hypoplastic lungs, whereas the significative
overexpression in bronchi and primordia of bronchiole at
E17.5 was only observed in CDH lungs (Figure 4B). CGRP
overexpressed at E19.5 and E21.5 was evidenced by larger NEBs
(Figures 4AC–F,c–f,i–l).

Experimental Congenital Diaphragmatic
Hernia Induce the Expression of
Surfactant Protein-C in Bronchi and
Bronchioalveolar Duct Junction
The spatiotemporal profile of AEC2 cells was detected by SP-
C. In normal and hypoplastic lungs, SP-C was expressed in
bronchi at E17.5–E21.5 (Figures 5AA–F,a–f,g–l); in primordia
of bronchiole at E17.5 (Figures 5AA,B,a,b,g,h); in terminal
bronchiole and BADJ at E19.5 (Figures 5AC,D,c,d,i,j) and
E21.5 (Figures 5AE,F,e,f,k,l); and in alveolar duct at E21.5
(Figures 5AE,F,e,f,k,l).

Semi-quantitative analysis of SP-C expression in nitrofen-
exposed versus normal lungs showed SP-C overexpressed in
BADJ at E19.5 and E21.5, and in terminal bronchiole at E21.5.
In induced-CDH lungs, SP-C was also overexpressed in alveolar
duct at E21.5 (Figure 5B). By group, the expression of SP-C was
increased in bronchi at E19.5 and E21.5 in NF versus normal
lungs. Finally, significant differences in bronchi and terminal

bronchiole were visualized at E19.5 and E21.5 with SP-C more
expressed in NF than CDH or normal lungs (Figure 5B).

DISCUSSION

Single-cell transcriptomic and tracing-lineage studies allowed
the observation of precise number and position of distinct
pulmonary cell types, their lineages, and differentiation (35–38).
CDH fetuses with decreased distal branching and alveoli manifest
reduced respiratory function at birth (39, 40). Recently, the
proximodistal patterning was described as impaired in nitrofen-
induced CDH lungs from pseudoglandular-to-saccular stages
(28). As such, we intend to go further and determine the
relative expression levels and the temporospatial distribution
for CCSP, CGRP, FOXJ1, and SP-C proteins in hypoplastic (NF
and CDH) versus normal fetal lungs from pseudoglandular-
to-saccular stages. The selected molecular markers: CCSP,
CGRP, FOXJ1, and SP-C identified clara, PNECs/NEBs, ciliated
and AEC2 cells, respectively, when expressed in differentiated
epithelial tissues. Conversely, when detected in undifferentiated
epithelial tissues, they distinguish the cellular capacity to
give rise to the above-mentioned epithelial cell types. At the
pseudoglandular stage, our findings demonstrated FOXJ1 and
CGRP overexpressed in primordia of bronchiole after CDH-
induction. As the epithelial cell differentiation goes through,
we identified a general overexpression of CGRP in bronchi;
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FIGURE 3 | Spatiotemporal distribution of forkhead box J1 (FOXJ1) in normal and induced-congenital diaphragmatic hernia (CDH) rat model at pseudoglandular,
canalicular, and saccular stages. Representative immunohistochemical evidence for FOXJ1 expression at (AA,B,a,b,g,h) embryonic day (E)17.5, (AC,D,c,d,i,j)
E19.5, and (AE,F,e,f,k,l) E21.5 in normal (ctrl), nitrofen (NF), and CDH lungs, respectively. *Bronchiole; ¤primordia of bronchiole; U terminal bronchiole;
[bronchioalveolar duct junction; &alveolar duct. Scale bar 50 µM. (B) Semi-quantitative analysis of FOXJ1 expression from pseudoglandular-to-saccular stages in
ctrl, NF, and CDH lungs. Results are presented as mean ± SD. Symbols indicate the main effects and non-redundant interactions of T-test for independent samples.
αp < 0.05. (C) Representative immunohistochemical evidence for the absence of multi-cilia on the plasma membrane of ciliated cells in bronchi at E21.5. Original
magnification ×600.

FIGURE 4 | Protein expression pattern of calcitonin gene-related peptide (CGRP) in nitrofen-exposed rat lungs at embryonic day (E) 17.5-to-E21.5. Representative
immunohistochemical evidence for CGRP expression at (AA,B,a,b,g,h) pseudoglandular, (AC,D,c,d,i,j) canalicular, and (AE,F,e,f,k,l) saccular stages in normal
(ctrl), nitrofen (NF), and congenital diaphragmatic hernia (CDH) rat lungs, respectively. *Bronchiole; ¤primordia of bronchiole; U terminal bronchiole; [bronchioalveolar
duct junction; &alveolar duct. Scale bar 50 µM. (B) Semi-quantitative analysis of CGRP expression from E17.5-to-E21.5 in normal, NF, and CDH lungs. Results are
presented as mean µ SD. Symbol indicates main effect and non-redundant interaction of T-test for independent samples. αp < 0.05.
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FIGURE 5 | Expression profile of surfactant protein-C (SP-C) in the normal and induced congenital diaphragmatic hernia (CDH) rat model. Representative
immunohistochemical evidence for SP-C expression at (AA,B,a,b,g,h) embryonic day, (E)17.5, (AC,D,c,d,i,j) E19.5, and (AE,F,e,f,k,l) E21.5 of normal (ctrl), nitrofen
(NF), and CDH phenotypes, respectively. *Bronchiole; ¤primordia of bronchiole; U terminal bronchiole; [bronchioalveolar duct junction; &alveolar duct. Scale bar 50
µM. (B) Semi-quantitative analysis of SP-C expression from pseudoglandular-to-saccular stages in control, NF, and CDH lungs. Results are presented as mean µ

SD. Symbols indicate the main effects and non-redundant interactions of T-test for independent samples. αp < 0.05.

FOXJ1, and CGRP in terminal bronchiole; and CCSP and SP-C
in BADJ at both canalicular and saccular stages in induced CDH-
lungs. Interestingly, in bronchi and terminal bronchiole, CCSP is
decreased at canalicular and overexpressed at saccular stages.

Discussing these results, it must be knowledge the distinct
contribution of the epithelial progenitors and specialized
epithelial cells that populate conducting and respiratory airways.
In fact, several studies tried to describe the function of
the distinct epithelial cell types during the development of
the lung and at birth, when baby takes the first breath.
PNECs/NEBs are described as airway sensors required for
appropriate innate immune inflammatory response and fetal lung
growth. Subsequently, we and others demonstrate PNECs/NEBs
overexpressed in in vivo nitrofen-exposed lungs, whereas the
exogenous administration of neuroendocrine products, like
bombesin or ghrelin, stimulate fetal lung growth (38, 41–46).
Clara is a secretory cell essential for airway epithelium reparation
(47, 48), that it is now described with distinct profiles in NF
and CDH lungs. For instance, compared with normal lungs,
the expression of CCSP is decreased in bronchi at E19.5, and
increased in bronchi and terminal bronchiole at E21.5 and in
BADJ at canalicular and saccular stages in CDH. Concerning the
NF group, CCSP was decreased in bronchi at E17.5 and terminal
bronchiole at E19.5, when compared with control. Ciliated cells
are reported as terminally differentiated epithelial cells (49)
working in mucociliary clearance at birth and thereafter (50).
Now, in hypoplastic lungs (NF and CDH groups), we detected
FOXJ1 expressed in BADJ at E19.5 and E21.5 in opposition to

the observed in normal lungs. Interestingly, BADJ is formed
and easily detected at canalicular stage (51, 52) that demarcates
airway-fated epithelial cells from alveolar-fated epithelial cells
and works as stem cell niche in adult lung regeneration (53, 54).
Indeed, BADJ represents the entrance of the small gas exchanging
airways, with critical roles in the formation of both conducting
and respiratory airways after injury (53, 54). Our investigation
also described FOXJ1 in bronchi, terminal bronchiole, and
BADJ as higher in NF than CDH or normal lungs at E19.5.
More relevant, we demonstrated the multi cilia on the plasma
membrane that characterize a normal bronchus at E21.5 as
decrease in induced-CDH lungs. FOXJ1 is a master regulator
of basal body docking, cilia formation, and motility (55, 56),
whereas the multi cilia on the plasma membrane unequivocally
identified their differentiated profile. Together, our observations
describe a diffuse transition from conducting to respiratory
airways in induced-CDH lungs and suggest an undifferentiated
epithelium in hypoplastic lungs.

Epithelial cell type 2 (AEC2) cells produce pulmonary
surfactant proteins that reduce the alveolar surfactant tension and
facilitate the first breath at birth. In nitrofen-exposed lungs, the
impairment on surfactant production and secretion is evidenced
by the low levels of phosphatidylcholine, the lipid component of
surfactant, and the factors involved in stimulating the maturation
of surfactant lipids, such as PTHrP, adipose differentiation-
related protein (ADRP), Thy1 and RA, whereas the inhibitor of
surfactant phospholipid synthesis, TNFα, is overexpressed (57–
63). Our analysis regarding the two hypoplastic groups created
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through nitrofen-exposed CDH rat model, demonstrated SP-
C overexpressed in bronchi at E19.5 and E21.5 in NF versus
normal lungs, whereas unchanged levels are observed after CDH-
induction. In addition, SP-C is higher expressed in bronchi and
terminal bronchiole at E19.5 and E21.5 in NF than CDH or
control groups. Comparing with healthy lungs, CDH and NF
lungs exhibit a general upregulation of SP-C expression in BADJ
at canalicular and saccular stage; and in terminal bronchiole
and alveolar duct at E21.5. Previous publications demonstrated
an altered ratio of alveolar epithelial cells in CDH-associated
lung hypoplasia, which was related to the dedifferentiation of
AEC2 into AEC1 cell (64, 65), whereas Nguyen et al. report a
decrease in the number of AEC1 in CDH lungs with unchanged
AEC2 population in mice at E17.5. These findings are probably
due to the impossibility to distinguish the differentiated versus
undifferentiated AEC2 cell profile in these models.

Collectively, we describe different epithelial cell profiles in
normal, NF and CDH lungs related to distinct morphological and
functional features. As such, the described cellular alterations by
gestational age certainly contribute to a better understanding of
the epithelial profile in CDH fetuses and suggest a more careful
analysis regarding the differentiated versus undifferentiated
epithelial cell profiles in hypoplasia.
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