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This study aimed to determine the effect of varying dietary intake of the major n-3 PUFA in human diets, α-linolenic acid
(ALA; 18 : 3n-3), on expression of lipogenic genes in adipose tissue. Rats were fed diets containing from 0.095%en to 6.3%en
ALA and a constant n-6 PUFA level for 3 weeks. Samples from distinct adipose depots (omental and retroperitoneal) were
collected and mRNA expression of the pro-lipogenic transcription factors Sterol-Retinoid-Element-Binding-Protein1c (SREBP1c)
and Peroxisome Proliferator Activated Receptor-γ (PPARγ), lipogenic enzymes Sterol-coenzyme Desaturase1 (SCD-1), Fatty
Acid Synthase (FAS), lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (G3PDH) and adipokines leptin and
adiponectin determined by qRT-PCR. Increasing dietary ALA content resulted in altered expression of SREBP1c, FAS and G3PDH
mRNA in both adipose depots. SREBP1c mRNA expression was related directly to n-6 PUFA concentrations (omental, r2 = .71;
P < .001; Retroperitoneal, r2 = .20; P < .002), and inversely to n-3 PUFA concentrations (omental, r2 = .59; P < .001;
Retroperitoneal, r2 = .19; P < .005) independent of diet. The relationship between total n-6 PUFA and SREBP1c mRNA
expression persisted when the effects of n-3 PUFA were controlled for. Altering red blood cell concentrations of n-3 PUFA is
thus associated with altered expression of lipogenic genes in a depot-specific manner and this effect is modulated by prevailing n-6
PUFA concentrations.

1. Introduction

In adults, changes in the patterns of expression of key
regulatory and functional genes within adipose tissue are
important determinants of fat accumulation and can pro-
foundly influence the ability of an individual to maintain
energy balance and resist weight gain [1–4]. The transcrip-
tion factors Sterol Retinoid Binding Protein-1c (SREBP1c)
and Peroxisome Proliferator Activated Receptor-γ (PPARγ)
regulate lipid storage and adipose tissue mass by regulating
the expression of genes in the lipogenic pathway. Specifically,
activation of SREBP1c and PPARγ increases the expression of
a series of enzymes which increase the synthesis and storage

of triglycerides in adipose tissue, including lipoprotein lipase
(LPL), which increases uptake of fatty acids from the
circulation, and Fatty Acid Synthase (FAS) and glycerol-3-
phosphate dehydrogenase (G3PDH), which both promote
triglyceride synthesis [5].

While the cause of the current global obesity epidemic
includes excessive food consumption and reduced exercise,
there is increasing evidence that both the quantity and
the type of fats in the diet have a major role in defining
the propensity of an individual to accumulate excess body
fat. It is acknowledged that diets high in saturated fat
(>45%) promote fat accumulation [6], and low-fat diets
are commonly recommended as a means of weight-loss



2 Journal of Nutrition and Metabolism

[7]. It is also clear, however, that polyunsaturated fatty
acids (PUFAs), particularly those of the omega-3 (n-3) and
omega-6 (n-6) classes, also have the ability to influence the
rate of lipid accumulation. There is evidence which suggests
that n-6 PUFAs promote, while n-3 PUFAs inhibit, lipid
accumulation within adipose depots, and this has led to
the suggestion that the increasing dominance of n-6 over
n-3 PUFA in typical Western diets [8] may be one factor
contributing to the increasing incidence of obesity [5, 9].
Conversely, it has been postulated that increased dietary
intake of n-3 and/or decreased intake of n-6 fatty acids may
have benefits in relation to suppressing fat deposition. There
is also evidence that supplementing the diet of rodents [10]
and humans [11] with n-3 LCPUFA may promote loss of
body fat. However, there are only a handful of studies which
have investigated in any detail the impact of altering the
balance of n-3 and n-6 PUFAs in the diet on the expression of
lipogenic genes in adipose tissue, and which have determined
the specific n-3 and n-6 PUFAs which have the greatest
contribution to these effects.

The majority of A Western diets are low in omega-3
LCPUFA as a consequence of a low fish intake, and the
major source of n-3 fats in these diets is from vegetable
oils in the form of α-linolenic acid (ALA; 18 : 3n-3). In this
study, we therefore examined the effect of a wide range
of dietary intakes of ALA with the level of the main n-6
fatty acid found in vegetable oils, linoleic acid (LA; 18 : 2n-
6), kept constant. The primary outcome measure was the
mRNA expression of key lipogenic genes within two of the
principal fat depots in the rodent, the abdominal (omental)
and retroperitoneal depots. An important secondary aim was
to determine whether the circulating concentrations of any
specific fatty acid could predict the level of mRNA expression
SREBP1c mRNA within each of these adipose depots.

2. Methods

2.1. Animals and Diet. All procedures were approved by the
Animals Ethics committee of the University of Adelaide. All
diets consisted of a base feed (SF00-229, Specialty Feeds,
Glen Forrest, WA) which was blended with different mixtures
of flaxseed, macadamia, sunflower oils in order to generate
diets in which ALA made up between 0.095% and 6.3%
of total energy (%en). The total percentage of fat was held
constant at 5% v/v in all diets. All feeds were tested to ensure
consistency of the fatty acid composition prior to starting the
experiment. The base diet and the proportion of LA in the
diet was kept constant at 2.1%en in all diets, so that only
the ALA content was varied. Detailed information on the
composition of the experimental diets is shown in Table 1.

Forty (40) 6-week old Female Dark Agouti rats were
initially fed for a 3 week feed-in period on a diet which
contained 100% Macadamia oil in order to ensure that all
animals had a comparable baseline fatty acid status at the
time of commencing the dietary treatment. This feed-in
diet contained 0.016%en ALA and 0.27%en LA. Following
the feed-in period, rats were randomly assigned to one of
the 8 experimental diets (5 animals per dietary treatment)

and were maintained on these diets for 3 weeks. Food was
replenished daily and water was available ad libitum. The
animals were group housed in an animal facility maintained
on a 12 hr light/12 hour dark cycle at a temperature of 20–
22◦C. There was no difference in body weight of rats in the
different experimental groups either at the start of the dietary
intervention, or following the 3-weeks of feeding.

At the end of the 3 week period, all rats were humanely
killed by an overdose of anesthetic (Fluothane, ICI, Mel-
bourne, Vic, Australia). A blood sample was collected
by cardiac puncture for the subsequent measurement of
plasma, and erythrocyte fatty acid composition. A sample
of adipose tissue from the omental adipose depot and the
retroperitoneal depot was collected from each animal and
stored in RNAlater at −20◦C for subsequent measurement
of gene expression. The sample was collected by the same
investigator on each occasion in order to ensure consistency
of the sampling site.

2.2. Lipid Extraction. All solvents used in this study were
analytical grade and were purchased from Ajax Finechem
Pty Ltd (Auckland, New Zealand) or Chem-Supply (South
Australia, Australia). Other chemicals and reagents were
purchased from Sigma-Aldrich (St. Louis, MO) unless
specified otherwise. The total lipids of the experimental oil
formulation, plasma and erythrocytes were extracted follow-
ing the protocol of Bligh and Dyer [12] using chloroform-
methanol (2 : 1, v/v). The phospholipids were separated from
total lipid extracts by thin layer chromatography (TLC)
on silica gel plates (Silica gel 60H; Merck, Darmstadt,
Germany). A lipid classes standard 18-5 (NU-CHEK Prep;
Elysian, MN) was run on the plates for lipid identification.
The mobile phase for TLC was petroleum spirit/acetone
(3 : 1, v/v). The TLC plates were sprayed with fluorescein
5-isothiocyanate in methanol, and the lipid classes present
were then visualized under UV light. The phospholipid
bands located at the bottom of TLC were transferred into
a vial containing 1% sulphuric acid (H2SO4) in methanol
for transmethylation. All solvents used for extraction and
separation contained 0.005% (w/v) antioxidant, butylated
hydroxyl toluene (BHT).

2.3. Fatty Acid Methylation. All lipids and phospholipids
were transesterified with 1% H2SO4 in methanol at 70◦C
for 3 h. After the samples were cooled, the resulting fatty
acid methyl esters (FAME) were extracted with n-heptane
and transferred into vials containing a scoop of anhydrous
sodium sulphate (Na2SO4).

2.4. Gas Chromatographic Analysis of FAME. FAME were
separated and quantified by GC (Hewlett-Packard 6890;
Palo Alto, CA) equipped with a capillary column (50 m ×
0.32 mm id) coated with 0.25 μm film thickness silica (BPX-
70; SGC Pty Ltd, Victoria, Australia) and a flame ionisation
detector (FID). The injector temperature was set at 250◦C
and the FID temperature at 300◦C. The oven temperature
at injection was initially set at 140◦C and was programmed
to increase to 220◦C at a rate of 5◦C per minute. Helium
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Table 1: Dietary fatty acid composition of the experimental diets.

6.3%en ALA 4.1%en ALA 2.05%en ALA 1.00%en ALA 0.76%en ALA 0.38%en ALA 0.19%en ALA 0.095%en ALA

18 : 3n-3 (ALA) 47.9 31.6 15.7 7.5 5.8 3.0 1.6 0.9

18 : 2n-6 (LA) 16.6 17.5 17.4 16.7 17.5 17.5 17.0 17.0

Total SFA 12.2 14.0 15.8 16.3 17.3 17.6 18.0 17.7

Total MUFA 0.2 0.2 0.3 0.3 0.4 0.4 0.6 0.7

Total n-9 PUFA 0.3 1.0 1.7 1.9 2.1 2.2 2.3 2.4

All values are expressed as a % of total lipids by volume; all values are obtained from GC analysis of the feed content after manufacture.

gas was utilized as a carrier at a flow rate of 35 cm per
second in the column. The identification and quantification
of FAMEs were achieved by comparing the retention times
and peak area % values of unknown samples to those of
commercial lipid standards (Nuchek Prep Inc, Elysian, USA)
using the Hewlett-Packard Chemstation data system. FAMES
standards for unique n-3 LCPUFAs 24 : 5 n-3 and 24 : 6 n-
3 were purchased from Larodan Fine Chemicals (Malmö,
Sweden).

2.5. Isolation of RNA, Production of cDNA, and qRT-PCR
Analysis. RNA was extracted from 100 mg adipose tissue
from each depot (Trizol reagent, Invitrogen Australia Pty
Limited, Australia) from all experimental animals. RNA
was purified using the RNeasy Mini Kit (QIAGEN, Basel,
Switzerland). The quality and concentration of the RNA
was determined by measuring the absorbance at 260 and
280 nm, and RNA integrity was confirmed by agarose
gel electrophoresis. cDNA was then synthesised using the
purified RNA (∼2 μg) and Superscript III reverse transcrip-
tase (Invitrogen Australia Pty Limited, Mount Waverley,
Australia) with random hexamers.

The relative expression of mRNA transcripts of the
SCD-1, PPARγ, SREBP1c, FAS, LPL, G3PDH, leptin, and
adiponectin mRNA transcripts (Table 2), and the house-
keeper gene β-actin (Rn-Actb-1-SG, QuantiTect Primer
Assay, Qiagen) were measured by quantitative real time
reverse transcription-PCR (qRT-PCR) using the Sybr Green
system in an ABI Prism 7500 Sequence Detection System (PE
Applied Biosystems, Foster City, CA). Each amplicon was
sequenced to ensure the authenticity of the DNA product and
qRT-PCR melt curve analysis was performed to demonstrate
amplicon homogeneity. Each qRT-PCR reaction well (10 μL
total volume) contained: 6 μL 2x Sybr Green Master Mix (PE
Applied Biosystems, Foster City, CA): 1 μL of each primer
giving a final concentration of 450 or 900 nM, 2.0 μL of
molecular grade H2O, and 1.0 μL of a 50 ng/μL dilution of the
stock template. Controls containing no reverse transcriptase
were also used.

The abundance of each mRNA transcript was measured
and expression relative to that of β-actin was calculated using
the comparative threshold cycle (Ct) method (Q-gene qRT-
PCR analysis software).

2.6. Statistics. The effect of dietary treatment on erythrocyte
and plasma phospholipid fatty acid composition were deter-
mined by one-way ANOVA. The Duncan’s multiple range

test was used post hoc to identify differences between mean
values. The effect of diet on gene expression in omental
and retroperitoneal adipose tissue was similarly determined.
Stepwise multiple linear regression was used to determine
the strongest predictor of adipocyte gene expression in the
omental and retroperitoneal adipose depots. Relationships
between variables were determined using linear regression
analyses. Where there were potential associations between
independent variables, multiple linear regression analyses
were used and partial correlation coefficients were derived.
All data are presented as the mean ± SEM and a probability
of <5% (P < .05) was taken as significant.

3. Results

3.1. Animals

3.1.1. Composition of Red Blood Cell (RBC) and Plasma
Phospholipids. The ALA content of RBC phospholipids as
a % of total lipids increased progressively with increasing
dietary ALA (Table 3). Dietary ALA was associated with
increased ALA elongation and desaturation products, Eicos-
apentaenoic acid (EPA; 20 : 5n-3), Docosapentaenoic acid
(DPA; 22 : 5n-3), and Docosahexaenoic acid (DHA; 22 : 6n-
3). Whereas EPA and DPA increased proportionally with
increasing dietary ALA, DHA displayed a different relation-
ship (Table 3). The DHA content of RBC phospholipids
increased modestly to a peak at a dietary ALA content of
0.76%en, but then decreased with further increases in dietary
ALA content (Table 3).

The RBC phospholipid content of arachidonic acid (AA,
20 : 4n-6), the derivative of LA, decreased in a linear manner
with increasing dietary ALA content (Table 3).

Overall, the total n-3 PUFA content of the RBC phospho-
lipids increased, and total n-6 PUFA content decreased with
increasing dietary ALA content (Table 3).

The plasma phospholipid fatty acid changes were similar
to those of the RBC phospholipids (data not shown).

3.1.2. Expression of Adipocyte Genes

Omental Depot. Dietary ALA altered the omental fat content
of mRNA for the transcription factor SREBP1 (F = 5.36,
P < .0001), and the lipogenic enzymes SCD1 (F = 5.22,
P < .0001), FAS (F = 7.66, P < .0001), and G3PDH (F =
12.87, P < .0001). The expression of these genes increased
with increasing dietary ALA, reaching maximal levels at
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Table 2: Primers sequences used for the determination of gene expression in adipose tissue by qRT-PCR.

GENE Forward Primer (5′–3′) Reverse Primer (5′–3′) Accession No.

SREBP1c TGCGGACGCAGTCTGGGCAAC GTCACTGTCTTGGTTGTTGATG AF286469

SCD-1 TGGGTTGGCTGCTTGTG GTGTGGGCAGGATGAAG NM 139192

FAS TGCTCCCAGCTGCAGGC GCCCGGTAGCTCTGGGTGTA NM 017332

G3PDH GCTTCGGTGACAACACCA AGCTGCTCAATGGACTTTCC NM 022215

LEPTIN ATTTCACACACGCAGTCGGTATCCG CCAGCAGATGGAGGAGGTC NM 013076

PPARγ TCCTCCTGTTGACCCAGAGCAT AGCTGATTCCGAAGTTGGTGG ???

LPL GAGATTTCTCTGTATGGCACA CTGCAGATGAGAAACTTTCTC NM 012598

ADIPONECTIN AATCCTGCCCAGTCATGAAG CATCTCCTGGGTCACCCTTA NM 144744

Table 3: Effect of dietary ALA content on content of n-6 and n-3 PUFA in red blood cell phospholipids.

0.095%en ALA 0.19%en ALA 0.38%en ALA 0.76%en ALA 1.00%en ALA 2.05%en ALA 4.1%en ALA 6.3%en ALA

ALA 0.02 ± 0.001a 0.03± 0.001a 0.04± 0.004a 0.10± 0.004b 0.11± 0.003b 0.24± 0.002c 0.47± 0.01d 0.89± 0.02e

LA 4.86± 0.07a 5.09± 0.07a 5.21± 0.08ab 5.63± 0.13bc 5.96± 0.04cd 6.12± 0.07d 6.87± 0.13e 7.67± 0.16f

AA 27.9± 0.2f 27.9± 0.3ef 27.9± 0. 2f 26.3± 0.4cd 26.1± 0.79bc 24.6± 0.41b 21.7± 0.17a 20.8± 0.18a

EPA 0.88± 0.01a 0.13± 0.004a 0.24± 0.01a 0.54± 0.01a 0.66± 0.01b 1.40± 0.03c 2.63± 0.05d 3.46± 0.12e

DPA 0.63± 0.01a 0.76± 0.02b 0.98± 0.03c 1.30± 0.04e 1.57± 0.01d 2.22± 0.02f 2.40± 0.05g 3.06± 0.10h

DHA 1.63± 0.03ab 1.86± 0.05c 2.05± 0.04d 2.04± 0.10d 2.12± 0.05d 2.05± 0.03d 1.68± 0.04b 1.43± 0.06a

Total n6 PUFA 33.3± 0.18c 33.6± 0.26c 33.8± 0.07c 32.8± 0.77bc 32.6± 0.32bc 31.4± 0.40b 29.2± 0.25a 29.1± 0.23a

Total n3 PUFA 2.48± 0.04a 2.89± 0.06a 3.45± 0.04b 4.11± 0.13c 4.59± 0.04c 6.05± 0.063d 7.66± 0.07e 9.12± 0.28f

Total n3 LCPUFA 3.35± 0.04a 2.75± 0.06a 3.29± 0.04b 3.89± 0.13c 4.34± 0.04c 5.67± 0.06c 7.01± 0.08e 8.02± 0.26f

Total PUFA 38.5± 0.19 39.0± 0.20 39.6± 0.09 38.9± 0.81 39.1± 0.32 40.0± 0.38 39.3± 0.25 39.6± 0.51

All data are presented as a percentage of total lipids in the sample. Different superscripts denote values which are significantly different as determined by a
Duncan’s post hoc analysis (P < .05).

0.38%en to 0.76%en ALA. However, the mRNA expression
of all these genes decreased with further increases in dietary
ALA (Table 4). The effect of diet on leptin mRNA expression
in omental fat showed a similar pattern, but the changes
in mRNA expression did not reach statistical significance
(Table 4). There was no significant effect of diet on mRNA
expression of PPARγ, LPL, or adiponectin in the omental fat
depot (Table 4).

The expression of FAS, G3PDH, and leptin mRNA were
each directly related to the expression of SREBP1c in omental
adipose tissue (FAS mRNA = 116 SREBP1c mRNA + 0.01,
r2 = 0.28, P < .001; G3PDH mRNA = 132 SREBP1c mRNA
+ 0.01, r2 = 0.25, P < .001; Leptin mRNA = 21 SREBP1c
mRNA + 0.003, r2 = 0.38, P < .001). The expression of
adiponectin, LPL, FAS and leptin mRNA was also directly
related to PPARγ mRNA expression in the omental adipose
depot (adiponectin mRNA = 51.1 PPARγ mRNA + 0.24,
r2 = 0.39, P < .001; LPL mRNA = 32.3 PPARγ mRNA +
0.72, r2 = 0.23, P < .02; FAS mRNA = 3.5 PPARγ mRNA +
0.01, r2 = 0.163, P < .05). The expression of G3PDH mRNA
also tended (P = .06) to be directly related to the expression
of PPARγ mRNA.

Retroperitoneal Depot. There was no difference in the expres-
sion of SCD-1 or leptin mRNA between dietary treatments
(Table 4). The expression of SREBP1c mRNA in retroperi-
toneal fat decreased (F = 2.27, P < .05) with increasing
dietary ALA content (Table 4). FAS mRNA expression was

highest when dietary ALA content was less than 2%en, after
which it decreased with increasing dietary ALA content (F =
9.11, P < .001; Table 4). G3PDH mRNA expression followed
a similar pattern to that of FAS mRNA (F = 3.88, P < .01;
Table 4).

3.1.3. Determinants of Adipocyte Gene Expression

Omental Depot. The expression of SREBP1 mRNA in omen-
tal fat was related to n-3 LCPUFA status as measured in
RBC. There was an inverse relationship between RBC EPA
(r2 = 0.62, P < .0001), DPA (r2 = 0.59, P < .0001),
total n-3 LCPUFA (r2 = 0.59, P < .0001), and SREBP1
mRNA. SREBP1c mRNA expression was unrelated to DHA
content of RBC phospholipids. The expression of SREBP1c
mRNA was positively related to AA content (r2 = 0.66,
P < .0001) and total n-6 content (r2 = 0.71,P <
.0001) of RBC phospholipids. In stepwise multiple linear
regression analysis, the total n-6 PUFA content of RBC phos-
pholipids emerged as the strongest independent predictor
of SREBP1c gene expression in omental fat (Figure 1(a)).
The relationship between total RBC phospholipids n-6
content and SREBP1c gene expression was positive and
persisted when the effects of n-3 PUFAs were controlled for
in the analysis.

The expression of FAS and LPL mRNA was also inversely
related to n-3 LCPUFA (FAS, r2 = 0.16,P < .01; LPL,
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r2 = 0.14, P < .05) and positively related to total n-6
PUFA content (FAS, r2 = 0.24, P < .001; Figure 1(b); LPL,
r2 = 0.16, P < .05). There was no significant relationship
between either n-3 or n-6 PUFA or LCPUFA content and the
mRNA expression of PPARγ, G3PDH, leptin or adiponectin
mRNA in omental fat. The strongest predictor of FAS,
G3PDH, and leptin expression in omental fat was SREBP1c
mRNA expression, and any relationships between the mRNA
expression of these genes and fatty acid content of RBC or
plasma phospholipids did not persist when adjustment was
made for SREBP1c mRNA expression.

Retroperitoneal Depot. In the retroperitoneal depot,
SREBP1c mRNA expression was inversely related to ALA
(r2 = 0.20, P < .005), EPA (r2 = 0.22, P < .005) and DPA
(r2 = 0.19, P < .005) content of RBC phospholipids, and to
total n-3 LCPUFA content (r2 = 0.19, P < .005). SREBP1c
mRNA expression was positively related to AA (r2 = 0.21,
P < .005) and total n-6 content (r2 = 0.20, P < .005,
Figure 1(c)). Multiple linear regression analysis showed that
the EPA content of RBC phospholipids was the strongest
independent predictor of SREBP1c mRNA expression in
retroperitoneal adipose tissue, however this relationship did
not persist when the effects of n-6 PUFA were controlled
for in the analysis. Interestingly, we found that there was no
inverse relationship between SREBP1c mRNA expression
and the DHA content of RBC phospholipids, and in
fact there was a weak but statistically significant positive
relationship between DHA content and SREBP1c mRNA
expression in retroperitoneal fat (r2 = 0.11, P < .005).

A summary of all relationships between SREBP1c mRNA
expression and fatty acid content in erythrocyte phospho-
lipids is presented in Table 5.

There was a weak positive relationship between total n-6
PUFA content and FAS mRNA expression in the retroperi-
toneal adipose depot (r2 = 0.12, P < .01, Figure 1(c)).
As in the omental adipose depot, the strongest predictor of
FAS, G3PDH and leptin mRNA expression in retroperitoneal
fat was SREBP1c mRNA expression, and any relationships
between the mRNA expression of these genes and fatty acid
content of RBC or plasma phospholipids did not persist
when adjustment was made for SREBP1c mRNA expression.

4. Discussion

Our finding that the mRNA expression of the key lipogenic
transcription factor, SREBP1c, was inversely related to the
concentration of the three potent n-3 PUFA, ALA, EPA
and DPA and positively related to n-6 PUFA concentration
extend previous findings that, in addition to their effects on
fat oxidation in adipose tissue, n-3 and n-6 fatty acids also
modulate the expression of lipogenic genes within adipose
depots [5, 13, 14]. Importantly, we demonstrated that
fat depots in different anatomical locations have different
degrees of responsiveness to altered levels of n-3 and n-
6 PUFA LCPUFA in the body, with effects being more
pronounced in the omental adipose tissue compared to the
visceral retroperitoneal depot. This has clear clinical impli-
cations, since the excess accumulation of omental adipose

tissue in both humans and animal models is recognized as the
major risk factor for the development of metabolic disease
[15]. Whilst previous studies have shown different effects
between distinct visceral and subcutaneous adipose depots
in the response to increasing n-3 PUFA admixed to high fat
diets [10], our current study is the first to demonstrate a
differential response between fat depots to n-3 and n-6 PUFA
in the absence of a background of high-fat feeding.

Although there were strong relationships between
SREBP1c mRNA expression and both the total n-3 and total
n-6 concentrations, we found that the strongest predictor
of SREBP1c mRNA in omental adipose tissue was the
total content of n-6 PUFA in the phospholipids of the
red blood cells, and the inverse relationship between n-
3 content and SREBP1c expression did not persist when
adjustment was made for total n-6 levels. The results of
the present study therefore confirm previous findings which
have demonstrated a prolipogenic role for n-6 PUFA, in
particular AA, both in vitro and in vivo [14, 16]. AA potently
stimulates adipocyte differentiation/proliferation through
activation of the proadipogenic transcription factor, PPARγ
[14], and feeding a high LA diet during the suckling period
is associated with an increased accumulation of epididymal
adipose tissue in rodents at 8 weeks of age [13]. The results
of previous studies have led researchers to speculate that n-3
LCPUFA act to suppress the adipogenic and lipogenic effects
of n-6 PUFA. Whilst the balance of n-3 and n-6 PUFA in
the diet are likely to be important in defining its lipogenic
potential, the results of the present study suggest that the n-
6 PUFA content of erythrocyte phospholipids, and therefore
the ability of diets to alter this, may be the most important
factor which defines a diet’s lipogenic potential. An alternate
possibility may be that the increase in dietary intake of ALA
acted both to reduce n-6 PUFA content in red blood cell
and plasma phospholipids and suppress lipogenic activity in
adipose tissue through separate pathways, and that there is
in fact no causal relationship between these two factors. This
is unlikely, however, given the existing evidence from in vitro
and in vivo animal studies which support the proadipogenic
action of the n-6 PUFA. The findings of this study also
suggest that the anti-lipogenic effects of n-3 PUFAs are less
potent than the prolipogenic actions of n-6 fatty acids across
the range of dietary fatty acids concentrations in the present
study.

This finding has important implications, since typical
diets in much of the Western world are currently char-
acterized by high levels of n-6 PUFA, and n-6 PUFA are
present at high levels in many common cooking oils and
processed foods [8]. These findings are supported by the
series of elegant studies by Lands and colleagues, in which
they showed that the fatty acid composition in phospholipids
of human and rodent plasma could be related to the dietary
intake of LA (n-6) and ALA (n-3) by empirical hyperbolic
equations, such that higher intake of LA was associated
with reduced conversion of ALA to downstream long-chain
derivatives [17, 18]. It would therefore appear that any
attempt at limiting fat deposition by supplementing the
diet with n-3 LCPUFA will need to be accompanied by a
reduction in n-6 PUFA consumption in order to be effective.
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Table 4: Effect of dietary ALA content on the expression of SREPB1c, SCD-1, FAS, G3PDH, and leptin mRNA in omental and retroperitoneal
adipose tissue.

0.095%en ALA 0.19%en ALA 0.38%en ALA 0.76%en ALA 1.00% en ALA 2.05%en ALA 4.1%en ALA 6.3% en ALA

Omental
Adipose Depot

SREBP1c
mRNA(×1000)

0.88± 0.09cd 0.74± 0.03bc 1.0± 0.2d 0.95 ± 0.02d 0.75± 0.10cd 0.60± 0.09abc 0.40± 0.03ab 0.34± 0.02a

SCD-1 mRNA 0.72± 0.06ab 0.43 ± 0.13a 1.22± 0.15ab 1.42± 0.23ab 0.67± 0.23bc 0.80 ± 0.19c 0.31± 0.11a 0.43± 015a

FAS mRNA 0.11± 0.02bc 0.06± 0.02ab 0.17± 0.03c 0.17± 0.008c 0.04± 0.02ab 0.05± 0.02ab 0.03 ±0.009a 0.06± 0.02ab

G3PDH mRNA 0.06± 0.003a 0.05 ± 0.02a 0.14± 0.02b 0.25± 0.01c 0.10± 0.02ab 0.10± 0.03ab 0.04± 0.004a 0.05± 0.02a

Leptin mRNA 0.01± 0.002 0.01 ± 0.004 0.02 ± 0.006 0.03 ± 0.005 0.02 ± 0.006 0.02 ± 0.006 0.01± 0.005 0.009± 0.002

PPARγ mRNA 0.029± 0.003 0.021± 0.003 0.020± 0.004 0.030± 0.004 0.017± 0.009 0.018± 0.003 0.018± 0.005 0.016± 0.007

LPL mRNA 1.30± 0.26 1.30± 0.23 1.97± 0.44 1.73± 0.16 2.09± 0.62 1.47± 0.37 0.97± 0.36 0.89± 0.08

Adiponectin
mRNA

0.74± 0.09 0.89± 0.15 1.57± 0.03 1.62± 0.08 3.20± 0.79 1.22± 0.34 1.56± 0.57 1.13± 0.44

Retroperitonl
Adipose Depot

SREBP1c
mRNA (×104)

0.25± 0.04bc 0.27± 0.05bc 0.39± 0.09c 0.30± 0.08bc ND 0.21± 0.02ab 0.16±0.06ab 0.11± 0.02a

SCD-1 mRNA 1.69 ± 0.41 1.24± 0.03 1.45± 0.34 1.60 ± 0.20 ND 1.92 ± 0.19 1.01± 0.24 0.92 ± 0.11

FAS mRNA 0.11± 0.01b 0.08 ± 0.009b 0.09± 0.01b 0.11± 0.02b ND 0.11 ± 0.01b 0.03± 0.004a 0.04± 0.009a

G3PDH mRNA 0.30± 0.03ab 0.33± 0.03ab 0.29± 0.03ab 0.40 ±0.07b ND 0.41± 0.03b 0.23 ± 0.03a 0.23± 0.02a

Leptin mRNA 0.04± 0.009 0.05± 0.008 0.04± 0.009 0.06± 0.01 ND 0.05± 0.006 0.04± 0.005 0.03± 0.008

Expression of all genes was normalised to the expression of β-actin. Different superscripts denote values which are significantly different as determined by a
Duncan’s post hoc analysis (P < .05); ND = no data.

Table 5: Summary of the relationships between expression of
SREPB1c mRNA in omental and perineal fat and AA, total n-
6 PUFA, EPA, DPA, DHA, and total n-3 LCPUFA consent of
erythrocyte phospholipids as a % of total fatty acids.

SREBP1c omental fat SREBP1c retroperitoneal fat

DHA ns ns

EPA r2 = 0.62, P < .0001 r2 = 0.22, P < .005

DPA r2 = 0.59, P < .0001 r2 = 0.19, P < .005

Total
omega-3
LCPUFA

r2 = 0.59, P < .0001 r2 = 0.19, P < .005

AA r2 = 0.66, P < .0001 r2 = 0.21, P < .005

Total n-6 r2 = 0.71, P < .0001 r2 = 0.20, P < .005

All relationships were determined by simple linear regression. Relationships
between SREBP-1c mRNA expression and DPA, EPA and total omega-3
LCPUFA were all negative, whilst relationships with AA and total n-6 PUFA
and SREBP-1c mRNA were positive.

We also found that there were relationships between n-
3 and n-6 PUFA concentrations and the mRNA expres-
sion of the lipogenic enzyme FAS in both omental and
retroperitoneal adipose tissue. These correlations were,
however, substantially weaker than the relationships with
SREBP1c mRNA expression in the respective depot, and
were explained entirely by the influence of SREBP1c on
FAS mRNA expression. SREBP1c mRNA was directly related
to the expression of all lipogenic genes we investigated in
both the omental and retroperitoneal depots. This is in line

with the known role of SREBP1c as the master regulator of
lipogenesis, driving the expression of a number of enzymes
which play a central role in lipogenesis, including those
investigated in the current study [19]. These results therefore
suggest that alterations in SREBP1c mRNA in response to
altered dietary fatty acid content is likely to mediate the effect
of dietary fatty acids on lipogenic activity of adipose depots.

Due to the relatively strong relationships between ery-
throcyte fatty acid content and SREBP-1c mRNA expression
in the omental fat depot, we also determined the impact of
the different n-3 and n-6 dietary content on the expression of
PPARγ, another key lipogenic transcription factor in adipose
tissue. Interestingly, we found no difference in the expression
of PPARγ mRNA in the omental adipose tissue between
different dietary treatments, and PPARγ mRNA was also
not related to erythrocyte content of either n-6 or n-3 fatty
acids. These data may suggest that the principal pathway
through which fatty acids act to modulate the expression
of lipogenic genes in through altered expression of SREBP-
1c, and consequent activation of the downstream cascade,
rather than through effects on PPARγ. This is in line with
previous findings, which suggest that the n-3 fatty acids
act to increase PPARγ activity in target tissues, and that
this is associated with increased insulin sensitivity [5]. An
alternate explanation is that the effects of fatty acids on
PPARγ signaling are mediated through changes in PPARγ
acitvtiy, rather than changes in gene expression, which was
not measured in this study, since fatty acids have been
shown to act as natural ligands of the PPARγ gene in other
studies [20]. Nevertheless, the positive relationships between



Journal of Nutrition and Metabolism 7

Total n6 PUFA

26 28 30 32 34 36

R
el

at
iv

e
SR

E
B

P
1c

m
R

N
A

ex
pr

es
si

on
om

en
ta

lf
at

0.0002

0.0004

0.0006

0.0008

0.0012

0.0014
SREBP1c mRNA

0.001

(a)

Total n6 PUFA

26 28 30 32 34 36

R
el

at
iv

e
FA

S
m

R
N

A
ex

pr
es

si
on

om
en

ta
lf

at

0

0.05

0.15

0.25

FAS mRNA

0.1

0.2

0.3

(b)

26 28 30 32 34 36

R
el

at
iv

e
SR

E
B

P
1c

m
R

N
A

ex
pr

es
si

on
R

P
fa

t

0

Total n6 PUFA

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5

8e-5

(c)

26 28 30 32 34 36

R
el

at
iv

e
FA

S
m

R
N

A
ex

pr
es

si
on

R
P

fa
t

0

0.05

0.15

0.25

Total n6 PUFA

0.1

0.2

(d)

Figure 1: The relationship between total n-6 concentration in erythrocyte phosphosolipids and the expression of (a) and (c) SREBP1c
mRNA and (b) and (d) FAS mRNA in omental (a) and (b) and retroperitoneal (c) and (d) adipose tissue. There was a significant positive
relationship between SREBP1c mRNA expression and total n-6 concentration in both omental and retroperitoneal fat. There was also a weak
but significant positive relationship between FAS mRNA expression and total n-6 PUFA content in both omental and retroperitoneal adipose
tissue.

PPARγ mRNA and the expression of the lipogenic enzymes,
LPL, FAS, and G3PDH in this study provides evidence
that PPARγ contributes to the regulation of adipocyte gene
expression in this study. We also found a strong relationship
between the expression of PPARγ and mRNA expression of
the insulin-sensitivity adipokine, adiponectin [21], in the
omental adipose depot, which suggests that PPARγ may play
a more important role in regulation of insulin sensitivity,
compared to lipogenesis.

In previous studies, the fat reducing or anti-lipogeneic
effects of n-3 PUFAs have generally been attributed to the
actions of both of the potent long-chain n-3 PUFAs, EPA
and DHA [5, 11]. In the present study, both EPA and
DPA concentrations were increased whilst there was no
appreciable change in DHA concentrations, and we were
therefore able to separate the effects of DHA from those
of the other n-3 LCPUFA, DPA and EPA. These effects are
consistent with those which have previously been reported
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in adult humans, in which feeding healthy subject a diet
high in ALA was associated with an increase in the EPA in
tissues to concentrations comparable with those associated
with fish-oil supplementation, with no appreciable change
in tissue DHA concentrations [22]. The similarity in effect
of increased dietary ALA content on tissue fatty acid
concentrations in rodents and humans supports the clinical
relevance of our rodent model.

We were thus able to demonstrate that total n-3
concentrations are inversely associated with alterations in
adipocyte gene expression in the absence of increases in
DHA concentrations. Furthermore, we found that SREBP1c
mRNA expression in both omental and retroperitoneal fat
was inversely related to tissue DPA and EPA concentrations.
Collectively, these findings suggest that DPA and EPA, as well
as DHA, contribute to the n-3 PUFA-mediated suppression
of lipogenic activity in adipose tissue in vivo. The relative
potency of DPA, DHA and EPA in suppressing lipogenic
gene expression and curtailing fat deposition is clearly an
important question which remains to be elucidated, and calls
for studies in which the concentrations of DPA, DHA and
EPA are altered independently.

The results of the red blood cell analyses for this study
are consistent with previous data showing that there is a
nonlinear relationship between DHA synthesis and dietary
ALA content. We found that whilst increasing dietary ALA
content from 0.095 to 1%en was associated with a modest
increase in DHA content of red blood cell phospholipids,
further increasing the dietary ALA content actually resulted
in a decrease in DHA. This is similar to the results of previous
studies in piglets [23] and in rat pups, which also reported
a curvilinear relationship between dietary ALA and tissue
DHA content. In contrast to DHA, DPA and EPA content
in red blood cell phospholipids increased in a linear fashion
as dietary ALA content increased. Furthermore, both DPA
and EPA content was directly related to the total n-3 and n-3
LCPUFA content of the red blood cell phospholipids, whilst
DHA content was not related to either of these measures.
Collectively, these findings suggest that the limitation to
the synthesis of DHA occurs at a step in the biosynthetic
pathway beyond the production of DPA, that is, the final
elongation or desaturation step in this pathway. It would
therefore appear that one or both of these enzymes becomes
saturated at higher levels of dietary ALA and thereby limit
further synthesis of DHA. This is likely to be a consequence
of the higher levels of ALA and other intermediate length n-
3 PUFA, since each of these enzymes has several competing
substrates, and previous studies have shown that increased
competition from these substrates limits their availability for
DHA synthesis.

In summary, we have shown that modulating dietary
ALA content can result in altered patterns of gene expression
within adipose cells in distinct anatomical locations. We have
also shown that the level of gene expression, independent of
dietary treatment, is related positively to n-6 and inversely to
n-3 concentrations, and that the proadipogenic effects of n-
6 PUFA may be more potent than the anti-lipogenic effects
of n-3 fatty acids in omental adipose tissue. These findings
suggest that reducing the n-6 content of the diet, in addition

to increasing n-3 intake, may be required in order to optimise
the ability of specific diets to suppress fat accumulation and
aid loss of body fat. These data highlight the need for further
studies which examine in more detail the relative impact
of increasing dietary n-3 content and reducing dietary n-6
content on lipogenic gene targets in adipose tissue in vivo,
in order to identify optimal PUFA targets for limiting or
reducing fat deposition in humans.
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